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A LOG RESOLUTION FOR THE THETA DIVISOR OF A
HYPERELLIPTIC CURVE

CHRISTTAN SCHNELL AND RULJIE YANG

ABSTRACT. In this paper, we prove that the theta divisor of a smooth hyperelliptic curve
has a natural and explicit embedded resolution of singularities using iterated blowups
of Brill-Noether subvarieties. We also show that the Brill-Noether stratification of the
hyperelliptic Jacobian is a Whitney stratification.

INTRODUCTION

Let C' be a smooth projective curve of genus g > 1. Let Jac(C') be the Jacobian of C,
and let © C Jac(C') be the theta divisor. The purpose of this paper is to give a natural
and explicit log resolution of the pair (Jac(C'), ®) when C' is a hyperelliptic curve.

Recall that the Brill-Noether variety W7, (C) parametrizes line bundles L € Pic?~(O)
of degree g — 1 with h°(L) > r + 1. According to a theorem by Riemann, we can choose
an isomorphism Jac(C') = Pic? '(C) so that the theta divisor © becomes identified
with Wy_1(C) := W2 | (C). The Abel-Jacobi map from the symmetric product Cy_; :=
Sym?!(C) gives a resolution of singularities of ©, which is useful for answering many
geometric questions about Jacobian varieties. However, if one wants to investigate the
geometry of the embedding © C Jac(C'), one needs instead a log resolution of the pair
(Jac(C), ©). Inspired by a global study of the vanishing cycle functor for divisors, we are
lead to the question of finding an explicit log resolution in the case of hyperelliptic theta
divisors. Since the log resolution is of a purely geometric nature, we leave the actual
computation of vanishing cycles to another paper.

When C'is a hyperelliptic curve of genus g > 1, we have a lot of very precise information
about the chain of subvarieties

(1) O =W,1(C) 2W,1(C) 2 2 W, (),

where n = | 1] is the maximal integer such that W, (C) # @. First, the dimension of

2
W;_1(C) is equal to g — 1 — 2r and Wy _,(C) is reduced (see Proposition [A)). Second,
the singular locus of W7_,(C) is exactly W;*/(C). Third, the multiplicity of the theta
divisor at a point L € Pic? *(C) is equal to h°(L) by the Riemann singularity theorem,
and so W, (C') is exactly the set of points of multiplicity > 7+ 1 on ©. (See [I, Chapter
IV, §4] for details.)

These facts immediately suggest that one might be able to get a log resolution of the
pair (Jac(C),©) by successively blowing up the Brill-Noether subvarieties W;_,(C) in
the order from smallest to largest. This guess turns out to be correct, but it requires
quite a bit of work to prove rigorously that it works.

More precisely, we use the following iterative procedure, consisting of n steps. In
the first step, we blow up Jac(C') along the smallest subvariety W ,(C), and denote
the blowup by m: bly(Jac(C)) — Jac(C). In the second step, we blow up bl;(Jac(C))

along the strict transform of Wg":f(C’ ), and denote the new blowup by my: bly(Jac(C)) —
Jac(C). In the i-th step, we blow up bl;_; (Jac(C')) along the strict transform of W;_Jrll_i(C'),

and denote the new blowup by m;: bl;(Jac(C)) — Jac(C'). This process stops after the
1
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n-th step. The strict transforms of the exceptional divisor give us a sequence of divi-
sors Zo, Z1, - - -, Zn—1, With Z; sitting over the locus W'/(C') of points of multiplicity
>n+1—i. Let © denote the strict transform of the theta divisor. With this notation,

our main result is the following.

Theorem A. If C is a smooth hyperelliptic curve, then in the sequence of blowups de-
scribed above, , : bl,(Jac(C)) — Jac(C) is a log resolution of (Jac(C'),©), where

I
—

n

(@) =0+ (n+1-1)Z

n

Il
o

i

is a dwisor with simple normal crossing support. Moreover, at the i-th stage of the
construction, the strict transform of W™/ (C') becomes smooth, and so each blowup in the
sequence s a blowup along a smooth center.

We can also describe the generic structure of the exceptional divisors.
Corollary B. Forr =1,...,n, every fiber of the projection
Zny \(Zo U+ U Zpy 1 U Zypyr U U Zyyq) = W) (C)\ W H(C)

is isomorphic to the complement of a hypersurface of degree r+1 in P?"; the hypersurface
is the (r — 1) secant variety of a rational normal curve of degree 2r in P?".

There are a few other examples in the literature where this simple-minded procedure
of successive blowups along singular loci produces a log resolution:

(1) Let X be the affine space of n-by-n matrices and let D be the hypersurface defined
by the vanishing of the determinant. Let D; C D be the set of matrices of rank
< n —i. According to [1 p. 69], one has (D;)sing = Dit1, and D; is exactly the
set of points of multiplicity > i on D. It is proved in [8, Chapter 4] and in [10]
(using complete collineations) that one can construct a log resolution of the pair
(X, D) by successively blowing up D,,, D,,_1, ..., Ds.

(2) Let X = PHY(C, M) and let D = Sec"(C') be the n-th secant variety of a smooth
projective curve C, embedded by a line bundle M with h°(M) = 2n + 3 that
separates 2n + 2 points. Setting D; = Sec™ "™ (C), Bertram [2, Page 440] proved
that (D;)sing = Dit+1 and that D; is again the set of points of multiplicity > ¢ on D.
He also showed [2 Corollary 2.4] that successively blowing up D,,, D,,_1,..., Dy
produces a log resolution of the pair (X, D).

Another common feature of these examples is that the divisor in question is a determi-

nantal variety: this is easy to see for the space of matrices or for the secant variety of a

rational normal curve, and is also true for the theta divisor of a hyperelliptic curve (which

is the determinantal variety associated to a morphism of vector bundles over Pic?™*(C)).
The subvarieties in (I]) induces a stratification

Jac(C) = (Jac(C) —©)U | | (W, (C) =W, (C)),

which is called the Brill-Noether stratification.

Proposition C. If C is a smooth hyperelliptic curve, then the Brill-Noether stratification
of Jac(C') defined above is a Whitney stratification.
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Ideas of the proof. Let us discuss the method we use to prove Theorem [Al Our main
tool is Bertram’s blowup construction for a chain of maps [2] (for a detailed and complete
review of this construction, see {II).

One inconvenient point in the process above is that the Brill-Noether varieties W;_,(C)
are not smooth, which makes it hard to keep track of conormal bundles and exceptional
divisors in the various blowups. Fortunately, on a hyperelliptic curve, each ngl(C) has
a natural resolution of singularities by Cy_1_s,, the (¢ — 1 — 2r)-th symmetric product
of the curve, viewed as the space of effective divisors of degree ¢ — 1 — 2r on C. If we
let g1 be the line bundle corresponding to the hyperelliptic map h: C — P!, then the
resolution of singularities is the Abel-Jacobi mapping

5n,7« : 0971,27« — W;_l(C), D Tg% & OC(D)

Since it is easier to blow up smooth varieties, we therefore modify the construction from
above, and instead of the subvarieties W7, (C), we work with the chain of maps {d;}7,.
The advantage is that we do not need to analyze the singularities of the proper transforms
of W;_,(C) and how they intersect with exceptional divisors; instead, we transform the
problem into checking that certain maps are embeddings (see Lemma [[L.T9)), which even-
tually reduces to the calculation of certain conormal bundles. The projectivized conormal
bundles that show up as exceptional divisors are closely related to secant bundles over
symmetric products of P!; for that reason, Bertram’s results about these secant bundles
are another important tool that we use.

Outline of the paper. In Il we recall Bertram’s blowup construction in details. In
§21 we set up notations for Abel-Jacobi maps and reduce the proof of Theorem [A] to two
propositions (Proposition and Proposition [ZT]), which deal with the properties of two
specific chains of maps between symmetric products and Jacobians. In §3] we review
the construction of secant bundles and describe Bertram’s results. In §4l we study some
basic properties of Abel-Jacobi maps and the addition maps among symmetric products.
In §51§6l we prove Proposition and Proposition 2.1, and thereby complete the proof
of Theorem [A] for hyperelliptic curves of odd genus. The proof of Corollary Bl can be
found at the end of §8l Finally, in §7] we outline a proof for hyperelliptic curves of even
genus, which goes along the same lines but requires a few changes in the notation. In §8|
we prove Proposition [C] which is a technical result needed in a later paper. In §9, we
propose some questions in the direction of this paper.

Notation.

(1) If V is a vector space, P(V) stands for the projective space of one-dimensional
quotients of V. We use the same notation for vector bundles.
(2) Let f: X — Y be a morphism between smooth projective varieties. Let Y; C Y
be a subvariety. We use the notation
f7(V) =Y xy X,

exclusively for the scheme-theoretic preimage, which is the fiber product of the
two morphisms X — Y and ¥; — Y.
(3) Let f: X — Y be a morphism between smooth varieties. We denote by

af - f*'1y — Tx
the induced morphism between cotangent bundles. If df is surjective, then
N; = Ker(df Ty — T)*()

denotes the conormal bundle of the morphism. In the case of a smooth subvariety
X CY, we also use the notation N;‘(‘Y.
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1. BERTRAM’S BLOWUP CONSTRUCTION

In this section, we review Bertram’s construction from [2, §2]. We consider sequences
of blowups whose centers are determined by a chain of morphisms; the main result of
this section is an inductive criterion for checking that such a sequence of blowups is a log
resolution (see Lemma [[L.T9). Let X be a projective variety, not necessarily smooth.

Definition 1.1. A proper chain is a sequence of morphisms {f; : X; — X}, from
projective varieties X; with the property that for each 0 < i < j < n, there exists a
commutative diagram

i
Xi7] %) Xz

lhi,' fi

X, b x

<

|

so that g; ; is surjective and there is a proper inclusion f;(X;) C f;(X;). Note that X, ;
is not necessarily the fiber product of f; and f;.

Let {f; : X; = X} be a proper chain. We now define the associated sequence of
blowups, which exists under the assumption that certain morphisms are closed embed-
dings.

Definition 1.2. If f, is an embedding, we identify X, with its image and define:
bl; (X) := the blowup of X along Xj.
bl; (X;) := the blowup of X; along fj_l(XO).
bly(f;) := the unique lift of f; to a map bl (X;) — bl;(X).

Note that bl;(f;) exists by the universal property of blowing up. Assuming that bl;(X),
bl;(X;) and bl;(f;) are already defined for some 1 < i <n —1 and for all j > 4, and that
bl;(f;) is an embedding, we identify bl;(X;) with its image in bl;(X), and further define:

bl 1(X) := the blowup of bl;(X) along bl;(X;).

bl;11(X;) := the blowup of bl;(X;) along bL;(f;) ™" (bL;(Xy)).

bli+1(f;) := the unique lift of bl;(f;) to a map bl;11(X;) — bli1(X).
Notation 1.3. To have a uniform notation, we set

blo(f) == fi, blo(X:) == X;, blo(X) = X.

This notation is going to be useful in the inductive proofs below.

Definition 1.4. Let {f; : X; — X}, be a proper chain. If bl,,;(X) is defined, we say
that {f;} is a chain of centers. Concretely, this amounts to the (recursive) condition that
the n + 1 morphisms fy, bli(f1), ..., bl,(f,) should all be closed embeddings. If X as
well as the n+ 1 varieties X, bl;(Xy), ..., bl,(X,,) are all smooth, then we say that { f;}
is a chain of smooth centers. In this case, all the blowups in the sequence are blowups
along smooth centers, and therefore the varieties bl;(X) are smooth fori =1,...,n+ 1.
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We formulate an additional definition which ensures that the exceptional divisors in
the final blowup bl,;1(X) form a simple normal crossing divisor. We are going to refer
to these conditions as the NCD conditions.

Definition 1.5. Suppose {f; : X; — X}, is a chain of smooth centers. For each i < n,
let E;;+1 C bliy1(X) be the exceptional divisor for the blowing-up of bl;(X) along bl;(X;).
For each j > i+1, let E; ; C bl;(X) be the scheme-theoretic inverse image of E; ;1 under
the later blowups, as in the following diagram (with Cartesian squares):

J J J

E,; — E;;11 — bLi(X))
We say that {f;}I, is an NCD chain if, for each 0 < i < j < n, the intersection
bl;(X;) N E;; C bl;(X)
is transverse and the divisor Epj + ---+ E;_1; € bl;(X) has simple normal crossings. If
this is the case, we use the notation
E; == Einn

for the divisors in the final blowup, and we say that {E;}!, is the set of exceptional
divisors of the chain {f;},. It follows that in any NCD chain, the divisor

Ey+Ey+---+ E, Cbl1(X)
is a simple normal crossing divisor.

Remark 1.6. Using the above notation, suppose {f; : X; — X} is a chain of smooth
centers. Then there is a natural embedding of X — f,(X,,) into bl,+1(X) such that

bl (X) = | Ei= X — fu(Xa).
0<i<n
This follows from the construction of the iterated blowups, because the set on the right

is exactly the complement of all the centers in blowups.

Notation 1.7. Let S be a smooth variety and let {f; : X; — X}, be a proper chain.
It induces a new chain {f; x id : X; x S — X x S}, i.e. the collection of maps that
are f; on the first factor and the identity on S.

Lemma 1.8. Let {f; : X; — X}, be an NCD chain. For each 0 <i < j<n+1, let
E;; Cbli(X) and F;; C bl;(X x S) be the exceptional divisors associated to the chains
{fi}iy and {f; x id}!, as in Definition[ZA Then for 0 <i < j <n+ 1, we have
Moreover, { f; x id}, is again an NCD chain.

Proof. We prove these statements by induction on i < j. A general fact we use is that if
A C B is an embedding of smooth varieties, C' is another smooth variety, then

blec<B X C) = blA(B) x C.

For i = 0, 1, the statement follows from definition and the general fact above. Assume the
statement holds for a given value of i. To prove it for i + 1, we blow up along bl;(X; x .S)
and its preimages. By the induction hypothesis, we have

bllqu(X X S) = blbli(XiXS) (bll(X X S)) = blbll(XZ)xS(blz(X) X S) = bll+1(X) x S.
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For any 7 > 1+ 1, we likewise have

consequently, bliy1(X; x S) is the blow up of bl;(X; x S) along bl;(f; xid) ™ (bL;(X; x 5)),
which is bl;11(X;) x S. Therefore the induced map

b12+1<fj X ld) : b12+1<X] X S) — bll+1<X X S)

can be identified with bl;;1(f;) x id. The NCD conditions can be proved in a similar
fashion because the exceptional divisors and their intersections respect the product with
S for the same reason. O

To prove that a proper chain is a chain of smooth centers and satisfies the NCD
conditions, it is useful to have the following definition.

Definition 1.9. Suppose that {f; : X; = X}, and {g; : Y; = Y}, are two chains of
centers. We say that a map ¢ : X — Y is a map of chains of centers if, recursively,

where bl;(¢) is defined at each stage by the universal property of blowing up. We say
that the map ¢ is an injective map of chains of centers if in addition, bl,.1(¢) is injective.

Remark 1.10. Definition [LL9 can also be expressed in the following manner. A map
¢ : X — Y is a map of chains of centers if, at each stage, the diagram

bl;(Y;) —— bli(X;)
jbl (g» jbu )
bL(Y) =22 bl(X)

is Cartesian for every 0 < ¢ < n. Here the two vertical arrows are closed embeddings
because {f;} and {g;} are chains of centers. Note that this is again a recursive definition,
because we need the i-th diagram to be Cartesian in order to define the next map bl;,1(¢)
by the universal property of blowing up.

Lemma 1.11. Suppose that X, X;, X, ; are smooth projective varieties for 0 < i < j < n.
Let {¢; : Xj — X} be a chain of smooth centers. Suppose that for each j, there is a

chain of smooth centers {fi; + X;; — Xj}g;é and that ¢; is a map of chains of centers.

If each auziliary chain {f”}f;é satisfies the NCD conditions, then the original chain
{#5}j— also satisfies the NCD conditions.

Proof. The two assumptions — that ¢; is a map of chains of centers and that {¢;}7_

is a chain of smooth centers — imply that ¢; is an injective map of chains of centers

By Remark [[L6, the NCD conditions on {f;;}] 0 guarantee that the complement of
— fim1;(X5 J) in bl;(X;) is a simple normal crossing divisor with j components.

Therefore we can apply [2, Lemma 2.1]. Moreover, it follows from the proof of [2, Lemma

2.1] that for each j < n, bl;(X;) intersects each exceptional divisor in bl;(.X') transversely,

and that the new exceptional divisors in bl;;;(X) also intersect transversely. U

In the rest of this section, we discuss how to impose conditions in order to show
that a proper chain {¢;} has smooth centers, in the same spirit as in Lemma [Tl
These conditions are embedded in the proof of [2, Proposition 2.2]. By formulating them
abstractly, we hope it will make our proof of Theorem [Al more transparent.
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Lemma 1.12. Let f : X — Y be a morphism between two smooth projective varieties.
Let F CY be a smooth divisor. If E := f~Y(F) is also a smooth divisor, then

I ;\Y =N, E|X~
Proof. Since F' is a smooth divisor, we have N;\Y = Op(—F) by the conormal sequence.
The same holds for the scheme-theoretic preimage F = f~!(F). Therefore
f*N;“\Y = ["Op(=F) = Op(-E) = E\X- O

Lemma 1.13. Let f : X — Y be a morphism between two smooth projective varieties. Let
Z CY be a smooth subvariety such that W := f~Y(Z) is smooth and properly contained in
X, and denote by f : X = Y the induced morphism between the two blowups Y = bly Y
and X =bly X, as in the following diagram.

f

E - > X » Y < > F
x Loy
Then f‘l(F) = F, where F and E are the exceptional divisors, and
(2) f*N;\Y - N;p”('

Proof. Only (2)) is not proved in [2, Page 442, Fact A]. By assumption, Z and W are
smooth, therefore £ and F' are smooth divisors and we can apply Lemma [[L.12] to get

@) O
Lemma 1.14. Keeping the assumptions from Lemmall13, further suppose that

(a) the map f‘E : E — F is an embedding,
(b) the map f: X —W =Y — Z is an embedding.

Then f is an embedding.

Proof. By condition (b), f is an embedding away from E. Condition (a) implies that f
is set-theoretically injective over E. Therefore, it suffices to show that

£ Rk *
df : f715 — T3
is surjective over E. Consider the following commutative diagram:

0 —— [*N;;

lg ldf ld(flE)

0—>NE|X—>T§ > T > 0

— T2

o —— [Tp —— 0

P

By (@), the arrow on the left is an isomorphism. Since f ’ - 1s an embedding, the arrow
on the right is surjective. By the snake lemma, we conclude that the arrow in the middle
is also surjective, and conclude that f is an embedding. O

Lemma [[.T4] generalizes to maps of chains of centers. We state the result in a way that
is suitable for proofs by induction. Let {f; : X; — X} and {g; : Y; = Y})2, be two
chains of centers, and let ¢ : X — Y be a map of chains of centers, meaning that

(3) bl;(¢) 7 (bli(X;)) = bLi(Y;), VO<i<j—1.
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For each i, consider the following diagram:

() | | |
BL(X:) < bL(X) % BL(Y) +— bL(Y))

Here {E;}, {F;} are the sets of exceptional divisors of the chains {f;} -3, {g:}/,, as in
Definition [[L5l Because of (3], we have

(5) bl(¢) N (F) =E;, V0<i<j—1.
Notation 1.15. For a sequence of divisors {E;}7_,, we define
E=FE —(EyUFE,U---UE;_)
Note that we are removing only the intersections with the previous divisors.

Lemma 1.16. Using the notation above, assume in addition that X, Y are smooth projec-
tive varieties and that {f; : X; — X}f;&, {9::Y; — Y}f;& are chains of smooth centers.
Further assume that

(a) the two chains {fi¥—y, {g:})=s satisfy the NCD conditions,
(b) for every 0 <i < j —1, the induced map

blj(¢) : EY — FY
15 an embedding,
(c) the map ¢ : X — fj_1(X;—1) = Y is an embedding.
Then bl;(¢) is an embedding.

Proof. The transversality condition (a) guarantees that F; and FE; are smooth divisors in
smooth projective varieties. Therefore, by (B)) and Lemma [[LT2] we have

bl (9) NE b1, v) = NEi bl (x)-
By restriction to EY and F?, we get
(6) blj(¢)*N;;|b1j(Y) = Ngflblj(X)'

Consider the following commutative diagram:

0—— blj(gb)*N;iolblj(Y) — blj(gb)*Tg‘lj(Y) B T blj(gb)*T;iio — 0

l~ ld bl (¢) ld(blj(@;sg)

0 ——— Ngojuy,x) » Ty E? T 0

Using (@), the condition (b) and the snake lemma, we see that
dbl(¢) : bli(¢)* bl (v) Tl;klj(X)

is surjective over each EP. By Remark [[L0] the set X — f,(X,) naturally embeds into
bl;(X) with complement U; E;, and condition (c) says that d bl;(¢) is surjective away from
U, E;. Since |, £; = |, E7, we conclude that bl;(¢) is an embedding. O

Remark 1.17. In condition (b), we do not ask for bl;(¢) : E; — F; to be an embedding;
the reason is that it is much easier to check this condition on open subsets of exceptional
divisors in the proof of Theorem [Al
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To apply Lemma[l.T6l one needs to prove that a map is a map of chains, which amounts
to verifying the conditions in (3]). The following lemma reduces this to exceptional divisors
and their complements.

Lemma 1.18. Let ¢ : X — Y be a morphism between smooth projective varieties. Let
{E 2 and {F;})Z; be two sequences of smooth divisors in X and Y such that

pNF)=FE, Y0<i<j-—1
Let X1 C X and Y, C Y be two smooth subvarieties. Assume that for each 0 < i< j—1,
(a) the intersections X1 N E; and Yy N F; are transverse,
(b) ¢~ Y (Y1 N E?) = X, N EY, where we use Notation [L.13,
(c) o' (V1 — U F) = X1 — U B
Then ¢~ (Y1) = X, scheme-theoretically.

Proof. From the assumption, we know that the set-theoretic preimage of Y; under ¢ is
X1. In order to show that this also holds scheme-theoretically, we need to know that
¢*Ly, — Ix, is surjective. Since Ny v = Tx,/T%, and Ny y = Ty, /T3, Nakayama’s
lemma shows that this is equivalent to the surjectivity of

This can be checked over X; — U; E; = X7 — U, EY and X, N E? separately. Condition (c)
implies that d¢ is surjective over X; — U; F;. On the other hand, using condition (a), we
have the following commutative diagram

dé|x,nEo

* * *
¢ NYl\Y‘YmFiO X1|X‘X1QE§’

l_ (9 59) l_

* * *
E— .
¢ NYlﬂFi°|Fi° lemE;\E;

The bottom map is induced by ¢|ge : Ef — F?. The vertical maps are isomorphisms
because of the transversality condition (which implies that the intersections X; N EY and

Y1 N F? are transverse). Therefore condition (b) implies that d¢ is also surjective over
X1 N E7 for each . O

Putting everything together, we have the following inductive criterion for a proper
chain to have smooth centers and satisfy the NCD conditions.

Lemma 1.19. Let {f; : X; — X}]_, be an NCD chain. Let f:Y — X be a morphism
from a smooth projective variety, such that f,(X,) C f(Y). Suppose that the the following
three conditions are satisfied:

(a) There is an NCD chain {g; : Y; — Y}, such that f : Y — X becomes a map of
chains of centers: concretely, this means that for 0 < j <n, the diagram

bl;(Y;) —— bL;(Xj)

jblj (95) jblj (f5)

bL(Y) —2Y b1 (x)

is Cartesian (and the vertical arrows are closed embeddings).
(b) For 0 < j <mn, let F; Cbl,41(Y) and E; C bl,11(X) be the exceptional divisors
of the chains {g;}i_y and {f;}}—y, as in Definition[LJ. Then each map

bloa(f) : FY — E?



LOG RESOLUTION FOR HYPERELLIPTIC THETA DIVISORS 10

1s a closed embedding,
(¢) The map f:Y — g,(Yn) = X is an embedding.

Then the augmented chain {f; : Xj — X}5_oU{f:Y — X} is also an NCD chain.

Proof. The condition f,(X,) C f(Y) guarantees that {f; : X; — X}/_(U{f:Y = X}
is still a proper chain. According to (a), we have bl;(f)~*(bl;(X;)) = bLi(Y;) for 0 <
J < n. This means that the notation is consistent, and that bl;(f): bl;(Y") — bl;(X) for
1 < j <n+1 are also the first n + 1 morphisms in the augmented chain. Therefore we
only need to prove the following three statements:

(1) bl 1(Y) is smooth.
(2) blyg1(f) : blyy1(Y) — bl,1(X) is a closed embedding.
(3) The augmented chain { f;}5_, U {f} is NCD.

Since (a) says that {g; : Y; — Y}7_ is a chain of smooth centers, bl,1(Y") is smooth,
and (1) is proved. Using (a), (b) and (c), we can apply Lemma to f:Y — X,
viewed as a map of chains of centers, to conclude that

bln—i—l(f) : b1n+1(Y) — bln+1(X)

is an embedding, proving (2). Finally, we know from (1) and (2) that the augmented
chain {f;}7_o U {f} is a chain of smooth centers. Because of (a), we can apply Lemma
[LIT to the augmented chain and conclude that it satisfies the NCD conditions. U

Remark 1.20. According to this lemma, to prove that a chain {f; : X; — X}7  is
NCD, it suffices to construct auxiliary chains of maps to each X, that satisfy various
conditions on pull-backs and exceptional divisors. By Lemma [[I8] the condition in (a)
can also be checked by intersection with exceptional divisors. In essence, in the proof of
Theorem [Al all the required conditions boil down to calculations of conormal bundles.

Since the exceptional divisors in smooth blowups are projective bundles, to verify the
conditions (a) and (b) in Lemma [[LT9 in practice, we need a relative version of some of
the lemmas above.

Lemma 1.21. Let ¢ : X — Y be a B-morphism of smooth algebraic varieties over a
smooth variety B, such that f and g are smooth morphisms.

Denote the induced map over a closed point t € B by the symbol ¢, : Xy — Y. Then
(1) If ¢y is an embedding for each t, then ¢ is an embedding.
(2) Let X1 € X and Yy CY be smooth subvarieties. If Y; NY1, X, N X1 are smooth
and ¢, (Y, Y1) = X, N X, for each t, then ¢~1(Y1) = X;.
(3) Suppose ¢ is an embedding, then blx(Y') is a B-variety and the fiber over t € B
18 let (}/;g)

Proof. For (1), it suffices to check that the differential d¢ : ¢*Ty — T% is surjective,
which can be checked by restriction to each X;; the proof is similar to that of Lemma
[L.14] by using the isomorphism

For (2), it suffices to check the surjectivity of the induced map
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The proof is similar to that of Lemma [[L.I8 and uses the isomorphism

* ~ *
NYl\Y}ylmyt - NY1I’7th\Yt

because Y1 MYy is smooth; likewise for Ny . (3) follows from local computations. [

2. ABEL-JACOBI MAPS AND ADDITION MAPS ON SYMMETRIC PRODUCTS

In this section, we reduce the proof of Theorem [Al to two somewhat technical propo-
sitions about certain chains of maps being NCD chains, using the general framework in
g1l Let C be a hyperelliptic curve of odd genus g = 2n + 1. The even genus case is very
similar, and will be treated separately in §71 Let gi be the line bundle corresponding
to the hyperelliptic map h : C' — P! and denote by C; := Sym’(C) the j-th symmetric
product of C; we view the closed points of C; as effective divisors of degree j on the curve
C, and let Cy be the one-point set consisting of the trivial divisor. Consider the following
chain of maps {d;}}_, to Jac(C), where

5]‘ : ng — JaC(C) = Pngil(C), 0 S] < n,

) D (n— j)gb ® Oc(D).

By the Abel-Jacobi theorem, we have 6;(Cs;) = Wg"__lj and there is a natural embedding
P/ = 5]_1(719%) — ng.

It is easy to see that {0, };‘:O is a proper chain in the sense of Definition [Tl Indeed,
for i < 7, we have a commutative diagram

. P
Coi x PI71 — s Oy,

(8) l%j l&

CQj —J> Jac(C’),

where p; denotes the projection to the first factor. Since p; is surjective and 6;(Ca;) =
Wi C W, = 0;(Cy;), the chain {0;}7_, is a proper chain, as claimed.

The proof of Theorem [Al for hyperelliptic curves of odd genus can be reduced to the
following proposition, whose proof we postpone until §5l It describes the properties of

the chain {5]»};-‘:0, using the language introduced in the previous section.

Proposition 2.1. The chain {6; : Coj — Jac(C)}_y is an NCD chain. Concretely, this
means the following things:

(a) Each map bl;(0;) : bl;(Cy;) — bl;(Jac(C)) is an embedding of smooth projec-
tive varieties, whose image intersects the union of all the exceptional divisors in
bl;(Jac(C)) transversely.

(b) There is a natural embedding Jac(C) — 6,(Can) — blyy1(Jac(C)), whose comple-
ment has n + 1 smooth components with normal crossings.

Assuming this proposition, we can easily prove the main theorem (for hyperelliptic
curves of odd genus g = 2n + 1).

Proof of Theorem[4l. For the sake of clarity, let us denote by {bl;(Jac(C))}, the se-
quence of blowups described in the introduction, where at the i-th stage to get bl;(Jac(C)),
we blow up the strict transform of the Brill-Noether variety W;fll_i(C). We are going
to argue that, in fact, bli(Jac(C)) = bl;(Jac(C)). First, since g = 2n + 1, the im-
age of bl,(Cy,) in bl,(Jac(C)) is a divisor, and so bl,1(Jac(C)) = bl,(Jac(C)); there-
fore both sequences really have only n steps. Note that §;(Cy;) is equal to the subset
Wr(C) of Jac(C) = Pic?” (C). By Proposition 2] the map bl;(Cy;) — bl;(Jac(C))
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is an embedding. By induction on 1 < i < n, it then follows easily that bl;(Jac(C)) =
bl;(Jac(C')), and that the proper transform of W;__f(C) under the birational morphism
m; : bl;(Jac(C)) — Jac(C) is equal to the image of bl;(Cy;) < bl;(Jac(C')), hence smooth.

The conclusion is that bl/ (Jac(C)) = bl,(Jac(C)) is smooth, and that the strict trans-
form © is the image of bl,(Cy,) < bl,(Jac(C)), hence also smooth. Since {&;}7, is an
NCD chain, the pullback 70 is a divisor with simple normal crossings. The multiplicity
of the exceptional divisor Z; equals the multiplicity of © at a point in g":f — Wgnfll_i,
which is n + 1 — ¢ by the Riemann Singularity Theorem. U

The proof of Proposition 2.1 is by a rather tricky inductive argument. Along the way,
we need several auxiliary chains that we now describe. The first such chain lives over
Cy;, and its shape is suggested by the commutative diagram in (§).

For each 7 > 1, we define the following chain of maps {%,j}{;ol to Cy;, where

(9) Yij CQZ' X Pjii — 022‘ X 02];22‘ — ng, 0<i< j

The first map is induced by the embedding P/~ < Cy;_; and the second map is the
addition map on symmetric products. Again, it is not hard to check that this is a proper
chain. Indeed, for ¢ < 7 < k, we have the following commutative diagram:

. . 1d .
CQiXPJ i x Pk Jl»CQiXPk ¢

(10) l’%’,j xid l’n,k
ng x PF-i L) Cgk

Here 7 is the restriction of the addition map Cyj—i) X Cok—j) — Ca—s), which can also be
viewed as the addition map for symmetric products of P! if we think of P as Sym‘P'. In

Lemma 2] we will show that 7; ;(Cy; x P77%) parametrizes effective divisors D of degree
2j such that h°(Oc(D)) > j — i + 1. Therefore

Yi,j(Coi X PI7Y) C 7 1(Coy x PF),

and so {7;,;}—, is also a proper chain, as claimed.
The second auxiliary chain lives over Cy; x P¥77_ and its shape is again suggested by
(I0). Using Notation [[.7] for any j < k, consider the chain

{’Yi,j x id : (ng X Pj_i) X Pk_j — ng X Pk_j}z;ol

which is induced by taking the product of the chain {v;;}/—; with P*~7. (Fortunately,
because of the product structure of this chain, the process stops here and no further
chains are needed.)

The key step in the proof of Proposition R.1lis the following result about the properties
of the two chains {7;;}/ -y and {7;; x id}/_,.

Proposition 2.2. For each k > 1, the chain
{ig o Cos x P*F = Cop } o)
1s an NCD chain, and for each 1 < j < k, the map
Yik - C2j X Pkij — CQk

is a map of chains of centers from {y;; x i}y to {vix}=y. Concretely, this means the
following things:
(a) For0 <i <k, the map bl;(7;x) : bly(Co x P¥=1) — bl;(Cay) is a closed embedding
between smooth projective varieties, whose image intersects the union of all the
exceptional divisors in bl;(Cyy) transversely.
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(b) There is a natural embedding Co, — Ye—1.4(Cax—2 X P) < blg(Ca), whose com-
plement has k smooth components with normal crossings.
(¢c) For each i < j <k, one has a Cartesian diagram

blz (ng X Pj_i) X Pk_j E— blz (021 X Pk_l)

\[blz (’yl,j)de \[bll (’Yz,k)

blZ(CQJ) X Pki] Pli(ry k) blZ(CQk)

3. SECANT BUNDLES AND MAPS BETWEEN THEM

The proofs of Proposition and Proposition 2.1l rely on certain results about secant
bundles over symmetric products of curves. In this section, we review the necessary
definitions and results, following the notation in [2].

Let C' be a smooth projective curve of genus g > 0, let M be a line bundle on C, and
let 7 > 0 be an integer. We denote by C; = Sym’C' the j-th symmetric product of the
curve. Consider the following diagram:

Diy1 — O xCip
J+

Here 9,1 = C x C} is the universal divisor over C} 1, embedded via (p, D) — (p,p+ D).
We say that M separates d points if

h(C, M) = h°(C,M(—D))+d, VD € Cj.
If M separates j + 1 points, then the sequence of sheaves
(11) 0= piM @ O(~=Zj11) = PiM = piM ® Og,,, — 0

on C' x Cj4; remains exact when pushed down to Cj ;.

1

Definition 3.1. The secant bundle (with respect to M) of j-planes over Cj44 is
BI(M) :=P(pa).()iM @ O, ).

This is a P/-bundle over the symmetric product Cj41; for j = 0, we have BY(M) = C. If
M separates j + 1 points, the natural map to PH®(C, M) is

(12) Bj: B(M) — P(ps).(piM) = PH’(C, M) x C;1; — PH(C, M),
where the last map is the projection to PH(C, M).
Assuming that M separates k + 1 points, we get a proper chain
; k
(13) {8;: B (M) —» PH(C.M)}__,
In order to study this chain, we need certain auxiliary chains, just as in the previous
section. For ¢ < j, the addition map r : Cj;; x Cj_; — Cj41 induces a map
(14) i B (M) x C;_; — BI(M).
For each j > 1, these maps gives us another proper chain

{ai,j : BZ(M) X Cj—i — BJ(M) J.lil.

=0
Lastly, using the construction in Notation [[L7] we have for each j < k a proper chain
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In [2, Proposition 2.2, Proposition 2.3], Bertram proved the following result.
Proposition 3.2 (Bertram). Let M be a line bundle on C and 0 < j < k.

(a) Both {a; Y=t and {a;; x idYZ, are chains of smooth centers, and the map
a;: BI(M) x Cy_j — B*(M)

is an injective map of chains from {a;; x idY_, to the truncation {c; ¥ —,.
(b) If M separates 2k + 2 points, then {ﬁj}?zo is a chain of smooth centers, and

B, : B¥(M) — PH(C, M)
is an injective map of chains from {aj,k}f;ol to the truncation {B; ;:01_

Remark 3.3. Using Definition [T, Bertram’s proof actually shows that {a;}¢ s and
{B;}h_, are NCD chains. But these facts will not be used later.

Let us spell out in detail what Bertram’s theorem says in the case of P!, where the
images of the secant bundles for Op1(d) are the secant varieties to the rational normal
curve of degree d in P?.

Corollary 3.4. Let d > 2k + 1 and consider the line bundle M = Op1(d) on P!.
(a) For0<1i<j<k, the diagram

bl (BI(M) x Pi~) x P¥3 — bl,(Bi(M) x PF)
jbli(ai,j)xid J:bli(ai,k)
bl BI (M) x PE= — PO ) gk

is Cartesian and the two vertical arrows are injective.
(b) For 0 <1i < j, the diagram

bl;(BY(M) x PI=*) —— bl; BY(M)

jbli(ai,n lbli(ﬁn

‘ bl (8
bl BI (M) B, 1, pe
1s Cartesian and the two vertical arrows are injective.

Proof. Since M = Op1(d) separates d+ 1 points on P!, we can apply Proposition 3.2 and
use the isomorphisms P* = Sym*P! and P? = PHO(P!, M). O

4. PROPERTIES OF ABEL-JACOBI MAPS AND ADDITION MAPS

In this section, as a preliminary for the proof of Proposition and Proposition 2.1],
we establish some basic properties of the map 7, ; : Cy; X Pi—t — (5 and of the Abel-
Jacobi map §; : Cy; — Jac(C'). In particular, their conormal bundles are calculated in
terms of the secant bundles over symmetric products of P!. In fact, it is known that the
conormal bundle of Abel-Jacobi maps can be described in terms of Steiner bundles (see
[4, Theorem 1.1]). For our purpose, it is more natural to use secant bundles.

Notation 4.1. For each j, we define Uy, := Cy; — vj_1,(Caj—2 X P'). By Remark [0
this is exactly the open subset of Cy; which is the complement of exceptional divisors in
bl;(Cy;) associated to the chain {v;;}/—.

Lemma 4.2. Let C be a hyperelliptic curve of odd genus g = 2n + 1.
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(a) The map §; : Uyj — Jac(C) is an embedding for 0 < j < n, and for0 <i < j <n,
the restriction of the diagram (8)) is Cartesian:

U2i x Pi—t L) Ugi

\[’Yi . \[51'

CQJ‘ —J> JaC(C)

(b) The map ~;; : Uy x P77 — Cy; is an embedding for 0 < i < j < n, and for
0 <i<j<k<n, the restriction of the diagram (I0) is Cartesian:

(U x PI=1) x Pr=3 X0y 17, s ph—

\[’Yi,j xid \[’Yi,k

Coj x PFI — Cox
(c) In particular, for P¥ C Cyy., we have v, (P*) = PJ x P,

Proof. Let D € Cy; be a degree 2j divisor such that h°(O¢(D)) = r + 1. Since C' is a
hyperelliptic curve, there is a unique decomposition

D:EJFZ(PH%)

=1
such that p,+ ¢, are hyperelliptic pairs and E is a degree 2j —2r divisor with h°(O¢(FE)) =
1. In particular, the map

Yi,j - UQZ' X Pjii — CQJ'
is injective, and its image consists of divisors D of degree 2j such that h°(O¢(D)) =

j — i+ 1. Similarly, using the Abel-Jacobi theorem, we know that for any L € Jac(C)
with R°(L) = r + 1, there is a unique decomposition

(15) L=rg®lL

such that h°(L') = 1.

For (a), since &;(D) = (k — j)gs ® Oc(D), it follows from the uniqueness of the de-
composition (IH) that 6, : Uy; — Jac(C) is injective, and that its image consists of line
bundles L € Jac(C) such that h°(L) = k — j + 1. Suppose that D € Cy; is such that
5J(D) € (5Z<U22) Then

W ((k = j)gs @ Oc(D)) = h(6;(D)) =k —i+ 1.
Using (I5), we have h°(O¢(D)) = j — i+ 1 and conclude that D € ~; ;(Uy x PI7%), by
its characterization in Cy;. The argument for the set-theoretic part of (b),(c) is similar.

To show 9, and v, ; are embeddings, one needs the surjectivity of dd; and dv; ;, which

follows from Lemma [£4)(a) and Lemma A.7(a) below. To show the diagram in (a) is
Cartesian, we need to show 5;1([]22‘) = Uy x P77%: this amounts to the surjectivity of

LOCk AT *
déj . 5jNU2i|JaC(C) - NUQiXPjii‘CQJ"

which follows from Corollary .8 Similarly, the statement that the diagram in (b) is
Cartesian follows from Corollary O

Notation 4.3. By the proof of Lemmal[4.2] the open subset Uy; C Cy; consists of divisors
D of degree 2j such that there is no hyperelliptic pair contained as an effective subdivisor
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of D. In particular, any D € Uy, gives a degree 2j divisor on P! via the hyperelliptic
map h : C — P1. We denote this divisor on P! by the symbol h,D and define

Opi(g—1—h.D):=Opi(g — 1) ® Op1(—h,D),
which is a line bundle of degree g — 1 — 25 on P!. Note that we have h,Op = O, p.

The divisor h,D shows up in the following way. Recall that since the curve C' is
hyperelliptic, we have we = h*Op1(g — 1), and therefore
hawe = wpr @ Op1(g — 1).
If we twist the canonical bundle by an effective divisor D € U,;, we instead get
(16) howe(—D) = wp1 @ Opi1(g — 1 — h.D).

To see this, push the short exact sequence 0 — we(—D) = we — we ® Op — 0 forward
along h: C' — P! and use the fact that h.(wec ® Op) = Opi(g — 1) ® Oy, p, because of
the projection formula and h,Op = Oy, p.

Lemma 4.4. For 0 <i < j, consider v; j : Co; X PI™" — Cy;. Then
(a) dvij Vi TC,, = T4, wpi—i s surjective when restricted to Uy X Pt
(b) Fori =0, we have an isomorphism

PN;’j\ng ~ B (Op1(g — 1)),

the latter is the secant bundle over Sym?P! = PJ with respect to Op1(g — 1).
(c) Fori > 1, the space PN;J_‘UQVXW_Z. 1s a smooth variety over Us;, such that over
D € Usy; we have an isomorphism.:

PN: ~ B~ Opi(g — 1 — h,D)),

Yi,j

{D}xPi—i
the latter is the secant bundle over P7=" with respect to Opi1(g — 1 — h, D).

Proof. As a warm-up, let us calculate the conormal bundle of P’ inside Cy;. Recall that
for any divisor D € Cy;, there is a canonical identification

1;,.|, = H(C,we © Op).

Using the isomorphism P’/ = Sym’P*', the morphism P7 — Cy; associates to an effective
divisor E of degree j on P! the effective divisor h*E of degree 2j on C'. We have

T;,j B = HO<P17MP1 & OE)

for the cotangent space of P/ at the point £, and
15, e = H(Cowo @ 1*Op) = HY(P, hawe @ Op)
>~ HOP,wp ® Op) @ H'(P', Opi1(g — 1) ® OF)

for the contangent space of Cy; at the point h*E. Moreover, the morphism between the
two contangent spaces is the projection to the first summand. It follows that

*
TCQJ_

E3
n— Ip

h* E

is surjective (which means that P/ — Cj; is a closed embedding), with kernel

Npiic,| p = H (P, Opi(g — 1) © Op).

This isomorphism is natural in £, and therefore

Npiicy, = (02)(P10p1(g — 1) © Og)).
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where &; denotes the universal divisor over PJ & Sym’P!, and the notation is as in the
following diagram:

& —— P! x Sym’P!
(17) / x
p1
Pl

In particular, the projectivized conormal bundle is the secant bundle B/~! ((’)P1 (g — 1)),
proving (b).

For (a) and (c), consider D € Us; and E € P?~". The morphism ; ; : Uy; x PI7" — Cy;
takes the pair (D, F) to the divisor D 4+ h*E of degree 2j on C. As before, the cotangent
spaces of the three varieties are canonically identified with

Sym’P!

%
TUzz'
*

TPj*i

D = HO<C, we ® OD),
= H (P! wpr ® Op),
>~ H(C,we @ Opin-p).

*
TC2J ‘D+h*E

Because D € Uy;, we have H(C,Oc(D + h*E)) = H°(C,Oc(h*E)). After a little bit of
diagram chasing, this gives us a short exact sequence

0— HO(C, wc(—D) X Oh*E) — HO(C, we K OD+h*E) — HO(C, we K OD) — 0.

The morphism between the cotangent spaces of Cy; and Uy; is the morphism in this short
exact sequence; consequently,

Ker(Tg,, Ty,

D) ~ [{(C,we(—D) ® h*Op) = H (P!, hywe(—D) ® Op).

}D-i-h*E
Using (I6), we have
HO<P1, h*WC(—D) & OE') = HO(Pl,wpl & OE') () HO<P1, Opl (g —1- h*D) & OE)

Since the morphism to the cotangent space of P/~ is the projection to the first summand
in this decomposition, we deduce that

e at: * *
d%J : TCQj ‘D+h*E - TU% D D TPj_i

E

is surjective, proving (a); and that its kernel is isomorphic to

N*

Yi,j

= HO(Pl, Opl<g o h*D) & OE')

(D,E)
This isomorphism is again natural in F, and therefore

(pyxpii = (P2)s(PiOp1 (g — 1= h.D) @ Og,_,).

*
Yig

This is a vector bundle on P/~% because the line bundle Opi(g — 1 — h, D) separates j — i
points (on account of the inequality ¢ — 1 — 2i > j —i). The projectivized conormal
bundle is therefore a projective bundle over Us;, hence smooth, and its fiber over D € Uy,
is the secant bundle B="1(Opi(g — 1 — h, D)), proving (c). O

Remark 4.5. This lemma is parallel to [2, Lemma 1.3], with the difference that the
relevant divisor is h,D (and not 2h,D as in Bertram’s case).
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From the proof, we can deduce one additional useful fact. For 0 < i < j < k < n,
consider the commutative diagram from (I0), which looks like this:

(Ug; x PI7%) x Pk=J AT 7, x PR
Coj x P15y,
Corollary 4.6. For D € Us;, the induced map of conormal bundles

€ (ld XT)*N:;i,k }{D}ka*i - N’;kzj xid

{D}xPi—ixPk—J

on {D} x P17t x P*7J s surjective, and the diagram

PN:

Yi,j xid

@ *
{D}xPi—ixPk—J PN’Yz‘,kl{D}ka—l

! !

Bi=i=Y(M) x Pk-i HZEWEEL L pheicl(y)

commutes. Here oj_;_1—i—1 is the map in ([I4) for the curve P! and the line bundle

M = Opi(g — 1~ h.D); and o is induced by € and the projection to PN ‘{D}xP’f—i'

Proof. To simplify the notation, fix a point D € Uy; and define M = Op1(g — 1 — h. D).
According to the proof of Lemma 4] for E; € P/~% and E, € P*~J, the map

*
(D,E1+E2) — N%',j

L OATH
€|(D,E1,E2) : N'yi’k (D,E1)

between the fibers of the two conormal bundles is identified with the map
H'(P', M ® Op,15,) — H(P', M @ Op,),
which is obviously surjective. The remaining assertion is clear from (I4). 0
Next, we prove the analogous results for the Abel-Jacobi map.
Lemma 4.7. For 0 < j <n, consider §; : Cy; — Jac(C).
(a) doj : 65175, o) = 1¢, is surjective when restricted to Us;.
(b) The fiber of Nj, over D € Us; is H°(PY, Opi(g — 1 — h,D)).
Proof. The proof is similar to that of Lemma .4l We have
Te(cy = H(C,w0o) © Ojac(c),
and the morphism between the two contangent spaces is identified with
H°(C,we) — H(C,we ® Op).
Since D € Uy, this morphism is surjective, and its kernel equals
N;.|, = H°(C,wo(=D)) = H°(P',0pi(g — 1 — h.D)),

using the isomorphism in ([I6]). O

Again, we record one additional useful fact. For 0 < i < 7 < n, consider the commu-
tative diagram in (&), which looks like this:

. P
Uy x PI70 —— Uy,

l%‘, j léi

ng —]> Jac(C’)
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Corollary 4.8. For D € Us;, the induced map of conormal bundles
€. pTNgz ’D - N:Ykz] ’{D}xPJ’—i

over {D} x P~ is surjective, and the diagram

* ’3 *
PN%,j {D}xPi—i 5 PN&‘D
B (M) 22N PHOPY, M)

commutes. Here the first vertical isomorphism comes from Lemma[{.4)(c); Bj—i—1 is the
map ([I2) for the curve P! and the line bundle M = Opi1(g — 1 — h,D); and (3 is induced
by € and the projection to P Ny,

I
Proof. To simplify the notation, fix a point D € Uy; and define M = Op1(g — 1 — h, D).
According to the proof of Lemma E.7, for £ € P/~% the map

elo.e : Ni|p = N5 ooy

between the fibers of the two conormal bundles is identified with the map
H(PY, M) — H°(P', M ® Og),

which is surjective for degree reasons. The remaining assertion is clear from (I2J). O

5. THE PROOF OF PROPOSITION 2.1

The proofs of Proposition 2.1l and Proposition follow the same lines. Since the
notation for Proposition is more complicated, we are going to postpone its proof to
§6l In this section, we assume Proposition 2.2l and prove Proposition 2.1l We also assume
Claim [6.2], which is proved along with Proposition

Recall that g = 2n + 1. For each 1 < k < n, we study the map

5k : Cgk — JaC(C)

as a map between the two chains {v; » ;:01 and {51‘}?:_01- To keep track of the exceptional
divisors in different blowup spaces, for 0 < i < 57 < k, we denote by

Ei,j Q blj(czk-), E,j Q bl](Jac(C))
the exceptional divisors of the two chains {v; ;:01 and {J; ;:01 as in Definition L5 In
particular, we have the following diagram

Bis > (G —= bl (Jae(C)) e F

l | ! l

bl;+1(6
Ei,i-‘,—l > bli—l—l(CQk) +10) blz+1(JaC(C')) — E,i+1

| | ! |

bli(Car) x PF e Bl(C) —2 s bl (Jac(C)) +———— bl(Cy)

For the sets of divisors {E;;}/—y and {F;,;}_,, we use Notation [LT5l The key obser-
vation is the following. We use Us; and h, D from Notation L1l and Notation [£3]
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Claim 5.1. For 0 <i < j <k <n, we have bl;(0x)(E};) C F}; and the induced map
bli(0x): E7; — FY;

is a morphism of Uy;-varieties which is bl;_;_1(Br—i—1) on fibers: over a point D € Uy,

the corresponding map s

Bi—iz1: B¥ 71 (Opi(g — 1= h.D)) = PH’(Opi1(9 — 1 — h.D))

from ([@2) and bl;_;_1(Br—i—1) is the map associated to the chain {f;}j—o in (). In

particular, by Corollary[37)(b) and Lemma[L21), the map
bl;(6;) : E7; — F;

s an embedding for 0 <i < j < n.

Granting Claim [5.] for the time being, let us prove Proposition 2.11

Proof of Proposition 2.1. We prove by induction on 0 < k < n that the truncated chain
{6;}F_, is NCD. The base case k = 0 follows from the smoothness of Cy and Jac(C). Fix
k > 1, and suppose that the truncated chain {(2}22} is NCD. We would like to apply
Lemma to prove that the same is true for {d;}%_,. Proposition implies that the
chain {y; : Cy x P*7 — C’gk}f;é is an NCD chain. According to Lemma [LT9] it
therefore suffices to verify the following three conditions:

(a) The map & : Co — Jac(C') is a map of chains of centers, i.e.

bl; ()~ (bL;(Coy)) = bl;(Cyy) x P¥7, V0 < j < k.

(b) The map bl;(d;) : Ef; — F7; is an embedding for each i < j,

(c) The map 0y : Co, — Vk—1.%(Cor—o X P!) = Jac(C) is an embedding.
The condition in (b) follows from Claim [5.1], and the condition in (c) follows from Lemma
d2(a). It remains to check the condition in (a) for all pairs (j, k) such that 0 < j < k.
By induction on k, we can assume that it holds for every pair (j', ') such that &’ < k—1.

Now we argue by a further induction on 0 < j < k. The base case (0, k) follows from
the fact that &, '(Cy) = P*. Assume that we have

(18) bl;(6;) " (bl;(Cy)) = bli(Cy) x PF1, W0 < i < j,
we want to show
(19) bL;(6) 7! (bl;(Cy;)) = bl;(Cy;) x P,

To this end, we would like to apply Lemma to the map
b1]<(5k) : b1]<02k) — le(Jac(C'))
The key point is to understand the intersection of bl;(Cy;) with the exceptional divisors
in bl;(Jac(C)) via the map ¢; : Cy; — Jac(C). By induction hypothesis (for k) and
Proposition 22 the chains {0;}¥}, {7, ;}¥=} are NCD chains. Since j < k — 1, we know
that >, Ei; € bl;(Car), >, Fij C bli(Jac(C)) are simple normal crossing divisors in
smooth projective varieties, and that the intersections
(bl;(Coy) x P¥I) N E;;, blLi(Coy) NF;y, VO <i<j,

are transverse. By (I8) and Lemma [[.T3] we have

bli(0x) " (Fij) = Eiyj, V0 <id <.
Hence by Lemma [[LI§] to prove (I9), it suffices to show that

(20) bl;(6x) (bl (Coy) N FY,) = (bl;(Coy) x PPI)NEY,, V0 < i< j,

27.]’
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(21) bl ()~ (bl (Cy;) UF”> = bl;(Cy;) x P¥ — | J By

1< 1<J

For (21]), by induction hypothesis (for k), the map §; : Cy; — Jac(C) is a map of chains of
centers. Therefore by Lemma [[.13] bl;(Cy;) N F; ; are the exceptional divisors associated
to the chain {'yivj}g;ol in Definition [LAl Then by Remark [L.6] we have

(22) 1i(Coy) = | Fij = Coj = 75-1,4(Caj2 x P') = Us;.
1<J

Using Lemma [L.§], we also have

(23) blj(CQj) X Pk_j — UEi’j = Ugj X Pk_j.

i<j
Finally, by Lemma .2{(a), we conclude that
bli(01) " (Usg) = ;' (Unj) = Upj x P*7.

Now we turn to the proof of (20)). By Proposition 22] the maps

;1 Cy; — Jac(C), 7k : Oy x P — Cy,
are maps of chains of centers. Using Lemma [[LT3] Claim 511 for bl;(;), and Claim 6.2]
the diagram

(bL;(Co;) x P*7) N EY; —— bl;(Cy;) N FY,

[ [

bl (5%
o J N o
Ei,j ’ Fi,j

is a diagram of Uy;-varieties. Over a point D € U,;, the corresponding diagram is

blj—i—l Bmiiil(M) x Pk — blj—i—l Bj*ifl(M)

[ !

bl,_,_y Bty DG pEO(M)

Here the vertical maps are bl;_;_1(a;_;—1 %x—i—1) and bl;_;_1(8;_;_1), and M denotes the
line bundle Op:i(g — 1 — h, D), which has degree

g—1-2i=2n—2i>20k —i—1)+1,
as k < n. Then we can apply Corollary B.4(b) to get
blj—i—l(ﬁk—i—l)_l(blj—i—l Bj_i_l(M)) = blj—i—l Bj_i_l(M) X Pk_j.

Apply Lemma [L2Tto bl;(dy) : Ef; — F}; as a map of Uy-varieties, this proves (20) and
thus finishes the inductive proof for the condition in (a). Then we finish the proof of
Proposition .11 O

In the rest of this section, let us prove Claim [5.Il To illustrate the geometric picture,
let us do the first few cases by hand, before dealing with the general case. We identify
Cp with its image {ngi} in Jac(C) and we have §, ' (Cp) =

Case k = 0. There is no exceptional divisor yet, so the statement is vacuous.
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Case k = 1. We blow up Jac(C) and Cy along Cy and ;' (Cy) = P! respectively. By
Corollary .8, we have a commutative diagram

bly (61)
Egy = Eoa

B (Opi(g — 1)) —2 PHOY(Op:1 (g — 1)),
which proves Claim [5.1] for k£ = 1.

Case k = 2. We have the following commutative diagram; the spaces to the right and
left are the blowup centers and their corresponding divisors:

P2 o, —2 Jac(C) Co
bly(Cy) x P o bly(Cy) 2L b1 (Jac(C)) Fos bly(Cs)
R D
ELQ E072 b12(04) — blg(JaC(C)) F072 FLQ

First we blow up Jac(C) along Cp, and Cy along 6, *(Cy) = P2, to get the two divisors
Ey1 and Fy,. By Corollary A8, we have a commutative diagram (j = 1 and i = 0):

bl (d2)

Epa > Foa

B (Opi(g — 1)) —2 PH(Opi(g — 1))

Then we blow up bly(Jac(C)) along bl;(Cy), and bl;(C}) along bl;(Cy) x P!, to get the
new exceptional divisors F o and F 5. The divisors Ey o, F{ 2 are the strict transforms of
Ey 1, Fo1 under the new blowup. By the case & = 1, we know that

bl (Cy) N Foy = B (Opi(g — 1)),
(bli(Co) x P N Eyy = B(Opi(g — 1)) x P

Since the intersections are transverse, I o and Fj , are the blowups of Ey; and Fj; along
these intersections, which identifies bly(d2) with bl (5):

bl2(d2)

(24)

Ep o > Foo

bl B (Opi (g — 1)) 222 b1, PHO(Opi (g — 1))

The bottom map is induced by 31 : BY(Opi(g — 1)) = PH°(Op1(g — 1)) by the blowup
along BY(Opi1(g — 1)) x P! and B%(Op:i(g — 1)) associated to the chains {a;;})_, and
{Bi}i=o in §3l

The remaining case is j = 2, i = 1. By (24), F1» — Fp2 is the exceptional divisor for
the blowup of bly (Jac(C)) along

bli(Cy) — B (Opi(g — 1)) = Cy — P! = Us.

Since U, already embeds into Jac(C'), by Lemma [d.7(b), we know that FT, = Fi 2 — Fo
is a Uy-variety with fiber over D € U, being PH?(Opi(g — 1 — h, D)), where h,D is the
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degree 2 divisor on P! associated to D. Similarly, EYy = E12 — Epz is the exceptional
divisor for the blowup of bl;(C}) along
bl (Cy) x Pt — B°(Opi(g — 1)) x P = U, x P.
Moreever, the restriction map bly(d2) : ETo — Fyy is a map of Us-varieties with fibers
over D € U, being
Bo: P! =B (Opi(g—1—h.D)) = PH(Opi(g — 1 — h,D)).

This proves Claim 5.1l when k& = 2.
Proof of Claim 5.1. We prove the claim by induction on 1 < k < n + 1. The base case
k =1 is covered by the previous discussion. Fix k > 2 and assume the claim holds for
all smaller values of k. From the proof of Proposition 2.1l we see that it implies the
truncated chain {;}*=} is NCD and that the map d; : Cy; — Jac(C') is map of chains of
centers for all j < k — 1.

To prove the claim for k, we fix ¢ (< k) and do an extra induction on j such that
1 < 7 < k. For a divisor D € U,;, we use the notation

M = Opi(g—1—h.D).
The base case is j =7+ 1 and we want to show that under the map
bli11(dk) : bliy1(Car) — bliyi(Jac(C)),

E?; ., is mapped into F;, ;. The divisor Fj;1 C bli;1(Jac(C')) is the exceptional divisor
for the blowup of bl;(Jac(C')) along bl;(Cy;). Since the chain {§;}5=) is NCD and i < k—1,
we have transverse intersections

bl;(Cs) N Fpi, VU <.
Therefore by 22), F7;,; = Fiip1 — Ue<iFiq1 is the exceptional divisor over

bli(Co:) — | Fri = Uai.
£<i
Since Uy embeds into Jac(C), the exceptional divisor Fy, , is a Uy-variety with fiber
over D € Uy being PH°(M), by Lemma ET7(b). Similarly by Proposition 222 for each
{ < i, the intersections (bl;(Cy;) x P77") N Ey; is transverse. Therefore by ([23), £, is
the exceptional divisor for the blow up of bl;(Cy;) along

blZ(CQZ) X Pk_i — UEAZ' = UQZ' X Pk_i.
0<i
which is a Uy-variety with fiber over D € Us; being B¥~*~1(M), and by Corollary 8]
the restriction of bl;1(dx) to the fiber is
Bri_1: B¥7Y (M) — PH(M).
We conclude the base case.
Assume the claim is true for j — 1. We are interested in the diagram

o bl; (0x) .
Eyj e bLi(C) O bl;(Jac(C)) +—— F

| | | !

E°. > bljfl(CQk) Pl -1 (%) blj,l(Jac(C)) > F°.

4,7—1 i,7—1

blj_l(CQj_Q) X Pk_j+1 blj—l(CQj—Q)
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Since the truncated chain {6;}*~} is NCD and j — 1 < k — 1, the intersection
F? N blj,1<02j,2)

ij—1
is transverse. Then by induction hypothesis on k, it is a Uy;-variety with fiber over D € Us;
being bl;_;_y B/~">(M). Hence Fy; is the blowup of Fy; | along Fy; | Nbli_1(Cyj_s),
and by Lemma [[L21] it is a Uy;-variety such that the fiber over D is the blow up of
bl;_;_ o PH°(M) along bl;_; o BI""2(M), which by definition is bl;_; 1 PH°(M). The
calculation of E7; is similar (using Proposition 2.2)); this time, the induced map of bl; ()
on fibers is

blj—i—l(ﬂk—i—l) : blj—i—l Bk_i_l(M) — blj—i—l PHO(M),

because [;_;_1 is a map of chains of centers by Corollary B.4(b). This finishes the induc-
tive proof on j and k for Claim b1 O

Proof of Corollary[B. For 0 < i < n—1, the exceptional divisor Z; from the Introduction
is the exceptional divisor F;, in the notation of this section. Over any point D € Us; and
write M := Opi(g — 1 — h, D), Claim [5.1] implies that the fiber of the projection

F'(,)i+1 =Fiii \ FoimiU---UF_1,41 — W::f \ W::f“ =

(2

is PHY(M) = P2 Since {;} is a NCD chain, using Claim E.I, we know that the
fiber of F;,, \ Fo,,U---U F;_1, over D is obtained by iterated blow-ups of PH°(P*, M)
associated to the chain {f_;_; : B¥"""(M) — PH(M)};_,,,. To calculate the fiber of
Fo\FonU---UF,_; ,UF 1, U---UF,_1, over D, we can apply Remark because
{B;} is a smooth chain. It follows that the complement of the fiber inside P29 is the
image of f,_;_1, which is the (n — i — 1)'® secant variety of the rational normal curve
Bo(B°(M)) . This secant variety has degree (n — i)+ 1 and the rational curve has degree
2(n — 7). This finishes the proof of Corollary [Bl by applying i =n —r. U

6. THE PROOF OF PROPOSITION 2.2

In this section, we prove Proposition 2.2 whose proof follows the exact same lines
as Proposition 2.Jl Therefore, some details will be omitted. The essential difference is
that we replace Lemma 7 and Corollary B.4(b) with Lemma [£4] and Corollary B.4(a).
Besides the already existing induction, we prove by an extra induction on ¢ such that the
inductive hypothesis on ¢ plays the role of Proposition in the proof of Proposition
2.1 In particular, this says that we do not need to construct another map of chains to
Ca; x P and show it is a NCD chain, which is guaranteed by the induction hypothesis
and Lemma [L.8

For each 1 < k < t, we study the map

Yt : Cop x PR — Oy,

as a map between chains {~; 5 x id}f;ol and {%,t}fz_ol. By Lemma [[L8, we have identifica-
tions

bl;j(Cop x P™F) = bl;(Cy) x PIF.
which will be used throughout this section. For 0 < i < j <k, let us denote
Gij Cbl(Co) x PTF E;; Cbli(Cy)
to be the exceptional divisors associated to the chain

{7k xid : (Cy x P*71) x P 5 Oy x PTFYAS



LOG RESOLUTION FOR HYPERELLIPTIC THETA DIVISORS 25

and {%,t}?:_(]l as in Definition [LAl In particular, we have the following diagram

Gi’j c > blj(CQk) X Pt_k M) blj(CQt) i E@j

| | | |

bli(Cai) X PET x PEE «y BlL(Cop) x P 205 11 (0y) e bL(Cyi) x PE

For the sets of divisors {G;;}/—; and {E;,;}/—,, we use Notation [LT5

Remark 6.1. By Lemma [[.8, the exceptional divisors G, is equal to H x P'™% where
H C bl;j(Cy) are the preimages of the exceptional divisors associated to the blow up
along bl;(Cy;) x P¥~%. Since H is the “E; ;" divisor inside bl;(Cy), and our notation E; ;
cannot distinguish whether or not it lies in bl;(Cy) or bl;(Cy), we decide to use the new
notation G ;.

The proof of Proposition relies on the following
Claim 6.2. For 0 <i < j <k, we have
bl (k) (GF;) € E7;

and the induced map is a morphism of Uy-varieties which is bl;_;_j(ag_i—14—i—1) on
fibers, where Uy; = Co; —i—1,(Caia X P'). Over a point D € Uy, the corresponding map
18

Op—j—1t—i—1 - Bk7i71<OPl (g —1-— h*D)) X Ptik — Bt7i71<OPl (g —1- h*D)),
where h, D is the divisor in Notation[{.3 In particular, by Corollary[3.4(a) and Lemma
[1.21], the map

bl (v51) « Gy — Ei;
s an embedding for 0 <1 < 7.
Proof of Proposition[2.2. We prove by induction on ¢ that the chain
{7ie Coi x P70 = O}

is NCD and for each 1 < k < t, the map ;. is a map of chains of centers between
{yir x id}=} and {v,,}'=). The base case t = 1 follows from 75, : P! < Cy is an
embedding of smooth varieties. Assume these are true for all ¢/ < ¢—1. To verify it for ¢,
we prove by induction on 0 < k < ¢—1 that the truncated chain {7;;}¥_, is a NCD chain.
The base case k = 0 follows from vy : P* < Cy; is an embedding of smooth varieties.

Assume that k£ > 1 and the truncated chain {%,t}f;ol is NCD, we would like to apply
Lemma [LT9 to prove that the same is true for {v;,}* ;. By the induction hypothesis (for
t), the chain {7;}¥} is NCD. Hence Lemma [[8 implies that there is a NCD chain

{in,k x id : (022 X Pkil) X Ptik — Cgk X Ptik}f:ol

According to Lemma [[.19] it therefore suffices to verify the following three conditions:

(a) the map 7, is a map of chains of centers, i.e.
bLi(71.) " H(bl;(Cy;) x PT77) = bli(Cy;) x PF7 x PF 1 W0 < j < k.

(b) the map bl;(v;,) : G7; — E7; is an embedding for each i < j,
(¢) the map Y : Cop X PF — vy 1 1(Cop_o X PL) x P=F — Oy, is an embedding.
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The condition in (c) follows from (22)) and Lemma [£.2(b). The condition in (b) is a
consequence of Claim It remains to check the condition in (a) and Claim for all
pairs (j, k) such that 0 < j < k < t. The base case (0, k) follows from Lemma [£.2(c) and
Lemma [£4|(b). By induction on k, we can assume that it holds for every pair (5, ") such
that ¥/ < k — 1.

We first prove Claim for k. For fixed ¢ and k, we induct on j, the number of
blowups. For D € Us;, we denote M := Opi1(g — 1 — h,D). The base case is j =i + 1.
As in the proof of Claim (.1, since the truncated chain {w’t}lg;& is NCD and i < k — 1,
therefore EP i1 = Eiit1 — UciEp it 18 the exceptional divisor over

bli(Cai) x P — | ] Epy = Up x P C bl;(Cy).

1<

By Lemma f.4{(c), we conclude that E7, , is a Uy-variety with fiber over D € Usy; being
B""~!(M). Similarly, Gj,,, is the exceptional divisor for the blow up of bl;(Cy) x
P!=F along (Uy x PF7) x PF which is a Uy-variety with fiber over D € Us; being
BF=1(M) x P*"*. Hence we have

blz‘+1(7k,t)(GZz‘+1) Ezoz—l—l’

and its restriction to the fiber over D is
Qhi14-i1: BT M) x PR — BT M),

This concludes the base case on j. Assume the Claim is true for 7 — 1. Using again
the induction hypothesis that the truncated chain {v,, t}’;_& is NCD, we see that E7;
the blow up of E; ; along E; ;N (bl;_1(Cy;_2) x P™7*1), and by Lemma [L21] the ﬁber
of Ef; over D is the blow up of bl;_;_o B**"'(M) along bl;_;_» B/~""*(M) x P71,
which is bl;_;_y B""1(M). Similar calculation gives G7; as a Uy-variety with ﬁber
bl;_;_y B¥="=1(M) and the induced map over D is

blj,ifl(ak,iflifi,l) : blj,i,1 Bk7i71<M) X Ptik — blj,i,1 Bt7i71<M).

This finishes the inductive proof on j for Claim

To prove the condition in (a) for k, we fix & and argue by a further induction on j
such that 0 < j < k. The base case j = 0 follows from v, ; (P") = P* x P'"* by Lemma
d2(c). Assume that we have

(25) bl (V) H(bLi(Cy;) x P = bly(Co;) x PF i x P™F V0 <i < j,
we want to show
bLi(vi.4) Tt (bl;(Cyj) x PF7) = bl;(Cy;) x P x PF.
To this end, we apply Lemma to the map
bLi(Yr.) @ bLi(Cox) x P™F — bl;(Coy).

As in the proof of Proposition 22T}, using the induction hypothesis that {v;;}=5, {7 }i=o
are NCD chains (which implies that {7; x idpe—+ }¥=} is also a NCD chain) and (25), it
suffices to verify that for 0 < i < j, we have

bLi (1) "1 (bl (Cyy) x P9) N E;;) = (bl;(Cyy) x x PFI x P NG

’L]’

bli(k4) " (bl;(Coy) x P — | J Epy) = bli(Coy) x PP 5 P — | ] Gy

0<j €<y
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For the second equality, by similar calculations in (23]), we have

blj(CQj) X Pt_j — U Ef,j = Ugj X Pt_j,
1<
blj(CQj) X Pk_j X Pt_k — UGé’j = Ugj X Pk_j X Pt_k.
<y
By Lemma [£2(b), we have
blj(/}/k;ﬂf)_l(Uzj X Pt_j) = ’Yk_,z}(Uzj X Pt_j) = Ugj X Pk_j X Pt_k.

The first equality uses the induction hypothesis {7 }5=, {7i:}i=y are NCD chains, v,

and ; X idpe-x are maps of chains of centers, the Claim [6.2] for £ and Corollary B.4)(a).
This finishes the inductive proof for the condition in (a) on k. Therefore we finish the
proof of Proposition 2.2 O

7. EVEN GENUS CASE

In this section, let C' be a smooth hyperelliptic curve of even genus g = 2n + 2. We
sketch a proof of Theorem [Al for C. The ideas are essentially the same by reducing to
the calculation of conormal bundles, but for parity reasons, the corresponding maps need
some modification. First, we have a chain of maps {d;}"_, to Jac(C'), where

0j + Cajyr — Pic? 1 (C) = Jac(C), 0<j<n
D (n—j)gs ® Oc(D).

The image 0,(Cs;+1) is W;:lj , hence this is a proper chain. By Abel-Jacobi theorem, for
each ¢ > 1, we have P* C (b, then for each j > 1, there is a proper chain of maps

{%,j}{;(} induced by the addition maps:
Vij - C2i+1 X Pjil — C2Z'+1 X C2j*2i — C’2j+17 0 S 1< ,]

The even genus case of Theorem [Al is reduced to the following analogue of Proposition
and Proposition 2.11

Proposition 7.1.
(1) For each j > 1, the chain

- -
{7ij 1 Coig1 x P70 = Cyin Mo

is @ NCD chain and for each 1 < i < j, the map v;; s a map of chains of i
smooth centers.

(2) The chain {5; : Coj41 — Jac(C)}j_y is a NCD chain and for each 1 < j <n, the
map §; : Cyj41 — Jac(C) is a map of chains of j smooth centers.

As in the proof of Proposition and Proposition 2.1 the proof of Proposition [Z.T] relies
on a parallel statement for Abel-Jacobi maps and conormal bundles as in Lemma and
Lemma (.4l The proofs are left to the reader.

For each 5 > 0, denote

Usji1 = Cajir = 7j-1,i(Cajo1 x PY).
Note that for j = 0, we have U; = C. Any divisor D € Us;; gives a degree 25 + 1 divisor
on P! via the hyperelliptic map C' — P!, which is denoted to be h, D and the associated

line bundle is
Opi(g — 1= h.D) = Opi(g — 1) ® Op1 (—h.D).

Lemma 7.2. Let C be a hyperelliptic curve of genus g = 2n + 2. Then:
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a) for any 0 < i < 7§, the map 7, : Cor1 X P71 — Oy is an embedding over
Yy = J P /7,] + 7+ g
Usiv1 X P77 and for 0 < { < i < j we have

’y;jl(Ugg_H X Pjig) = Ugg_H X Piiz X Pjii.
(b) for 0 < j <mn, the map 9; : Caj11 — Jac(C) is an embedding over Usjiq, and for
0 <1<y, we have o
5j_1(U2i+1) = Uiy x P77
In particular, since Uy = C we have

5-_1(0) =(Cx Pj - 02j+1.

J

Lemma 7.3. For 0 < i < j, consider the map 7;; : Coiy1 X Pi—t — Coji1 and let
D e U2i+1. Then

(&) dvig Vi Ten,,, = Ty, xpi-s 1S surjective when restricted to Usiyq X P

b) PN* |y, . «pi-i S a smooth variety over Us; 1 such that over D € Us; 1 we have
Yi,j 'Y2i+1 y + +

an isomorphism

PN,’Y:’],

(pyxpi-i = BT (Opi(g — 1 = h.D)).

Furthermore, for { < i, consider the commutative diagram

- coid x .
(ngJrl x P? Z) x PI~* 1—T> ng+1 x P’ ¢

lw,i xid l“/e,j

Coip1 X P71 ——— Oy

Here r is the addition map. For any D € Usypiq, there is an induced map of conormal
bundles on {D} x P=¢ x Pi~i;
€: (id xr)"NJ, [(pyxpi-t = N§, iy l{pyxpi-expi—i-
Then:
(c) € is surjective.

(d) The following diagram commutes:

PN(*WJXid) |{D}xPi—foi—i —— PN;‘“ |{D}ij—e

! !

Biféfl(M) w pi—i Limtohizend ijéfl(M>

Here o g1 ;o1 is the map ([I) for the curve P' and the line bundle M =
Opi(9g —1—h.D); and « is the map induced by € composed with a projection to
PN: (D x Pi™").
sJ
Lemma 7.4. With the notation in Lemma [7.3. For 0 < j < n, consider the map
5]' : 02j+1 — JaC(C) Then:
(a) doj : 6515, o) = 1, is surjective when restricted to Usjy.
(b) the fiber of Nj, over D € Usjiq is H(P!, Opi(g — 1 — h.D)).

Furthermore, consider the diagram for i < j,

Chiny x PI1 2250,
2i4+1 X 2i4+1

l’h,j l&-

02j+1 —J> Jac(C’)



LOG RESOLUTION FOR HYPERELLIPTIC THETA DIVISORS 29

Then for D € Cyy1, we get the induced map of conormal bundles over {D} x PI~¢:
€ W62i+1Ngi|D — N,;ki’j|{D}><Pj—i,
and we have

(c) € is surjective.
(d) The following diagram commutes:

* 6 *
PN%J. (Dyxpi-i ——— PN6i|D
Bi-i1(M) 222 PHO(PY, M)

The first vertical isomorphism comes from (b) of Lemma [7.5 and [;_;_1 is the
map ([I2) for the curve P! and the line bundle M = Opi(g — 1 — h,D). The map
B is induced from e composed with a projection to PN |p.

8. BRILL-NOETHER STRATIFICATIONS ARE WHITNEY

In this section, let C' be a smooth projective hyperelliptic curve of genus g. We show
that the Brill-Noether stratification of Jac(C') determined by

Jac(C) D2 © =W, ,(C) D W;,l(c*) .. DWL(0),

is a Whintey stratification, where n = Lg;;j We will assume g = 2n + 1; the even genus
case is similar.

8.1. Whitney stratifications. Let Z be a smooth real manifold and let X,Y C Z be
two embedded smooth real sub-manifolds. Suppose Y C X, where the closure is taken
inside Z with respect to the Euclidean topology.

Definition 8.1. We say that the pair (X,Y") satisfies the Whitney conditions if for any
point y € Y the following two conditions hold:

(A) If {z;} C X is a sequence of points converging to y, and if the sequence of tangent
spaces T, X converges to a linear space 1" of the same dimension, then 7,Y C T

(B) If {z;} € X and {y;} C Y are two sequences of points that both converge to y,
if the sequence of real secant lines between x; and y; converges to a real line L,
and if the sequence of tangent spaces 7,, X converges to a linear subspace 1" of
the same dimension, then L C T

The Whitney condition (B) involves real secant lines (in local coordinates), and is
therefore not so easy to verify in practice. Instead, in the case of complex algebraic
varieties, there is a condition (W) introduced by Kuo [9] and Verdier [I1], which implies
the Whitney conditions and is easier to work with in our situation. It is proved by
Teissier that, for complex analytic stratifications, the Whitney conditions are equivalent
to condition (W), but we will not need this fact.

Definition 8.2 (Distance). Let V' be a complex vector space and let A, B C V be two
linear subspaces. Fix an inner product (—, —) on V. The distance between A and B is
defined to be
d(A, B) := inf si :
(A, B) ng Anf sin 0(a,b)
a#0 b#0

Here 6(a, b) is the angle between two vectors a, b determined by the inner product (—, —).

Here are some basic properties of d(A, B). Note that it is not symmetric in A and B.
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Fact 8.3. -
(1) d(A,B) =0 if and only if A C B.
(2) Let A C A’ be two subspaces, then d(A, B) < d(A’, B).
(3) Identify V' with the conjugate dual space V* via the inner product (—, —) so that
ker(V* — B*) is identified with the orthogonal complement B+. Then
d (ker(V* — B*), ker(V* — A*)) = d(B*, A*) = d(A, B).

After choosing an orthonormal basis, this comes down to the fact that a linear
operator and its adjoint (between two finite dimensional Hilbert spaces) have the
same operator norm.

From now on, let Z be a complex manifold. Let X,Y be two embedded smooth complex
submanifolds of Z such that Y C X.

Definition 8.4. We say that the pair (X,Y") satisfies Condition (W) if for any point
y € Y, and for any sequence of points {z;} C X converging to y, there exists a constant
C > 0 such that for i > 0, we have

d(T,Y, T, X) < C - d(y, ;)
where we view T, X as a subspace of T),Z using a local trivialization of the tangent bundle
Tz, and d(y, z;) is the Euclidean distance between y and x; in a local coordinate chart.

Kuo [9] (see also Verdier [11, Théoreme 1.5]) proved the following.

Theorem 8.5. Let Z be a complex manifold. Let X, Y be two embedded smooth complex
submanifolds of Z such thatY is contained in the closure of X. If the pair (X,Y") satisfies
Condition (W), then the pair (X,Y) satisfies the Whitney conditions (A), (B).

We are going to use this result in the following form.

Lemma 8.6. Same assumptions as above. Assume the pair (X,Y) satisfies the Whitney
condition (A). Then the pair (X,Y) satisfies the Whitney condition (B) if the following
condition holds: Let y € Y be any point, and let {x;} C X be a sequence of points
converging to y such that T = lim; . T, X exists. Then there is a constant C' such that

Equivalently, there exists a constant C' such that

(27) ANy 2)e i (N 2)z) < C - d(y, ).

Proof. By Whitney condition (A), we know that 7,Y C T. By the property (2) of the
distance function in Fact 8.3, we conclude that

This verifies the Condition (W) and thus gives the Whitney condition (B) by Theorem
RE The last statement uses the property (3) of the distance function in Fact O

Definition 8.7. Let X be a complex algebraic variety and suppose there is a finite
algebraic stratification
X=||s

by connected algebraic varieties whose irreducible components are smooth. We say this
is a Whitney stratification if for any S; C S;, the pair (S5;,S;) satisfies the Whitney
conditions (A) and (B).
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8.2. Brill-Noether stratification is Whitney. Recall that C' is a genus 2n+1 smooth
hyperelliptic curve. For each 0 < r < n, denote
W;—l(c)o = W;—1(C) - Wgrfll(C),

which is a connected smooth algebraic variety, and parametrizes degree g — 1 line bundles
with exactly r 4+ 1 independent sections. The subvariety Jac(C') — © is also smooth and
parametrizes degree g — 1 lined bundles with no sections. The Brill-Noether stratification
of Jac(C) is defined to be

Jac(C) = (Jac(C) — O) U |_| Wi 1 (C)°.
0<r<n

Proposition 8.8. The Brill-Noether stratification of Jac(C') is a Whitney stratification.
Proof. Note that Wi_,(C)° = W;_,(C) and for i < j, we have

W;_1(C)° S WJ_(C) € Wy, (O).
We also have Jac(C') — © = Jac(C). By Definition B it suffices to show that for each
i < j, the pair (W;_,(C)°,W]_(C)°) satisfies the Whitney conditions, and the same
holds for the pair (Jac(C) — O, W;_(C)°). To apply Lemma B.6, we need to understand
the conormal bundles of the Brill-Noether strata. Recall that for each 0 < r < n, the
Abel-Jacobi map d(y—1-2r)/2 = 0n—, induces an isomorphism
(28) 5(g—1—2r)/2 . Ug_l_gr :) Wgrfl(C)o, D~ Oc(D) (%9 T‘g%,

where U,_1_9, is defined in Notation .I] and is the open subset of Cy_i_o, consisting

of divisors D such that h°(C,O¢(D)) = 1. By Lemma 7, for any D € U, ; 5, and
L := Oc(D) @ rgs, we have

(Nvr el gacie) = (Noy )0 = H°(C,we(—=D)) = H(P', Op1(g — 1 — h,D))
where the last isomorphism is induced by h : C' — P, the hyperelliptic map determined

by the unique g4 and h,D is the degree g — 1 — 2r divisor defined in Notation
For each i < j, let {Lx} € W7 _(C)° be a sequence of line bundles converging to

L e Wgﬁl(C)o. Using the isomorphism (2§)), we can write
Ly = Oc(Dy) ®@igy, L =0c(D)®jg,
such that Dy € Uy_1_9; and D € U,_1_5;. From the discussion above, we know that
(Nws (0] gacie)) 1 = H(C,we(=Dy)) = H°(P!,Opi(g — 1 — h.Dy))
(N3 cppancie)r = HO(Crwe(=D)) = HO(P!, Opr (g — 1 = hD))

If we denote D := limg_ o, Dy € Cy—1-2; to be the limit divisor, since limy_,o Ly = L, we
see that D is an effective subdivisor of D. Therefore,

lim (Niv: (e sac(c) ) s =H"(P',Opi(g — 1 — h.D))

k—o0
QHO(PI, Op: (g —1- h’*D)) = ( ;/571(0)°|Jac(0)>L’

where the first equality uses the fact that H'(P!, Op:i(k)) = 0 for any k& > 0 and hence we
can take limits. This verifies the Whitney condition (A) for the pair (W;_, (C)°, Wg,l (C)°),
by going to the dual spaces. Now by Lemma [R.6] in order to prove the Whitney condition
(B), we just need to show that there exists a constant A such that

A(HO(C,we(=D), HY(C,we(~Dy))) < A- d(L, L) = d(D, Dy),
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where the distance function on the left is induced by an inner product on the vector space
H°(C,wc) and the distance function on the right is induced by the Euclidean norm on a
neighborhood of D in C,—1-2;. Since the hyperelliptic map h : C' — P! is either a local
isomorphism (off the branch locus) or locally of the form ¢ — ¢? (on the branch locus),
we can push everything down to P*; there, it sufficies to prove that

d(H°(P',Opi(g — 1 — h.D)), H*(P',Opi(g — 1 — h.D},))) < A-d(h.D, h,Dy),

which follows from the interpretation of the space H°(P!, Opi(g —1—h.D)) as the space
of degree g — 1 homogeneous polynomials vanishing along the divisor h,D and explicit
computations

For the pair (Jac(C) — ©,W;_,(C)°), Condition (W) is vacuous because Jac(C) is a
complex manifold (using the property (1) of the distance function in Fact B3). O

9. QUESTIONS AND OPEN PROBLEMS

This section is devoted to some questions and open problems.
The log resolution of the hyperelliptic theta divisor is rather intricate. To have a better
understanding of it, we ask

Question 9.1. Is there a modular interpretation of the log resolution in Theorem [Al?

Let C' be a Brill-Noether general curve. The Brill-Noether varieties W, _,(C') behave

like generic determinantal varieties. It is natural to ask for an extension of our results:

Problem 9.2. Prove that Theorem [Al and Proposition [C] hold for such a curve C.

APPENDIX A. REDUCEDNESS OF Wj(C)

In this appendix, we provide the proof of the following result, due to the lack of suitable
references. A similar argument can be found in [3].

Proposition A.1. Let C' be a smooth hyperelliptic curve of genus g. Let d,r € N be
integers such that 0 <r < d < g. Then the Brill-Noether variety Wj(C') is reduced.

We recall the following result saying that reducedness can be checked on the level of
tangent cones.

Lemma A.2. Let Z C X be a closed subscheme of a smooth variety X and x € Z be a
closed point. If the tangent cone TC,Z C T, X 1is reduced, then Z is reduced in an open
neighborhood of x.

Proof. Equip the tangent cone T'C,Z with its natural scheme structure, then there is a
flat specialization of (a neighborhood of = in) Z to T'C,Z. The desired result follows from
the fact that reducedness is an open condition in flat families, c.f. [7, Theorem 12.1.1

(vii)]. O
By Lemma [A.2] Proposition [Alis reduced to the following
Lemma A.3. The tangent cone TCLW}(C) is reduced for any L € W} (C).

Proof. To simplify the notation, we denote W] = W7 (C'). Fix £ a Poincaré line bundle on
C x Pic?(C) and let pr, : C' x Pic*(C) — Pic?(C) be the second projection. Let L € W}
be a line bundle of degree d and assume h°(L) = s + 1 with s > r. In a neighborhood
of L in Picd(C), we can produce a minimal complex computing W, by a variant of the
method in [I, Chapter IV, §3]. Note that we can always pick a point p € C such that

1Botong Wang pointed out that one can view this as a Lipschitz property of the map between compact
manifolds Sym? ' ~*P! — Grass(H°(P', Op1(g — 1)), 2i) which sends E to H*(P',Opi(g — 1 — E)).
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h*(L(p)) = h*(L) — 1 and H°(L) = H°(L(p)). Tterating this, we can pick an effective
divisor D of degree h'(L) = g — d + s with the property that H'(L(D)) = 0 and in the
short exact sequence
0—L— L(D)— L(D)® Op — 0,

the induced connecting map H°(D, L(D) ® Op) — H'(C, L) is an isomorphism (equiva-
lently, H°(C, L) — H°(C,L(D)) is an isomorphism). Denote by D = prjD the effective
divisor on C' x Pic*(C). Then on some neighborhood of the point L, we have a short
exact sequence

0— pr2,*£(D) — pr2,* (‘C(D) ® O'D) — }%1pr2,>1<‘C — 07

where R'pr, ,L(D) vanishes on the neighborhood in question. Here pr,, £ = 0 because
it is torsion-free and vanishes at a general point in the neighborhood of L. This gives us
a presentation

0—E" S E' 5 Rlpry L =0
where E° and E' are vector bundles of rank h°(L) = s+ 1, respectively h' (L) = g—d+s.
Moreover, the differential, viewed as a matrix A, vanishes at the point L. Let A; be the
linear part of A; that has entries in m/m?, where m is the maximal ideal at L.

Now W] is defined, in a neighborhood of the point L, by the vanishing of all the
(s —r+1) x (s —r+1) minors of A. Because for L' € W}, the condition is

(LY >r+1eh(L)>g—d+r
srank(A)y < (g—d+s)—(g—d+7r)=(s—r).

It follows from the tangent cone theorem in the generic vanishing theory (c.f. [0, Theorem
4]) that one has the following containments:

Ty C Zroywy € A/ ZLroywy,

where the first ideal is generated by all the (s —r + 1) X (s — r + 1) minors of A;. If
one knows that the first ideal 7 is a radical ideal, and that both Z; and /Zrc,w; define
the same conical subset in T Pic?(C) (forgetting about the scheme structure), then the
tangent cone T'C W] is reduced.

Since Wﬁl = W,_o, as sets, one has

dmTCW; =dim W, =d — 2r.

By the discussion above, it suffices to show that the (s —r + 1) x (s — r 4+ 1) minors of
the matrix A, defines a reduced, irreducible subscheme of T;Pic?(C) of dimension d — 2r.
This boils down to the following two claims.

Claim 1: The matrix A; is a Hankel/Catalecticant matrix, i.e.

a1 g - LTg—d+s
X9 x R T 1

Al _ 3 g—d+s+
LTsp1 00 oo Tg—d+2s

up to a change of local coordinates.
Proof of Claim 1: We learned this argument from Nero Budur, see [3, Proposition
5.17]. By [1], the matrix A; is the one given by the map

H°(L) - H'(L) ® H(wc),
which is equivalent to the Petri map

mp HYL) @ H(we © L) — H(we).
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Since C' is hyperelliptic and h°(L) = s + 1, we can write
L=sgy+p1+--+Ppaas
we® LT = (g—1—5—(d=28))gy +qu + -+ qaas,

where p; + ¢; is a hyperelliptic pair for each 1 < i < d — 2s and no two p; lie in the same
fiber of the hyperelliptic involution C' — P!. Then the Petri map corresponds to

H(P', O(s)@H (P, O(g—1—d+5s)) — H(P',O(g—1—d+2s)) = H'(P',O(g—1))

The last map is the tensor product with the section n € H°(P!, O(d — 2s)), where 7 is
the product of all linear forms defining the image of p; in P! for 1 < i < d — 2s. Write
V = H°P', O(1)), then the Petri map is the natural multiplication map

Symsv ® SymgflfdJrsV N Symgflfd+2s‘/’

which clearly gives a Catalecticant matrix since dim V' = 2.
Claim 2: Let C,,, be a v x w Catalecticant matrix with v > w, i.e.

1 ) “ .. xw
g Xy - Tw+1

CU,U} = . .« . .
'Z"U .« .. .« .. ‘/'EUJF’LU—l

Then for k < w, the ideals of (k+1) x (k+ 1) minors of C,,, defines a reduced irreducible
subscheme Z of dimension 2k in Cvt¥~1,

Proof of Claim 2: We use notations in [5]. Let M = Cat(v,w) C PC" be the
Catalecticant space, which is of dimension v +w — 2 (c.f. [3, Page 561]). Let My be the
subscheme of matrices of rank < k in M, the linear space corresponds to all the minors
of C,, of size k + 1. By [5, Proposition 4.3], one has

codimy M, =v+w—1— 2k,
and M, is the k-secant variety of a rational normal curve. Thus
dim M, =dimM — (v+w—-1-2k)=v+w—-2)—(v+w—1—-2k)=2k—1

and M, is irreducible. Moreover, it is pointed out by the author after [5, Proposition
4.3] that M, is reduced. Therefore the corresponding space Z C C'T~! is reduced,
irreducible and has dimension 2k.

Now we can finish the proof of this lemma. If d > g—1,then s—r <s+1<g—d+s;
if d = g, then we can assume 7 > 1 (W7 (C) is reduced by a theorem of Kempf) and still
get s —r <s=g—d+s < s+ 1. Therefore we can apply Claim 1 and 2 to obtain
that the (s — 7+ 1) x (s —r 4+ 1) minors of the matrix A; defines a reduced, irreducible
subscheme in T;Pic?(C) = CY of dimension 2(s —1) 4 (d — 2s) (because only the variables
Z1," -, Tg—d+2s show up in the matrix A; and the other variables provide an additional
d — 2s dimensions). This gives what we want and therefore we finish the proof that
TCLWj is reduced.

As a consequence, W7 (C') is reduced for any 0 <r <d < g.

O
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