
ON THE LOCUS OF LIMIT HODGE CLASSES

CHRISTIAN SCHNELL

Abstract. We introduce a “locus of limit Hodge classes” that also takes into

account integral classes that become Hodge classes “in the limit”. More pre-

cisely, given a polarized variation of integral Hodge structure of weight zero
on a Zariski-open subset of a complex manifold, we construct a canonical an-

alytic space that parametrizes limits of integral classes; the extended locus of

Hodge classes is an analytic subspace that contains the usual locus of Hodge
classes, but is finite and proper over the base manifold. The construction uses

Saito’s theory of mixed Hodge modules and a generalization of the main tech-

nical result of Cattani, Deligne, and Kaplan. We study the properties of the
resulting analytic space in the case of the family of hyperplane sections of an

odd-dimensional smooth projective variety.

A. Introduction

1. Summary. The purpose of this paper is to investigate some global questions
about limit Hodge classes, by which I mean integral cohomology classes in a family
of projective complex manifolds – and, more generally, in a polarized variation of
integral Hodge structure – that become Hodge classes “in the limit”. There are
two natural ways to construct a locus of limit Hodge classes that contains the usual
locus of Hodge classes as a (not necessarily dense) open subset; our main theorem
is that the resulting analytic spaces have the same good properties as the locus of
Hodge classes itself. In one case, this follows from the work of Cattani, Deligne,
and Kaplan; in the other, from a generalization of their main technical result.

2. The locus of Hodge classes. The motivation for looking at limit Hodge
classes comes from a specific geometric example: the universal family of hyper-
plane sections of a Calabi-Yau threefold, or more generally, of any odd-dimensional
projective complex manifold. Nevertheless, in constructing the locus of limit Hodge
classes and in studying its properties, it will be convenient to work with arbitrary
polarized variations of integral Hodge structure. So let H be a polarized variation
of integral Hodge structure of weight zero, defined on a Zariski-open subset X0

of a complex manifold X. The assumption about the weight is purely for conve-
nience: if H has even weight 2k, we can always replace it by the Tate twist H(k),
which has weight zero. We denote by HZ the underlying local system of free Z-
modules, by F pH the Hodge bundles, and by Q : HR ⊗ HR → R the real bilinear
form giving the polarization. At each point x ∈ X0, we thus get a polarized Hodge
structure of weight zero on HZ,x, with Hodge filtration F •Hx and polarization
Qx : HR,x ⊗HR,x → R.
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Let us first recall the definition of the locus of Hodge classes [CDK95]. The local
system HZ determines a (not necessarily connected) covering space

E(HZ) → X0,

whose sheaf of holomorphic sections is isomorphic to HZ. The points of E(HZ) are
pairs (x, h), with h ∈ HZ,x a class in the fiber over the point x ∈ X0.

Definition. The locus of Hodge classes of H is the set

Hdg(H) =
{
(x, h) ∈ E(HZ)

∣∣ h ∈ HZ,x ∩ F 0Hx is a Hodge class
}
;

it is a closed analytic subspace of the complex manifold E(HZ).

The analytic structure on Hdg(H) arises as follows: because HZ is a subsheaf
of H, the complex manifold E(HZ) is naturally embedded into the holomorphic
vector bundle B(H), and Hdg(H) is the intersection of E(HZ) with the holomorphic
subbundle B(F 0H). When X0 is a smooth complex algebraic variety, and when H
comes from the cohomology of a family of smooth projective varieties over X0, the
Hodge conjecture predicts that Hdg(H) should be a countable union of algebraic
varieties. Cattani, Deligne, and Kaplan, in their famous article [CDK95] about
the locus of Hodge classes, were able to prove this without assuming the Hodge
conjecture.

Theorem (Cattani, Deligne, Kaplan). If H is a polarized variation of integral
Hodge structure on a smooth complex algebraic variety X0, then Hdg(H) is a count-
able union of algebraic varieties.

This remarkable result is a consequence of Chow’s theorem and the following
more precise theorem about Hodge classes with bounded self-intersection number,
valid on any complex manifold X. Fix an integer K ≥ 0, and consider the subset

Hdg≤K(H) =
{
(x, h) ∈ Hdg(H)

∣∣ Qx(h, h) ≤ K
}

consisting of Hodge classes whose self-intersection number is bounded by K. It is
not hard to show that the projection from Hdg≤K(H) to X0 is finite (= a proper
holomorphic mapping with finite fibers); what Cattani, Deligne, and Kaplan proved
is that this finiteness property still holds over the larger complex manifold X.

Theorem 2.1 (Cattani, Deligne, Kaplan). For every K ≥ 0, it is possible to extend
Hdg≤K(H) to an analytic space that is finite over X.

This raises the question of whether there is a canonical way to extend Hdg(H)
to an analytic space over X, and, if yes, of whether the points of the extension have
any Hodge-theoretic meaning. As we will see below, the answer to both questions
is yes: there is a good notion of “limit Hodge class”, and the locus of limit Hodge
classes Hdg(H, X) is a countable union of analytic subspaces Hdg≤K(H, X), each
finite over X. Note that a limit Hodge class is not necessarily the limit of a sequence
of Hodge classes, and so the usual locus of Hodge clasess Hdg(H) need not be dense
in the locus of limit Hodge classes Hdg(H, X).

3. The case of a Hodge structure. To motivate the construction, let us first
look at the case of a single Hodge structure H. We assume that H is polarized and
integral of weight zero; we denote the underlying Z-module by HZ; the polarization
by Q; and the Hodge filtration by F •H. Let Hdg(H) = HZ ∩ F 0H be the set of
Hodge classes in H. According to the bilinear relations, a class h ∈ HZ is Hodge
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exactly when it is perpendicular (under Q) to the space F 1H; this says that Hdg(H)
is precisely the kernel of the linear mapping

φ : HZ → (F 1H)∗, h 7→ Q(h,−).

At first, it may seem that φ is not good for much else, because its image is not
a nice subset of (F 1H)∗. In fact, the dimension of the vector space F 1H can be
much smaller than the rank of HZ, and so φ will typically have dense image. But
it turns out that the restriction of φ to the subset

HZ(K) =
{
h ∈ HZ

∣∣ |Q(h, h)| ≤ K
}

is well-behaved. The idea of bounding the self-intersection number of the integral
classes already occurs in the paper by Cattani, Deligne, and Kaplan. To back up
this claim, we have the following lemma; note that the estimate in the proof will
also play a role in the analysis later on.

Lemma 3.1. The mapping φ : HZ(K) → (F 1H)∗ is finite and proper, and its
image is a discrete subset of the vector space (F 1H)∗.

Proof. We have to show that the preimage of any bounded subset of (F 1H)∗ is
finite. It will be convenient to measure things in the Hodge norm: if

h =
∑
p

hp,−p, with hp,−p ∈ F pH ∩ F−pH,

is the Hodge decomposition of a vector h ∈ H, then its Hodge norm is

∥h∥2H =
∑
p

∥hp,−p∥2H =
∑
p

(−1)pQ
(
hp,−p, hp,−p

)
.

Now suppose that h ∈ HZ satisfies |Q(h, h)| ≤ K and ∥φ(h)∥H ≤ R; it will be
enough to prove that ∥h∥H is bounded by a quantity depending only on K and R.
The assumption on φ(h) means that |Q(h, v)| ≤ R∥v∥H for every v ∈ F 1H. If we
apply this inequality to the vector

v =
∑
p≥1

(−1)php,−p,

we find that ∥v∥2H = |Q(h, v)| ≤ R∥v∥H , and hence that∑
p≥1

∥hp,−p∥2H = ∥v∥2H ≤ R2.

Because h is invariant under conjugation, it follows that ∥h∥2H ≤ ∥h0,0∥2H + 2R2.
This leads to the conclusion that ∥h∥2H ≤ K + 4R2, because

Q(h, h) = ∥h0,0∥2H +
∑
p̸=0

(−1)p∥hp,−p∥2H ≤ K.

In particular, there are only finitely many possibilities for h ∈ HZ, which means that
φ is a finite mapping, and that the image of φ is a discrete subset of (F 1H)∗. □
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4. The general case. Now let us return to the general case. As in [CDK95], it is
not actually necessary to assume that X is projective; we shall therefore consider
a polarized variation of integral Hodge structure H of weight zero, defined on a
Zariski-open subset X0 of an arbitrary complex manifold X. By performing the
construction in §3 at every point of X0, we obtain a holomorphic mapping

φ : E(HZ) → T (F 1H);

here T (F 1H) = Spec
(
SymF 1H

)
is the holomorphic vector bundle on X0 whose

sheaf of holomorphic sections is (F 1H)∗. The locus of Hodge classes Hdg(H) is
then exactly the preimage of the zero section in T (F 1H). For every K ≥ 0, we
consider the submanifold

E≤K(HZ) =
{
(x, h) ∈ E(HZ)

∣∣ |Qx(h, h)| ≤ K
}
.

It is a union of connected components of the covering space E(HZ), because the
quantity Qx(h, h) is obviously constant on each connected component. More or less
directly by Lemma 3.1, the holomorphic mapping

φ : E≤K(HZ) → T (F 1H)

is finite and proper, with complex-analytic image; moreover, one can show that
the mapping from E≤K(HZ) to the normalization of the image is a finite covering
space. For the details, please consult §11 below.

To construct an extension of E≤K(HZ) to an analytic space over X, we use
the theory of Hodge modules [Sai90]. Let M be the polarized Hodge module of
weight dimX with strict support X, canonically associated with H. We denote the
underlying filtered left D-module by the symbol (M, F•M). The point is that

M
∣∣
X0

≃ H and FkM
∣∣
X0

≃ F−kH;

in particular, the coherent sheaf F−1M is an extension of the Hodge bundle F 1H
to a coherent sheaf of OX -modules. Now consider the holomorphic mapping

φ : E≤K(HZ) → T (F−1M),

where the analytic space on the right-hand side is defined as before as the spectrum
of the symmetric algebra of the coherent sheaf F−1M. We have already seen that
φ
(
E≤K(HZ)

)
is an analytic subset of T (F 1H); since we are interested in limits

of integral classes, we shall extend it to the larger space T (F−1M) by taking the
closure. The main result of the paper is that the closure remains analytic.

Theorem 4.1. The closure of φ
(
E≤K(HZ)

)
is an analytic subset of T (F−1M).

The proof consists of two steps: (1) We reduce the problem to the special case
where X \X0 is a divisor with normal crossings and HZ has unipotent local mono-
dromy; this reduction is similar to [Sch12a]. (2) In that case, we prove the theorem
by a careful local analysis, using the theory of degenerating variations of Hodge
structure. In fact, we deduce the theorem from a strengthening of the main technical
result of Cattani, Deligne, and Kaplan, which we prove by adapting the method
introduced in [CDK95]. Rather than just indicating the necessary changes to their
argument, I have chosen to write out a complete proof; I hope that this will make
Chapter D useful also to those readers who are only interested in the locus of Hodge
classes and the theorem of Cattani, Deligne, and Kaplan.

Once Theorem 4.1 is proved, it makes sense to consider the normalization of
the closure of φ

(
E≤K(HZ)

)
. The mapping from E≤K(HZ) to its image in the
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normalization is a finite covering space; it can therefore be extended in a canonical
way to a finite branched covering by appealing to the Fortsetzungssatz of Grauert
and Remmert.

Theorem 4.2. There is a normal analytic space E(HZ)(K) containing the complex
manifold E≤K(HZ) as a dense open subset, and a finite holomorphic mapping

φ̃ : E(HZ)(K) → T (F−1M),

whose restriction to E≤K(HZ) agrees with φ. Moreover, E(HZ)(K) and φ̃ are
unique up to isomorphism.

Since each E≤K(HZ) is a union of connected components of the covering space

E(HZ), we can take the union over all the E(HZ)(K); this operation is well-defined
because of the uniqueness statement in the theorem. In this way, we get a normal
analytic space E(HZ), and a holomorphic mapping

φ̃ : E(HZ) → T (F−1M)

with discrete fibers that extends φ. Now the preimage of the zero section in
T (F−1M) gives us the desired compactification for the locus of Hodge classes.

Definition 4.3. The extended locus of Hodge classes H̃dg(H) is the closed analytic

subscheme φ̃−1(0) ⊆ E(HZ); by construction, it contains the locus of Hodge classes.

Note that when X is projective, Chow’s theorem implies that H̃dg(H) is a count-
able union of projective schemes, each finite over its image in X.

5. The family of hyperplane sections. The construction above can be applied
to the family of hyperplane sections of a smooth projective variety of odd dimension.
In this case, one has a good description of the filtered D-module (M, F•) in terms

of residues [Sch12b], and it is possible to say more about the space E(HZ). The
fact that F−1M is the quotient of an ample vector bundle leads to the following
result; it was predicted by Clemens several years ago.

Theorem 5.1. The analytic space E(HZ)(K) is holomorphically convex. Every
compact analytic subset of dimension ≥ 1 lies inside the extended locus of Hodge
classes.

6. Acknowledgements. During the preparation of the paper, I have been par-
tially supported by NSF-grant DMS-1331641. In writing Chapter D, I have bene-
fited a lot from a new survey article [CK14] that explains the results of [CDK95] in
the case n ≤ 2. I thank Eduardo Cattani for letting me read a draft version, and for
answering some questions. Several years ago, Davesh Maulik asked me about the
case of hyperplane sections of a Calabi-Yau threefold; I thank him for many useful
conversations, and for his general interest in the problem. Most of all, I thank my
former thesis adviser, Herb Clemens, for suggesting that one should study limits of
integral classes with the help of residues; as usual, his idea contained the seed for
the solution of the general problem.

B. The locus of limit Hodge classes

7. Limit Hodge classes in dimension one. We begin by defining limit Hodge
classes in dimension one, where we can use the theory of limit mixed Hodge struc-
tures. Suppose then that H is a polarized integral variation of Hodge structure of
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weight zero on the punctured unit disk

∆∗ =
{
t ∈ C

∣∣ 0 < |t| < 1
}
.

Let HZ denote the space of global sections of the pullback of HZ to the universal
covering space of ∆∗. The monodromy operator T : HZ → HZ is quasi-unipotent;
write T = TsTu, with Ts semisimple and Tu unipotent, and let N = log Tu be
the logarithm of the unipotent part. According to Schmid’s results in [Sch73], the
Q-vector space HQ carries a limit mixed Hodge structure(

W (N), F
)
,

and Ts is an endomorphism of this mixed Hodge structure. Choosing different
coordinates on ∆ replaces F by a filtration of the form ewNF with w ∈ C, which
means that the induced mixed Hodge structure on kerN ⊆ HQ is independent of the
choice of coordinates. It therefore makes sense to consider integral Hodge classes
h ∈ HZ ∩ kerN ∩ F 0 in this mixed Hodge structure. Because Th = Tse

Nh = Tsh,
the orbit of h under the Z-action induced by T is finite and consists entirely of
Hodge classes. The real number Q(h, h) is called the self-intersection number of h.

Lemma 7.1. If h ∈ HZ ∩ kerN ∩ F 0 is nonzero, then Q(h, h) > 0.

Proof. To relate the self-intersection number of h to that of a Hodge class in the
usual sense, we recall that the limit mixed Hodge structure is polarized by the
pairing Q : HR ⊗HR → R and the nilpotent operator N ; in particular, the induced
Hodge structure of weight zero on

ker
(
N : W0(N)/W−1(N) → W−2(N)/W−3(N)

)
is polarized by the induced pairing Q̃. Since kerN ⊆ W0(N), we can let h̃ be the
image of h ∈ HZ ∩ kerN ∩ F 0 under the projection

kerN → ker
(
N : W0(N)/W−1(N) → W−2(N)/W−3(N)

)
;

Then h̃ is a Hodge class, and so Q(h, h) = Q̃(h̃, h̃) ≥ 0; moreover, equality only

happens when h̃ = 0, or in other words, when h ∈ HZ ∩W−1(N) ∩ F 0 = {0}. □

In the covering space E(HZ) of ∆∗ determined by the local system, the con-
nected component containing the point h is a d-sheeted covering of ∆∗, where d
is the smallest positive integer with T dh = h. This covering can be completed to
a branched covering of the entire disk by adding one point, which naturally corre-
sponds to the Z-orbit of h. This suggests that we should consider all the Hodge
classes in the orbit of h as being part of the same “limit Hodge class”.

Definition 7.2. The elements of the quotient(
HZ ∩ kerN ∩ F 0

)
/Z

are called limit Hodge classes for H at the point 0 ∈ ∆.

The quotientHZ/Z parametrizes the connected components of the covering space
E(HZ), with the subset (HZ ∩ kerN)/Z corresponding to those components that
are finite over ∆∗. The set of limit Hodge classes is therefore naturally a subset of
the set of connected components of E(HZ).



ON THE LOCUS OF LIMIT HODGE CLASSES 7

8. The cosheaf of connected components. Returning to the general case, a
limit Hodge class for H at a point x ∈ X should be something like a class in the
fiber of HZ over a nearby point of X0 that comes from a limit Hodge class on some
holomorphic arc through the point x. To get a definition that is independent of
which nearby point we chooose, and to allow for the possibility that the same limit
Hodge class may appear on different arcs through the same point, we clearly need
to take the action of the local fundamental group into account. For that reason,
we shall first give a more intrinsic definition of classes in a nearby fiber of HZ.

Since Hodge structures play no role here, let us suppose for the time being that
HZ is a locally constant sheaf of free Z-modules of finite rank on a dense Zariski-
open subset X0 of a complex manifold X. Denote by p : E(HZ) → X0 the resulting
covering space. For every open set U ⊆ X, define

(8.1) C(U) = π0

(
p−1(U ∩X0)

)
to be the set of connected components of E(HZ) over the open set U ∩X0, with the
convention that C(∅) = ∅. For every pair of open sets U ⊆ V , one has a mapping
C(U) → C(V ), and so C is a covariant functor from the category of open sets in X
to the category of sets; we shall see below that it is an example of a “cosheaf”. We
can now define the set of local components at a point x ∈ X as

Cx = lim
U∋x

C(U),

where the projective limit is over all neighborhoods of the given point; when x ∈ X0,
this is just a different name for the stalk HZ,x. The following lemma justifies
thinking of Cx as the set of components over a small neighborhood of x.

Lemma 8.2. If U is a good neighborhood of x ∈ X with regard to the subspace
X \X0, then the extension mapping Cx → C(U) is bijective.

Proof. Recall that Prill [Pri67, Chapter B] calls a neighborhood U good with regard
to X \X0 if there is a neighborhood basis consisting of open sets V such that V ∩X0

is a deformation retract of U ∩ X0. Since we can compute the projective limit in
the definition of Cx along such a basis, the bijectivity of Cx → C(U) is obvious. □

One can also interpret C(U) in terms of the fiber of the local system at a nearby
point x0 ∈ U ∩ X0. Indeed, two elements of HZ,x0 belong to the same connected
component of p−1(U ∩X0) if and only if they lie in the same orbit under the action
of the fundamental group π1(U ∩X0, x0); this means that we have a bijection

HZ,x0
/π1(U ∩X0, x0) ≃ C(U).

By restricting our attention to good neighborhoods, we thus get an interpretation
for the elements of the costalk Cx at a point x ∈ X that agrees with the intuitive
notion we started from.

We shall now explain how to use the information in C to extend the covering
space E(HZ) to a topological branched covering of X. For that purpose, it will be
convenient to borrow some of the terminology from the theory of cosheaves; for a
good summary, one can consult [Woo09, Appendix B]. Recall that a pre-cosheaf of
sets on X is a covariant functor F from the category of open subsets of X to the
category of sets; the elements of F(U) are called cosections, and for U ⊆ V , the
mappings F(U) → F(V ) are called extension mappings. A pre-cosheaf F is called
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a cosheaf if, for every open covering

U =
⋃
i∈I

Ui,

the set F(U) is the colimit of the diagram⊔
i,j∈I

F(Ui ∩ Uj)
⊔
i∈I

F(Ui)

in the category of sets; concretely, two elements in F(Ui) and F(Uj) get identified
in F(U) if they are both extensions of the same element in F(Ui ∩ Uj).

Example 8.3. The pre-cosheaf C from above is a cosheaf. More generally, any
continuous mapping f : Y → X gives rise to a pre-cosheaf Cf on X, by setting

Cf (U) = π0

(
f−1(U)

)
for U ⊆ X open; if Y is locally connected, this is a cosheaf.

[Need to use “spatial” cosheaves, because of erratum to Woolf’s paper]
Conversely, one can build a locally connected topological space from any cosheaf.

Let F be a cosheaf on a topological space X. As a set, the display space

D(F) =
⊔
x∈X

Fx

is the disjoint union of all the costalks; there is an obvious mapping p : D(F) → X.
The topology on D(F) is generated by a basis consisting of the sets

B(U,α) =
{
β ∈ p−1(U)

∣∣ the mapping Fp(β) → F(U) takes β to α
}

for U ⊆ X open and α ∈ F(U). It is easy to see that the projection p : D(F) → X
is continuous, and that the topology on D(F) is Hausdorff if and only if X itself is
a Hausdorff space. The following result is proved in [Woo09, Corollary B.4].

Lemma 8.4. If F is a cosheaf, D(F) is locally connected, and the natural mapping

p−1(x) → lim
U∋x

π0

(
p−1(U)

)
is a bijection for every x ∈ X.

More succinctly, the lemma says that we have an isomorphism of cosheaves
Cp ≃ F . From a more functorial point of view, the display space construction is
a right adjoint to the construction in Example 8.3. We shall prove this only in
the special case that is needed below, and refer the interested reader to [Woo09,
Proposition B.2 and Proposition B.5] for the general case.

Proposition 8.5. Let f : Y → X be a continuous mapping, Y locally connected.
Any morphism of cosheaves Cf → F induces a continuous mapping g : Y → D(F)
with p ◦ g = f .

Proof. At each point x ∈ X, the composition

f−1(x) → lim
U∋x

π0

(
f−1(U)

)
→ Fx

gives us a mapping from f−1(x) to p−1(x); putting these together, we obtain
the desired mapping g : Y → D(F). To prove that g is continuous, observe that
g−1

(
B(U,α)

)
is the union of all those connected components of f−1(U) that are
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sent to α by the mapping Cf (U) → F(U); this is an open subset of Y because we
are assuming that Y is locally connected. □

Now let us return to the cosheaf C defined in (8.1). We shall use the notation

p : D(HZ) → X

for the display space of C. Since the local system HZ is defined on X0 ⊆ X, it is
easy to see that p−1(X0) is isomorphic to the covering space E(HZ), and therefore
naturally a complex manifold. The cosheaf C is even constructible in the following
sense.

Proposition 8.6. In any Whitney stratification of X such that X \X0 is a union
of strata, the restriction of p : D(HZ) → X to any stratum is a covering space.

Proof. The point is that Whitney stratifications are locally topologically trivial
along strata. Fix a Whitney stratification of X in which X \X0 is a union of strata,
and let S ⊆ X be an arbitrary stratum. Any point x0 ∈ S has an open neighborhood
U ⊆ X that is homeomorphic, via a stratum preserving homeomorphism, to the
product of CdimS and the open cone over the link L(x0) of the stratum at the point.
Now U is clearly a good neighborhood of every x ∈ U ∩ S, and so Cx → C(U) is
bijective for every x ∈ U ∩ S. From this, one concludes easily that

p−1(U ∩ S) =
⊔

α∈C(U)

p−1(U ∩ S) ∩B(U,α)

is the disjoint union of open subsets that are homeomorphic to U ∩S; consequently,
p−1(S) is a covering space of S. This also means that p−1(S) is actually a complex
manifold and that the restriction of p is holomorphic. □

Now suppose that f : Y → X is a holomorphic mapping such that Y0 = f−1(X0)
is dense in Y . For the local system f−1HZ on Y0, we have

E(f−1HZ) = Y0 ×X0 E(HZ).

Let p : D(f−1HZ) → Y denote the display space of the resulting cosheaf on Y .

Proposition 8.7. The projection from E(f−1HZ) to E(HZ) extends uniquely to a
continuous mapping from D(f−1HZ) to D(HZ), making the diagram

D(f−1HZ) D(HZ)

Y X

p p

f

commutative.

Proof. For every open set U ⊆ X, the natural projection from E(f−1HZ) to E(HZ)
sends each connected component of (f ◦ p)−1(U ∩X0) into a connected component
of p−1(U ∩X0). This gives us a mapping

Cf◦p(U) = π0

(
(f ◦ p)−1(U ∩X0)

)
→ π0

(
p−1(U ∩X0)

)
= C(U),

and in fact a morphism of cosheaves Cf◦p → C. By Proposition 8.5, this morphism
induces a continuous mapping fromD(f−1HZ) toD(HZ); a look at the construction
shows that it agrees over Y0 with the projection from E(f−1HZ) to E(HZ). □

Here is another useful property of the display space construction.
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Proposition 8.8. Suppose that we have a commutative diagram

E(HZ) W

X0 X

p q

such that E(HZ) is dense in the normal analytic space W . Then the inclusion of
E(HZ) into D(HZ) factors uniquely through W .

Proof. For every open set U ⊆ X, the natural mapping

C(U) = π0

(
p−1(U ∩X0)

)
→ π0

(
q−1(U)

)
= Cq(U)

is bijective because W is normal and E(HZ) ⊆ W is dense. This means that the
cosheaf Cq is isomorphic to C; now Proposition 8.5 gives us the desired continuous
mapping from W to D(HZ). □

9. Limit Hodge classes. We are now ready to define limit Hodge classes. Let
H be a polarized variation of integral Hodge structure of weight zero, defined on
a dense Zariski-open subset X0 of a complex manifold X. Let C be the cosheaf of
connected components of the covering space E(HZ), introduced in (8.1), and

Cx = lim
U∋x

C(U) = lim
U∋x

π0

(
p−1(U ∩X0)

)
its costalk at the point x ∈ X. As before, we denote by

p : D(HZ) → X

the display space of C; it is a locally connected Hausdorff space with the property
that p−1(X0) is isomorphic to E(HZ). Since the function (x, h) 7→ Qx(h, h) is
locally constant on E(HZ), it extends uniquely to a locally constant continuous
real-valued function on D(HZ); the intersection number of an element in Cx is by
definition the value of this function. Note that the subset

D≤K(HZ) ⊆ D(HZ)

of points with intersection number at most K is a union of connected components
of D(HZ), and therefore both open and closed.

To define limit Hodge classes, suppose that we have a holomorphic arc γ : ∆ → X
with γ(0) = x and γ(∆∗) ⊆ X0. Proposition 8.7 gives us a commutative diagram

D(γ−1HZ) D(HZ)

∆ X.

p p

γ

The discussion in §7 applies to the variation of Hodge structure γ−1H. It shows
that p−1(0) ≃ HZ/Z, where HZ stands for the space of global sections of γ−1HZ on
the universal covering space of the punctured disk, and the Z-action comes from
the monodromy operator T = Tse

N . Since we also have p−1(x) = Cx, we thus get
a well-defined mapping

(9.1)
(
HZ ∩ kerN ∩ F 0

)
/Z → Cx

from the set of limit Hodge classes for γ−1H at the point 0 ∈ ∆, in the sense of
Definition 7.2, to the costalk of C at the point x ∈ X.
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Definition 9.2. An element of the costalk Cx is called a limit Hodge class if there
is a germ of a holomorphic arc γ : (∆, 0) → (X,x) with γ(∆∗) ⊆ X0, such that the
given element belongs to the image of the mapping in (9.1).

At points x ∈ X0, the costalk Cx is isomorphic to the fiber of the local system
HZ, and the above definition specializes to the usual definition of Hodge classes in
the pure Hodge structure of weight zero on HZ,x. In this special case, the set of
limit Hodge classes forms a group; but in general, it does not make sense to add
two limit Hodge classes.

Definition 9.3. We shall denote by Hdg(H, X) ⊆ D(HZ) the set of all limit Hodge
classes, and by Hdg≤K(H, X) its intersection with D≤K(HZ).

With the topology induced from the display space, Hdg(H, X) is a Hausdorff
space, and each Hdg≤K(H, X) is both closed and open. The projection

p : Hdg(H, X) → X

is continuous, and the open subset p−1(X0) is isomorphic, as a topological space, to
the locus of Hodge classes Hdg(H). We shall see in the next section that Hdg(H, X)
is in fact an analytic space, too.

10. The locus of limit Hodge classes. The purpose of this section is to prove
the following theorem.

Theorem 10.1. The set of limit Hodge classes Hdg(H, X) can be given the struc-
ture of an analytic space over X, in such a way that for every K ≥ 0, the subspace
of limit Hodge classes of self-intersection number at most K is finite over X.

The idea of the proof is to reduce the problem to the normal crossing case, which
is dealt with in Chapter D. We begin by choosing a proper holomorphic mapping
f : Y → X with the following properties: (1) the complement of Y0 = f−1(X0)
is a divisor with normal crossing singularities; (2) the restriction f0 : Y0 → X0 is
a finite covering space; (3) at points of Y \ Y0, the local monodromy of f−1HZ is
unipotent. Here is one way of constructing such a mapping. Let f0 : Y0 → X0 be a
finite covering space on which the monodromy representation of the local systemHZ
becomes trivial modulo the prime number 3. By the Fortsetzungssatz of Grauert
and Remmert [GPR94, VI.3.3], such a covering space extends in a unique way to
a finite branched covering of X; now let f : Y → X be an embedded resolution
of singularities that leaves Y0 unchanged and makes the complement of Y0 into a
normal crossing divisor. Then any local monodromy transformation of f−1HZ is
quasi-unipotent and congruent to the identity modulo 3, and therefore unipotent
[Sch08, Lemma on p. 25].

Let us assume for now that we already know the conclusion of Theorem 10.1
for Hdg(f−1H, Y ); the proof in this special case is the topic of Chapter D. By
Proposition 8.7, the projection from E(f−1HZ) to E(HZ) extends to a continuous
mapping between display spaces, giving us a commutative diagram

D(f−1HZ) D(HZ)

Y X.

p

g

p

f

Since Y0 is finite over X0, it is easy to see that g takes limit Hodge classes for f−1H
at the point y ∈ Y to limit Hodge classes for H at the point f(y) ∈ X.
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Proposition 10.2. The induced continuous mapping

g : Hdg(f−1H, Y ) → Hdg(H, X)

is surjective and proper, and therefore a quotient mapping.

Proof. Surjectivity follows from the properness of f . Indeed, a limit Hodge class
for H at a point x ∈ X comes from a germ of a holomorphic arc γ : (∆, 0) → (X,x)
with γ(∆∗) ⊆ X0. Since Y0 is a finite covering space of X0 and f is proper, we can
find some d ≥ 1 such that γ ◦ td lifts to a holomorphic arc on Y ; more precisely, for
some point y ∈ f−1(x), we get a commutative diagram

(∆, 0) (Y, y)

(∆, 0) (X,x).

γ̃

td f

γ

Since the set of limit Hodge classes for γ̃−1H is the same as that for γ−1H, the
surjectivity of g follows.

It remains to prove properness of g. Granting Theorem 10.1 in this special case,
Hdg≤K(f−1H, Y ) is proper over Y , hence proper over X; from this, it follows that
the restriction of g defines a proper mapping

Hdg≤K(f−1H, Y ) → Hdg≤K(H, X)

for every K ≥ 0. Since each Hdg≤K(H, X) is both closed and open in Hdg(H, X),
this is enough to conclude that g itself is proper. □

The proposition tells us that, as a topological space, Hdg(H, X) is a quotient
of the analytic space Hdg(f−1H, Y ); what we have to show is that this quotient
is itself an analytic space. In general, this can be a difficult problem – but in this
particular case, it turns out to be doable. Evidently, the first thing we should prove
is that the equivalence relation

R ⊆ Hdg(f−1H, Y )×Hdg(f−1H, Y )

defining the quotient is a closed analytic subset of the product. Since two points
are equivalent if and only if they have the same image in D(HZ), it is clear that

R = Hdg(f−1H, Y )×D(HZ) Hdg(f−1H, Y )

⊆ Hdg(f−1H, Y )×X Hdg(f−1H, Y );

note that the fiber product over X is closed analytic because p ◦ g = f ◦ p is a
holomorphic mapping from Hdg(f−1H, Y ) to X.

Proposition 10.3. The equivalence relation R is analytic.

Proof. Since g is continuous and D(HZ) is Hausdorff, R is closed. To prove that R
is analytic, we only need to show that it is a union of locally closed analytic subsets.
As in Proposition 8.6, choose a Whitney stratification of X in which X \ X0 is a
union of strata. For any stratum S ⊆ X, the preimage p−1(S) is a covering space
of S, and therefore a complex manifold. Since p ◦ g = f ◦ p is holomorphic, this
implies that the restriction of g to the locally closed analytic subset (p ◦ g)−1(S) is
also holomorphic. But then the part of R that lies over S ⊆ X is a locally closed
analytic subset of the fiber product, and so we get the result. □
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We conclude that Hdg(H, X) is the quotient of the analytic space Hdg(f−1H, Y )
by the analytic equivalence relation R. This is of course still not enough to say that
Hdg(H, X) is an analytic space. Quotients by finite analytic equivalence relations,
however, are always analytic spaces, and together with the finiteness result in The-
orem 10.1, this is enough to complete the proof.

Proof of Theorem 10.1. Fix a real number K ≥ 0. As we have seen, Hdg≤K(H, X)

is the quotient of the analytic space Hdg≤K(f−1H, Y ) by the analytic equivalence
relation R. Granting Theorem 10.1 in the special case that is proved in Chapter D,
the holomorphic mapping

p ◦ g : Hdg≤K(f−1H, Y ) → X

is proper, and it is easy to see from the definition of the equivalence relation R that
the connected components of the fibers are each contained in a single equivalence
class. This means that if we pass to the Stein factorization of p ◦ g, and denote by

qK : ZK → X

the resulting finite holomorphic mapping, then R descends to an analytic equiva-
lence relation RK ⊆ ZK×ZK , and as a topological space, Hdg≤K(H, X) ≃ ZK/RK .

Now the two projections from RK to ZK are finite holomorphic mappings, be-
cause RK is contained in the fiber product ZK ×X ZK , which has this property. As
proved in [KK83, Proposition 49 A.13], quotients by finite analytic equivalence re-
lations always exist in the category of complex spaces; therefore Hdg≤K(H, X) has
the structure of an analytic space over X that makes the projection p into a finite
holomorphic mapping. It is easy to see that if we perform the same construction
for a larger real number L ≥ K, then the resulting analytic structure on the closed
and open subset Hdg≤K(H, X) ⊆ Hdg≤L(H, X) is the same. Since

Hdg(H, X) =
⋃
K≥0

Hdg≤K(H, X)

is the union of the closed and open subsets Hdg≤K(H, X), this ends the proof. □

To conclude this section, let us show that the analytic structure on Hdg(H, X) is
independent of the choice of f : Y → X. Since any two such holomorphic mappings
can be dominated by a third, the problem reduces to the following special case.

Proposition 10.4. Suppose that X \X0 is a divisor with normal crossing singu-
larities and that the local monodromy of HZ at points of X \X0 is unipotent. Then
the analytic structure on Hdg(H, X) is independent of the choice of f : Y → X.

Proof. Let H̃ denote the canonical extension of the flat bundle underlyingH. In this
situation, f∗H̃ is the canonical extension of the flat bundle underlying f−1H □

C. A variant of the construction

11. Setup and basic properties. Let X be a complex manifold, Z ⊆ X an
analytic subset, and H a polarized variation of integral Hodge structure on X0 =
X \ Z. We denote by HZ the underlying local system of free Z-modules, and by
Q : HQ ⊗Q HQ → Q(0) the bilinear form giving the polarization.

Now let E(HZ) be the étalé space of the local system HZ; it is a (usually dis-
connected) covering space of the complex manifold X0. Point of E(HZ) may be
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thought of as pairs (x, h), where x ∈ X0 and h ∈ HZ,x is a class in the stalk. As in
the introduction, we define

E≤K(HZ) =
{
(x, h) ∈ E(HZ)

∣∣ |Qx(h, h)| ≤ K
}

for every K ≥ 0; note that it is a union of connected components of E(HZ),
because the function (x, h) 7→ Qx(h, h) is constant on each connected component.
Let T (H) = Spec(SymH∗) be the vector bundle with sheaf of sections H∗; we
similarly define T (F 1H).

We first describe in more detail how the holomorphic mapping φ : E(HZ) →
T (F 1H) is constructed. The pairing Q induces an injective morphism of sheaves

HZ ↪→ H∗, h 7→ Q(h,−);

it is injective because Q is nondegenerate. As in [Sch12a, Section 2.6], this mor-
phism gives rise to a holomorphic mapping

E(HZ) ↪→ T (H),

which embeds the complex manifold E(HZ) into the holomorphic vector bundle
T (H). From now on, we identify E(HZ) with a complex submanifold of T (H).
We obtain φ : E(HZ) → T (F 1H) by composing with the projection q : T (H) →
T (F 1H).

Now fix some K ≥ 0. We already know from the result about Hodge structures
in Lemma 3.1 that φ : E≤K(HZ) → T (F 1H) has finite fibers; the purpose of this
section is to understand its global properties. The following diagram shows all the
relevant mappings:

T (H)

E≤K(HZ) T (F 1H)

X0.

q

π

φ

The polarization defines a hermitian metric on the holomorphic vector bundle asso-
ciated with H, the so-called Hodge metric. It induces hermitian metrics on the two
bundles T (H) and T (F 1H). Let Br(H) ⊆ T (H) denote the closed tube of radius
r > 0 around the zero section. The proof of Lemma 3.1 shows that

φ−1
(
Br(H)

)
⊆ B√

K+4r2

(
F 1H

)
;

in particular, the general discussion in §22 applies to our situation. We summarize
the results in the following proposition.

Proposition 11.1. The holomorphic mapping φ : E≤K(HZ) → T (F 1H) is finite,
and its image is a closed analytic subset of T (F 1H). Moreover, the induced mapping
from E≤K(HZ) to the normalization of the image is a finite covering space.

Proof. This is proved in §22 below. □

12. Analyticity of the closure. In this section, we prove Theorem 4.1 in gen-
eral. We denote by M the polarized Hodge module of weight dimX with strict sup-
port X, canonically associated with H by the equivalence of categories in [Sai90,
Theorem 3.21]. Let (M, F•M) denote the underlying filtered regular holonomic
DX -module. By construction, the restriction of F−1M to the open subset X0 is
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isomorphic to F 1H. The analytic space T (F−1M) therefore contains an open subset
isomorphic to the vector bundle T (F 1H). We denote by

φ : E≤K(HZ) → T (F−1M)

the resulting holomorphic mapping.

Theorem 12.1. The closure of the image of the holomorphic mapping

φ : E≤K(HZ) → T (F−1M)

is an analytic subset of T (F−1M).

Proof. There is a proper holomorphic mapping f : Y → X, whose restriction to
Y0 = f−1(X0) is a finite covering space, such that D = f−1(Z) is a divisor with
normal crossings, and such that the local monodromy of f∗

0H at every point of D is
unipotent. To construct f , we first take an embedded resolution of singularities of
(X,Z). According to [Sch73, Lemma 4.5], the pullback of H has quasi-unipotent lo-
cal monodromy at every point of the preimage of Z; after a finite branched covering
and a further resolution of singularities, we arrive at the stated situation.

Now let M ′ denote the polarized Hodge module of weight dimY with strict
support Y , associated with H′ = f∗

0H. According to [Sch12a, Lemma 2.21], there
is a canonical morphism

F−1M′ → f∗F−1M,

whose restriction to Y0 is an isomorphism. We then have the following commutative
diagram of holomorphic mappings:

E≤K(HZ) E≤K(HZ)×X Y E(HZ)
′(K)

T (F−1M) T (F−1M)×X Y T (F−1M′)

φ

p1

φ×id φ′

p1 g

By Theorem 14.3, the closure of the image of φ′ is analytic. The same is therefore
true for φ× id, because g is an isomorphism over Y0. Because f is proper, the result
for φ now follows from Remmert’s proper mapping theorem [GPR94, III.4.3]. □

13. Extension of the finite mapping. We are now ready to prove the main
result, namely that φ : E≤K(HZ) → T (F−1M) can be extended to a finite mapping.

Theorem 13.1. There is a normal analytic space E(HZ)(K) containing the com-
plex manifold E≤K(HZ) as a dense open subset, and a finite holomorphic mapping

φ̃ : E(HZ)(K) → T (F−1M),

whose restriction to E≤K(HZ) agrees with φ. Moreover, E(HZ)(K) and φ̃ are
unique up to isomorphism.

Proof. The closure of the image of φ is an analytic subset of T (F−1M) according to
Theorem 12.1. Let W denote its normalization; according to Proposition 11.1, the
induced mapping from E≤K(HZ) to W is a finite covering space over its image. The
Fortsetzungssatz of Grauert and Remmert [GPR94, VI.3.3] shows that it extends in

a unique way to a finite branched covering of W . If we define E(HZ)(K) to be the

analytic space in this covering, and φ̃ : E(HZ)(K) → T (F−1M) to be the induced
holomorphic mapping, then all the requirements are fulfilled. The last assertion
follows from the uniqueness statement in [GPR94, VI.3.3]. □
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Recall from Definition 4.3 that the extended locus of Hodge classes H̃dg(H) is
the preimage, under φ̃, of the zero section of T (F−1M) under φ̃. It is therefore a

(possibly not reduced) closed analytic subspace of E(HZ).

Corollary 13.2. The extended locus of Hodge classes H̃dg(H) contains the usual

locus of Hodge classes Hdg(H). For every K ≥ 0, the intersection H̃dg(H) ∩
E(HZ)(K) is finite and proper over its image in X.

Proof. The first assertion is clear from the construction, because Hdg(H) is by def-
inition the preimage, under φ, of the zero section in T (F 1H). The second assertion

follows from the fact that φ̃ : E(HZ)(K) → T (F−1M) is finite. □

Note that the extended locus of Hodge classes H̃dg(H) is canonically associated
with the original polarized variation of Hodge structureH onX0. The reason is that
the polarized Hodge module M and its underlying filtered D-module (M, F•M)
are uniquely determined by H; according to Theorem 13.1, the same is true for

the holomorphic mapping φ̃ : E(HZ)(K) → T (F−1M). In this sense, H̃dg(H) is a
canonical extension of Hdg(H) to an analytic space over X with good properties.

Corollary 13.3. Let H be a polarized variation of Hodge structure of weight zero,

defined on a Zariski-open subset X0 of a smooth projective variety X. Then H̃dg(H)
is a countable union of projective schemes, each finite over its image in X.

Proof. This follows from Chow’s theorem by noting that the pullback of an ample
line bundle under a finite holomorphic mapping remains ample. □

D. The normal crossing case

14. Introduction. In this chapter, we treat the case of variations of Hodge struc-
ture with unipotent local monodromy on the complement of a normal crossing
divisor. We use the same notation as in the introduction, namely X is a complex
manifold, D ⊆ X a divisor with normal crossing singularities, and X0 = X \D its
open complement. Suppose that H is a polarized variation of integral Hodge struc-
ture of weight zero on X0 whose local monodromy at each point of D is unipotent.
We write F •H for the Hodge filtration on the locally free sheaf H, and

π : B(H) → X0

for the corresponding holomorphic vector bundle; then B(F pH) is the subbundle
corresponding to F pH. As in the introduction, the underlying local system of
free Z-modules HZ determines a covering space E(HZ) of X0; note that E(HZ) is
naturally a complex submanifold of B(H), because HZ is a subsheaf of H. The
locus of Hodge classes is then exactly the intersection

Hdg(H) = E(HZ) ∩B(F 0H) ⊆ B(H);

as such, it is an analytic subspace. For every K ≥ 0, the set

E≤K(HZ) =
{
(x, h) ∈ E(HZ)

∣∣ Qx(h, h) ≤ K
}
⊆ E(HZ)

is a union of connected components of E(HZ), and we have

Hdg≤K(H) = E≤K(HZ) ∩B(F 0H) ⊆ B(H).

To construct the locus of limit Hodge classes in this setting, let H̃ denote the
canonical extension of (H,∇) to a locally free sheaf onX [Del70, Proposition 5.2]. If
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we again use the notation π : B(H̃) → X for the corresponding holomorphic vector
bundle, then π−1(X0) = B(H). Since we are interested in limits of sequences of
integral classes, we take the closure of E(HZ) inside this larger ambient space.

Theorem 14.1. The topological closure of E(HZ) inside B(H̃) is an an analytic
subspace; in particular, every point in the closure lies on the image of some holo-
morphic arc f : ∆ → B(H̃) with f(∆∗) ⊆ E(HZ).

The proof is basically an exercise in linear algebra; it does not use the fact that
the local system HZ comes from a variation of Hodge structure. Note that while
E(HZ) is a covering space of X0, its closure may have fibers of positive dimension

over the boundary divisor D = X \X0. If we think of points in E(HZ) as limits of
sequences of integral classes, what this means is that different ways of approaching
a point on D can lead to different limits.

Now let E(HZ)
ν
denote the normalization of the analytic space E(HZ); by con-

struction, it comes with a finite mapping

ν : E(HZ)
ν
→ B(H̃)

that is an isomorphism over the preimage of X0 = X \D. Recall that the Hodge

filtration F •H extends to a filtration F •H̃ by locally free subsheaves [Sch73, §4];
in particular, B(F 0H̃) is a holomorphic subbundle of B(H̃). Its preimage

Hdg(H, X) = ν−1
(
B(F 0H̃)

)
⊆ E(HZ)

ν

is therefore an analytic subspace that coincides, over X0, with the usual locus of
Hodge classes Hdg(H). As above, we have

Hdg(H, X) =

∞⋃
K=0

Hdg≤K(H, X),

where Hdg≤K(H, X) is defined by intersecting Hdg(H, X) with the normalization

of the closure of E≤K(HZ), which is a union of connected components of E(HZ)
ν
.

The following theorem justifies calling Hdg(H, X) the locus of limit Hodge classes.

Theorem 14.2. Let X and H be as above.

(a) The points of the analytic space Hdg(H, X) are in one-to-one correspon-
dence with limit Hodge classes for H on X, as defined in §9.

(b) For every K ≥ 0, the natural mapping from Hdg≤K(H, X) to X is finite
(= proper with finite fibers).

The content of Theorem 14.2 is that the locus of limit Hodge classes is well-
behaved, provided one imposes a bound on the self-intersection number. Evidently,
Theorem 14.2 is inspired by the work of Cattani, Deligne, and Kaplan – in fact,
while the theorem itself does not appear in [CDK95], we shall see that it can be
deduced from some of the technical results proved there. It is also worth noting
that although Cattani, Deligne, and Kaplan did not consider limit Hodge classes
as such, the statement of [CDK95, Theorem 2.16] strongly suggests that something
like Theorem 14.2 ought to be true.

As explained in the introduction, there are certain cases (such as families of
hypersurfaces) where a different construction seems more natural. Recall that H
extends uniquely to a polarized Hodge module

M ∈ HMX(X,dimX)
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with strict support X. The underlying regular holonomic left DX -module M is the
minimal extension of the flat bundle (H,∇), and the coherent OX -modules FpM
are extensions of the locally free sheaves F−pH. We can define an analytic space

T (F−1M) = SpecX
(
SymOX

F−1M
)

by taking the spectrum of the symmetric algebra of F−1M; over X0, it restricts to
the holomorphic vector bundle corresponding to (F 1H)∗. The polarization induces
a holomorphic mapping

φ : E(HZ) → T (F−1M),

and as above, we are interested in the closure of the image. The second important
result in this chapter is that the closure is analytic, provided we again impose a
bound on the self-intersection number.

Theorem 14.3. The topological closure of the image of the holomorphic mapping

φ : E≤K(HZ) → T (F−1M)

is a complex-analytic subspace of T (F−1M).

This theorem is far stronger than Theorem 14.1, because convergence in the
space T (F−1M) gives us much less control over a sequence of integral classes than

convergence in B(H̃). In fact, Theorem 14.3 does not follow from the results of
Cattani, Deligne, and Kaplan: to prove it, we have to establish a more powerful
version of [CDK95, Theorem 2.16]. Using some facts from complex analysis, one
can then construct an extension of E≤K(HZ) that is still finite over T (F−1M).

Corollary 14.4. There is a normal analytic space Ẽ≤K(HZ) containing the com-
plex manifold E≤K(HZ) as a dense open subset, and a finite holomorphic mapping

φ̃ : Ẽ≤K(HZ) → T (F−1M)

whose restriction to E≤K(HZ) agrees with φ; both are unique up to isomorphism.

The uniqueness statement in Corollary 14.4 means that if we define

Ẽ(HZ) = lim
K∈N

Ẽ≤K(HZ),

then Ẽ(HZ) is a normal analytic space with countably many connected components;
by construction, it comes with a holomorphic mapping

φ̃ : Ẽ(HZ) → T (F−1M)

whose fibers are discrete, and whose restriction to each subset Ẽ≤K(HZ) is finite
and proper. The preimage of the zero section in T (F−1M) therefore gives a second
compactification

H̃dg(H, X) = φ̃−1(0) ⊆ Ẽ(HZ)

for the locus of Hodge classes, with the same finiteness properties as the locus of
limit Hodge classes.

Concerning the relationship between the two constructions, we have the following
result. It would be interesting to know more – but at present, I do not even have
a guess as to what the image of λ might be.

Corollary 14.5. There is a unique holomorphic mapping

λ : Ẽ(HZ) → E(HZ)
ν

whose restriction to E(HZ) is the identity.
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In particular, we get a finite mapping from H̃dg(H, X) to the locus of limit Hodge
classes. Note that this mapping is generally not surjective; there is also no good
reason to think that it should be injective.

15. Review of the local theory. Since both Theorem 14.2 and Theorem 14.3 are
basically local statements, we shall begin by reviewing the local theory of polarized
variations of Hodge structure on the complement of a normal crossing divisor [Sch73,
Kas85, CKS86]. Fortunately, Cattani and Kaplan have written a beautiful survey
article, where they describe all the major results [CK89]. Rather than citing the
original sources, I will only quote from this article.

Let ∆n, with coordinates s = (s1, . . . , sn), be the product of n copies of the unit
disk; then (∆∗)n is the complement of the divisor defined by s1 · · · sn = 0. Let H be
a polarized variation of integral Hodge structure of weight zero on (∆∗)n; we assume
that the underlying local system of free Z-modules HZ has unipotent monodromy
around each of the divisors sj = 0. Let Hn, with coordinates z = (z1, . . . , zn), be
the product of n copies of the upper half-plane; the holomorphic mapping

Hn → (∆∗)n, z 7→
(
e2πiz1 , . . . , e2πizn

)
makes it into the universal covering space of (∆∗)n. If we pull back the local system
HZ to Hn, it becomes trivial; let HZ denote the free Z-module of its global sections,
and Q : HR ⊗ HR → R the symmetric bilinear form coming from the polarization
on H. By assumption, the monodromy transformation around sj = 0 is of the
form eNj , where Nj is a nilpotent endomorphism of HQ = HZ ⊗Z Q that satisfies
Q(Njh1, h2) +Q(h1, Njh2) = 0. It is clear that N1, . . . , Nn commute.

We now review the description of H that results from the work of Cattani,
Kaplan, and Schmid. Let Ď denote the parameter space for filtrations F = F •HC
that satisfy Q(F p, F q) = 0 whenever p+q > 0; let D ⊆ Ď denote the subset of those
F that define a polarized Hodge structure on HC = HZ ⊗Z C with polarization Q.
Recall that Ď is a closed subvariety of a flag variety, and that the so-called period
domain D is an open subset of Ď.

The variation of Hodge structure H can be lifted to a period mapping

Φ: Hn → D

which is holomorphic and horizontal. It is known that every element of the cone

C(N1, . . . , Nn) =
{
a1N1 + · · ·+ anNn

∣∣ a1, . . . , an > 0
}

defines the same monodromy weight filtration [CK89, Theorem 2.3]; we denote this
common filtration by W = W (N1, . . . , Nn). In the limit, H determines another
filtration F ∈ Ď for which the pair (W,F ) is a mixed Hodge structure on HC,
polarized by Q and every element of C(N1, . . . , Nn). According to the nilpotent
orbit theorem [CK89, Theorem 2.1], the period mapping is approximated (with
good bounds on the degree of approximation) by the associated nilpotent orbit

(15.1) Φnil : Hn → Ď, Φnil(z) = e
∑

zjNjF.

One can use the mixed Hodge structure (W,F ) to express Φ(z) in terms of the
nilpotent orbit and additional holomorphic data on ∆n. Denote by

g =
{
X ∈ End(HC)

∣∣ Q(Xh1, h2) +Q(h1, Xh2) = 0
}



20 CHRISTIAN SCHNELL

the Lie algebra of infinitesimal isometries of Q. The mixed Hodge structure (W,F )
determines a decomposition of HC with the following properties:

HC =
⊕
p,q

Ip,q, Ww =
⊕

p+q≤w

Ip,q, F k =
⊕
p≥k

Ip,q,

A formula for the subspaces Ip,q can be found in [CK89, (1.12)]. The decomposition
leads to a corresponding decomposition of the Lie algebra

g =
⊕
p,q

gp,q,

with gp,q consisting of those operators X that satisfy X(Ia,b) ⊆ Ia+p,b+q for every
a, b ∈ Z. In this notation, we have N1, . . . , Nn ∈ g−1,−1; moreover, the restriction
of Q to the subspace Ip,q ⊗ Ip

′,q′ is nondegenerate for p′ + p = q′ + q = 0, and zero
otherwise.

The more precise version of the nilpotent orbit theorem [CK89, Theorem 2.8] is
that the period mapping of H can be put into the normal form

(15.2) Φ: Hn → D, Φ(z) = e
∑

zjNjeΓ(s)F,

for a unique holomorphic mapping

Γ: ∆n →
⊕
p≤−1

gp,q

with Γ(0) = 0. When we write Γ(s), it is of course understood that sj = e2πizj for
every j = 1, . . . , n. The horizontality of the period mapping has the following very
useful consequence [CK89, Proposition 2.6].

Proposition 15.3. Let Φ(z) = e
∑

zjNjeΓ(s)F be the normal form of a period
mapping on Hn. Then for every j = 1, . . . , n, the commutator[

Nj , e
Γ(s)
]
= Nje

Γ(s) − eΓ(s)Nj

vanishes along the divisor sj = 0.

16. Local description of the problem. The presentation of the period map-
ping in (15.2) is very convenient for describing the canonical extension of (H,∇)
geometrically. With the conventions about the fundamental group in [CK89, (1.8)],
the étalé space E(HZ) of the local system HZ is the quotient of Hn × HZ by the
following Zn-action:

(16.1) a · (z, h) =
(
z + a, e

∑
ajNjh

)
for a ∈ Zn and (z, h) ∈ Hn ×HZ

Since we are only considering classes of bounded self-intersection, we define for any
integer K ≥ 0 the set

HZ(K) =
{
h ∈ HZ

∣∣ |Q(h, h)| ≤ K
}
.

Then E≤K(HZ) is the quotient of Hn×HZ(K) by the action in (16.1). As above, let
(H,∇) be the flat bundle on (∆∗)n underlying the variation of Hodge structure. It

admits a canonical extension to locally free sheaf H̃ on ∆n, on which the connection
has a logarithmic pole along each of the divisors sj = 0 with nilpotent residue
[Del70, Proposition 5.2]. Explicitly, for each v ∈ HC, the holomorphic mapping

(16.2) Hn → HC, z 7→ e
∑

zjNjv
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descends to a holomorphic section of H on (∆∗)n, and H̃ is the locally free subsheaf
of j∗H generated by all such sections [CK89, (2.2)]. This means that

B(H̃) ≃ ∆n ×HC,

and with respect to this isomorphism, E(HZ) is identified with the image of the
holomorphic mapping

(16.3) ε : Hn ×HZ → ∆n ×HC, ε(z, h) =
(
e2πiz1 , . . . , e2πizn , e−

∑
zjNjh

)
.

If we use the above trivialization of the bundle B(H̃), then (15.2) tells us that the

subbundle B(F pH̃) is exactly the image of the holomorphic mapping

∆n × F p → ∆n ×HC, (s, v) 7→
(
s, eΓ(s)v

)
.

From this point of view, it is easy to see the difference between Φ and the nilpotent
orbit Φnil in (15.1): it is the difference between the above embedding of ∆n × F p

and the obvious embedding induced by F p ⊆ HC.
We close this section by describing the extension of H to a polarized Hodge

module on ∆n. Let us denote this extension by M , and let (M, F•M) be the
filtered regular holonomic left D-module underlying M . Then M is simply the
D-submodule of j∗H generated by H̃, and the filtration on M is given by

(16.4) FkM =
∑
j≥0

FjD∆n · F j−kH̃.

It satisfies FjD∆n ·FkM ⊆ Fj+kM, and each FkM is a coherent sheaf on ∆n whose
restriction to (∆∗)n agrees with F−kH. This is a translation of Saito’s results in
[Sai90, §3.10]; note that Saito is working with right D-modules. For the purposes

of Theorem 14.3, the important point is that F−1M has more sections than F 1H̃;
the following lemma exhibits the ones that we will use.

Lemma 16.5. For any vector v ∈ F 2, and any index 1 ≤ k ≤ n, the formula

σv,k(z) = e
∑

zjNjeΓ(s)
Nkv

sk

defines a holomorphic section of the coherent sheaf F−1M on ∆n.

Proof. It is clear from the description above that

σv : Hn → HC, σv(z) = e
∑

zjNjeΓ(s)v

defines a holomorphic section of F 2H̃ for every v ∈ F 2; consequently, σv is also a
holomorphic section of F−2M. By [CK89, (2.7)], the horizontality of the period
mapping is equivalent to

d
(
e
∑

zjNjeΓ(s)
)
= e

∑
zjNjeΓ(s)

(
dΓ−1(s) +

n∑
j=1

Njdzj

)
,

where Γ−1(s) is the sum of all the gp,q-components of Γ(s) with p = −1. Using this
identity and the fact that sk = e2πizk , we compute that

∂

∂sk
σv(z) = e

∑
zjNjeΓ(s)

(
∂Γ−1(s)

∂sk
+

Nk

2πisk

)
v

= e
∑

zjNjeΓ(s)
∂Γ−1(s)

∂sk
v +

1

2πi
σv,k(z).



22 CHRISTIAN SCHNELL

This section belongs to F−1M by virtue of (16.4); we now obtain the result by
noting that Γ−1(s) · v is a holomorphic mapping from ∆n into F 1. □

17. Two results about sequences of Hodge classes. The theorem of Cattani,
Deligne, and Kaplan about the locus of Hodge classes with bounded self-intersection
number rests mainly on the following technical result [CDK95, Theorem 2.16].

Theorem 17.1 (Cattani, Deligne, Kaplan). Consider a sequence of points(
z(m), h(m)

)
∈ Hn ×HZ(K)

with xj(m) = Re zj(m) bounded and yj(m) = Im zj(m) going to infinity for every
j = 1, . . . , n. If every h(m) is a Hodge class in the Hodge structure induced by the
filtration Φ

(
z(m)

)
, then there is a subsequence1 with the following properties:

(a) The sequence h(m) is constant, equal to some h ∈ HZ(K).
(b) One has (a1N1 + · · ·+ anNn)h = 0 for certain positive integers a1, . . . , an;

in particular, h ∈ W0.
(c) There is a vector w ∈ Cn such that

lim
m→∞

e−
∑

zj(m)Njh(m) = e−
∑

wjNjh.

(d) Lastly, h is a Hodge class in the mixed Hodge structure
(
W0, e

∑
wjNjF

)
.

For practical reasons, they actually prove a more general statement, in which
the assumption h(m) ∈ Φ0

(
z(m)

)
is replaced by the condition that

(17.2) h(m) ≡ b(m) mod Φ0
(
z(m)

)
,

where b(m) ∈ HC is a sequence of exponentially small error terms; more precisely,
the norm of b(m) should be in O

(
e−αmaxj yj(m)

)
for some fixed α > 0. Theorem 17.1

gives enough control over the asymptotic behavior of sequences of Hodge classes to
conclude that the locus of Hodge classes extends analytically over ∆n. It is also
sufficient for proving Theorem 14.2 about the locus of limit Hodge classes.

Interestingly, trying to prove Theorem 14.3 also leads to the relation in (17.2),
but with a much weaker condition on the sequence of error terms. The reason is
that when we consider a sequence for which φ̃

(
z(m), h(m)

)
converges in T (F−1M),

we are somehow controlling the distance from h(m) to the subspace Φ0
(
z(m)

)
, and

so we can expect to get something like (17.2) with a bound on the sequence b(m).
The precise condition that emerges from Lemma 16.5 is the following.

Definition 17.3. Fix an inner product onHC and let ∥−∥ denote the corresponding
norm. A sequence of vectors b(m) ∈ HC is called harmless with respect to y(m) if
there is a positive real number α > 0 such that the quantity

∥b(m)∥+
n∑

k=1

eαyk(m)∥Nkb(m)∥

remains bounded as m → ∞. It is called exponentially small with respect to y(m)
if, for some α > 0, the quantity eαmaxj yj(m)∥b(m)∥ remains bounded as m → ∞.

1To simplify the notation, we always denote a subsequence of a sequence by the same symbol.
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In other words, a sequence b(m) ∈ HC is harmless if and only if it is bounded
and ∥Nkb(m)∥ is in O(e−αyk(m)) for every k = 1, . . . , n; it is exponentially small if
∥b(m)∥ is actually in O(e−αmaxj yj(m)). The proof of Theorem 14.3 is based on the
following generalization of Theorem 17.1.

Theorem 17.4. Suppose we are given a sequence of points(
z(m), h(m)

)
∈ Hn ×HZ(K)

with xj(m) = Re zj(m) bounded and yj(m) = Im zj(m) going to infinity for every
j = 1, . . . , n. Also suppose that

h(m) ≡ b(m) mod Φ0
(
z(m)

)
for a sequence of vectors b(m) ∈ HC that is harmless with respect to y(m). Then
there exists a subsequence with the following properties:

(a) The sequence h(m) is constant, equal to some h ∈ HZ(K).
(b) One has (a1N1 + · · ·+ anNn)h = 0 for certain positive integers a1, . . . , an;

in particular, h ∈ W0.
(c) There is a vector w ∈ Cn such that

lim
m→∞

e−
∑

zj(m)Njh(m) = e−
∑

wjNjh.

(d) The sequence b(m) converges to a limit b ∈ HC, and one has

h ≡ b mod e
∑

wjNjF 0

as well as N1b = · · · = Nnb = 0.

In order not to interrupt the flow of the argument, I decided to devote a separate
Chapter E to the proof of Theorem 17.4.

18. Proof of Theorem 14.1. In this section, we prove that the topological
closure of E(HZ) is an analytic subspace of the vector bundle B(H̃). This is of
course a purely local problem: it suffices to show that, for any given point x ∈ X,
the closure of E(HZ) is analytic in a neighborhood of π−1(x) ⊆ B(H̃). After
choosing suitable local coordinates, we may therefore assume that X = ∆n, with
coordinates s = (s1, . . . , sn), and that D is the divisor given by s1 · · · sk = 0.
Because E(HZ) is already closed in B(H), we are free to enlarge the divisor D;
hence it is enough to treat the case k = n, where X0 = (∆∗)n. Now recall from

(16.3) that B(H̃) ≃ ∆n × HC and that E(HZ) is the image of the holomorphic
mapping

ε : Hn ×HZ → ∆n ×HC, ε(z, h) =
(
e2πiz1 , . . . , e2πizn , e−

∑
zjNjh

)
.

To prove Theorem 14.1, we have to show that E(HZ) is analytic in a neighborhood
of every limit point of E(HZ) that lies over the origin in ∆n. This is basically just a
problem in linear algebra that can be solved without knowing that the local system
HZ comes from a polarized variation of Hodge structure.

As a first step, we describe all possible limit points of E(HZ). In the natural
stratification of ∆n, the strata are indexed by subsets J ⊆ {1, 2, . . . , n}; the stratum
corresponding to J is the set

∆n
J =

{
s ∈ ∆n

∣∣ sj = 0 if and only if j ∈ J
}
.

This notation makes the following result easier to state.
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Proposition 18.1. A point (s, v) ∈ ∆n
J × HC belongs to the topological closure

E(HZ) if and only if the following two conditions are satisfied:

(1) There is a vector w ∈ Cn and an integral class h ∈ HZ such that

v = e−
∑

wjNjh

and such that sj = e2πiwj for every j ̸∈ J .
(2) One has

∑
ajNjh = 0 for some positive integers {aj}j∈J .

Proof. Suppose that v = e−
∑

wjNjh with w ∈ Cn and h ∈ HZ as above. If we put
aj = 0 for j ̸∈ J and denote the resulting vector by a ∈ Nn, we obtain

v = e−
∑

j∈J (itaj+wj)Njh

for every t ∈ R; but then it is easy to see that

(s, v) = lim
t→∞

ε
(
w + ita, h

)
∈ E(HZ).

To prove the converse, let us consider an arbitrary point (s, v) ∈ ∆n
J ×HC that also

belongs to E(HZ). It is the limit of a sequence in E(HZ); we can therefore choose
a sequence

(
z(m), h(m)

)
∈ Hn ×HZ with bounded real parts Re z(m) such that

lim
m→∞

(
e2πiz1(m), . . . , e2πizn(m), e−

∑
zj(m)Njh(m)

)
= (s1, . . . , sn, v).

As in (26.1), it will be convenient to expand the sequence z(m) according to the
rate of growth of its imaginary parts. After passing to a subsequence, we can find
a partition J = J1 ⊔ J2 ⊔ · · · ⊔ Jd, an n× d-matrix A with nonnegative entries that
satisfy aj,k ̸= 0 if and only if j ∈ J1 ⊔ · · · ⊔ Jk, and two sequences t(m) ∈ Rd and
w(m) ∈ Cn, which together have the following three properties:

z(m) = iAt(m) + w(m),

the sequence w(m) converges to a limit w ∈ Cn, and the ratios

(18.2)
t1(m)

t2(m)
,
t2(m)

t3(m)
, . . . ,

td(m)

1

are going to infinity. An easy calculation shows that sj = e2πiwj for j ̸∈ J . If we
again define

Tk =

n∑
j=1

aj,kNj ,

then T1, . . . , Td are commuting nilpotent operators, and

v = lim
m→∞

e−
∑

zj(m)Njh(m) = lim
m→∞

e−
∑

wj(m)Nje−i
∑d

k=1 tk(m)Tkh(m).

Since w(m) converges to w, it follows that the sequence of vectors

e−i
∑d

k=1 tk(m)Tkh(m) ∈ HC

is also convergent. We are going to deduce from this that the sequence h(m) is
eventually constant, and that the constant value h ∈ HZ satisfies T1h = · · ·Tdh = 0.
To that end, we define, for every multi-index α ∈ Nn, a nilpotent operator

Nα = Nα1
1 · · ·Nαn

n .

Note that Nαh(m) = 0 whenever |α| = α1 + · · · + αn is sufficiently large; we can
therefore use induction to show that Nαh(m) is eventually constant for every multi-
index α, and that the constant value hα ∈ HQ satisfies T1h

α = · · · = Tdh
α = 0.
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Suppose that for some integer ℓ ≥ 0, we already know this for every α ∈ Nn

with |α| ≥ ℓ + 1. Take an arbitrary multi-index α of length |α| = ℓ. From the
convergence of the sequence

Nαe−i
∑d

k=1 tk(m)Tkh(m) = Nαh(m)− i

d∑
k=1

tk(m)TkN
αh(m)

we deduce that the sequence of its real parts Nαh(m) must be eventually constant
(because it lies in a discrete subset of HQ). Denote the constant value by hα ∈ HQ.
Then the convergence of the sequence of imaginary parts

d∑
k=1

tk(m)TkN
αh(m) =

d∑
k=1

tk(m)Tkh
α

implies that T1h
α = · · · = Tkh

α = 0 by virtue of (18.2).
The conclusion (for ℓ = 0) is that the sequence h(m) is eventually constant, and

that the constant value h ∈ HZ satisfies T1h = · · · = Tdh = 0. Since

v = lim
m→∞

e−
∑

zj(m)Njh(m) = lim
m→∞

e−
∑

wj(m)Njh = e−
∑

wjNjh,

we get the first assertion. The second one follows from the identity Tdh = 0 by
noting that Td is a positive linear combination of the Nj with j ∈ J . □

One consequence of this result is that E(HZ) has, at least locally, a well-defined
set of irreducible components; moreover, they are locally finite, as one would expect
for an analytic space. The irreducible components are the closed sets

(18.3) C(h) = εh(Hn) ⊆ ∆n ×HC,

where εh = ε(−, h) : Hn → ∆n ×HC for h ∈ HZ. It is clear that the set C(h) only
depends on the Zn-orbit

{
e
∑

ajNjh
∣∣ a ∈ Zn

}
of h inside HZ.

Corollary 18.4. We have

E(HZ) =
⋃

h∈HZ

C(h),

and the family of closed sets C(h) is locally finite on ∆n ×HC.

Proof. Clearly, C(h) ⊆ E(HZ) for every h ∈ HZ; conversely, Proposition 18.1 shows
that any point in the closure of E(HZ) belongs to one of the closed sets C(h). To
prove the local finiteness, we have to show that every point (s, v) ∈ ∆n ×HC has
an open neighborhood that meets only finitely many distinct sets C(h). If this was
not the case, we could construct a sequence

(
z(m), h(m)

)
∈ Hn×HZ with bounded

real parts Re z(m) such that

(s, v) = lim
m→∞

ε
(
z(m), h(m)

)
,

and such that no two of the sets C
(
h(m)

)
are the same. But this obviously contra-

dicts the fact – established during the proof of Proposition 18.1 – that a subsequence
of the sequence h(m) must be constant. □

To prove that E(HZ) is analytic, it is now enough to show that each of the closed
sets C(h) is analytic. This we do by finding a set of holomorphic equations. For the
sake of convenience, we shall allow ourselves to replace Hn by Cn in this problem;
of course, this has no effect on what happens over ∆n.
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Proposition 18.5. For every h ∈ HZ, the topological closure of the image of

(18.6) Cn → Cn ×HC, z 7→
(
e2πiz1 , . . . , e2πizn , e−

∑
zjNjh

)
,

is an analytic subspace of Cn ×HC.

Proof. Let S(h) =
{
a ∈ Zn

∣∣ ∑ ajNjh = 0
}
be the stabilizer of h; note that the

quotient Zn/S(h) is a free Z-module of some rank 0 ≤ r ≤ n, since it embeds into
HQ. We can thus find a matrix A ∈ SLn(Z) whose last n− r columns give a basis
for S(h) ⊆ Zn. If we introduce new coordinates (z′1, . . . , z

′
n) ∈ Cn by defining

zj =

n∑
k=1

aj,kz
′
k and N ′

k =

n∑
j=1

aj,kNj ,

we have z1N1 + · · ·+ znNn = z′1N
′
1 + · · ·+ z′nN

′
n. The vectors N ′

1h, . . . , N
′
rh ∈ HQ

are linearly independent, while N ′
r+1h = · · · = N ′

nh = 0. The mapping in (18.6)
therefore has the same image as

(18.7) Cn → Cn ×HC, z′ 7→

(
n∏

k=1

e2πia1,kz
′
k , . . . ,

n∏
k=1

e2πian,kz
′
k , e−

∑
z′
kN

′
kh

)
.

We are now going to find a set of holomorphic equations that define the closure of
the image. These equations will be of two kinds: the ones coming from the last
coordinate in (18.7) will be polynomials, whereas the others will involve exponential
functions. We first consider the polynomial mapping

Cr → HC, (z′1, . . . , z
′
r) 7→ e−

∑
z′
kN

′
kh

Since the vectors N ′
1h, . . . , N

′
rh ∈ HQ are linearly independent, it has a left inverse

by Lemma 18.11; more precisely, there are polynomial mappings

pℓ : HC → C

with the property that pℓ
(
e−

∑
z′
kN

′
kh
)
= z′ℓ on all of Cr. Now a vector v ∈ HC is

of the form e−
∑

z′
kN

′
kh if and only if it satisfies the system of polynomial equations

(18.8) v = e−
∑

pk(v)
′N ′

kh.

In that case, we also have z′k = pk(v) for k = 1, . . . , r, and therefore

sj =

n∏
k=1

e2πiaj,kz
′
k =

r∏
k=1

e2πiaj,kpk(v) ·
n∏

k=r+1

e2πiaj,kz
′
k .

The shape of these formulas suggests looking at the monomial mapping

(18.9) (C∗)n−r → Cn, (ur+1, . . . , un) 7→

(
n∏

k=r+1

u
a1,k

k , . . . ,

n∏
k=r+1

u
an,k

k

)
.

It is well-known that the topological closure of the image is an algebraic variety; in
fact, it is a (not necessarily normal) affine toric variety [Stu97]. More precisely, let

Γ = N⟨a1, . . . , an⟩ ⊆ Zn−r

be the semigroup generated by the vectors ai = (ai,r+1, . . . , ai,n) ∈ Zn−r. If

C[Γ] =
⊕
a∈Γ

Cχa
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denotes the group algebra of Γ, with multiplication given by χa · χb = χa+b, then
the closure of the image of (18.9) is the affine algebraic variety

SpecC[Γ].

It embeds into Cn, because Γ is generated by a1, . . . , an; the corresponding ideal
IΓ ⊆ C[s1, . . . , sn] in the polynomial ring is generated by the binomial equations∏

ui>0

sui
i =

∏
ui<0

s−ui
i ,

where u ∈ Zn runs over all integer solutions of the equation u1a1 + · · ·+ unan = 0.
The conclusion is that any point (s, v) ∈ Cn×HC in the image of (18.7) also satisfies
the system of holomorphic equations

(18.10) f

(
s1

r∏
k=1

e−2πia1,kpk(v), . . . , sn

r∏
k=1

e−2πian,kpk(v)

)
= 0 for all f ∈ IΓ.

Since it is easy to see from the construction that every solution of the equations in
(18.8) and (18.10) belongs to the closure of the image, the assertion is proved. □

Lemma 18.11. Let h ∈ HC. If the vectors N1h, . . . , Nnh ∈ HC are linearly inde-
pendent, then there are polynomial mappings pk : HC → C such that

pk
(
e−

∑
zjNjh

)
= zk

for every z ∈ Cn and every k = 1, . . . , n.

Proof. The proof is by induction on n ≥ 0. To shorten the notation, set v =
e−

∑
zjNjh. Among all multi-indices α ∈ Nn with Nαh ̸= 0, select one of maximal

length; after some reordering, we may assume that αn ≥ 1. We have

Nα−env =
(
id−z1N1 − · · · − zn−1Nn−1

)
Nα−enh− znN

αh,

and because Nαh ̸= 0, we can solve for zn in the form

zn = c1z1 + · · ·+ cn−1zn−1 + q(v),

where q : HC → C is an affine linear form. Now

v = e−
∑

zj(Nj+cjNn)e−q(v)Nnh,

and by induction, z1, . . . , zn−1 are given by polynomials in the coordinates of the
vector eq(v)Nnv. This shows that there are polynomial mappings pk : HC → C with
pk(v) = zk for k = 1, . . . , n− 1; but then

pn = c1p1 + · · ·+ cn−1pn−1 + q

is also a polynomial mapping and satisfies pn(v) = zn. □

In defining the locus of limit Hodge classes, we actually work with the normal-
ization of E(HZ). The following result describes what the normalization looks like.

Lemma 18.12. The normalization mapping ν : E(HZ)
ν

→ B(H̃) separates the
local analytically irreducible components. . .
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Proof. The statement is of a local nature, and so with the same choice of coordinate
system as above, it suffices to analyze what happens at a point of the form (0, v) ∈
∆n × HC. By general properties of normalization, ν separates the different local
irreducible components C(h); it is therefore enough to prove that the fiber of

ν : C(h)ν → C(h)

over any (0, v) ∈ C(h) consists of exactly one point. During the proof of Proposi-
tion 18.5, we described C(h) in terms of a closed embedding and a (not necessarily
normal) affine toric variety of dimension n− r; recall that (0, v) ∈ C(h) is only pos-
sible if the subgroup S(h) contains a vector with positive entries. Looking back at
the arguments that we used to prove Proposition 18.5, we see that in order to verify
the assertion about ν, it suffices to understand what happens for the normalization
of the closure of the image of the monomial mapping in (18.9).

We shall now describe the normalization in algebraic terms, following [Stu97, §2].
Recall that the closure of the image is the affine algebraic variety SpecC[Γ], where
Γ = N⟨a1, . . . , an⟩ is the semigroup generated by the vectors a1, . . . , an ∈ Zn−r.
These vectors generate Zn−r as a group because A ∈ SLn(Z), and so Γ is contained
inside the larger semigroup

Γ̃ = Zn−r ∩ Cone(a1, . . . , an),

of all lattice points in the convex cone spanned by a1, . . . , an. With this notation,
the normalization of SpecC[Γ] is given by

SpecC[Γ̃] → SpecC[Γ].

Since we are assuming that there is a point (0, v) ∈ C(h), the embedding of
SpecC[Γ] into Cn goes through the origin; algebraically, this means that we have a
well-defined C-algebra homomorphism

o : C[Γ] → C

that annihilates all the elements χa ∈ C[Γ] with 0 ̸= a ∈ Γ. Now points of SpecC[Γ̃]
in the fiber over the origin are in one-to-one correspondence with C-algebra homo-
morphisms

p : C[Γ̃] → C
whose restriction to the subring C[Γ] is equal to o. It is easy to see that every

nonzero b ∈ Γ̃ can be written as a positive rational linear combination of a1, . . . , an,
which means that mb ∈ Γ for some m ≥ 1. But then(

p(χb)
)m

= p(χmb) = o(χmb) = 0,

hence p(χb) = 0, and so p is uniquely determined by o. □

19. Proof of Theorem 14.2. In this section, we show that the locus of limit
Hodge classes still satisfies the theorem of Cattani, Deligne, and Kaplan. Fix a an
integer K ≥ 0, and denote by

ν : E≤K(HZ)
ν
→ B(H̃)

the normalization of the closure of E≤K(HZ) inside the holomorphic vector bundle

B(H̃); recall from Theorem 14.1 that the closure is an analytic subspace. Let

Hdg≤K(H, X) = ν−1
(
B(F 0H̃)

)
⊆ E≤K(HZ)

ν
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be the locus of limit Hodge classes with self-intersection number bounded by K.
Our goal is to show that the projection from Hdg≤K(H, X) toX is a finite mapping.
Since Hdg≤K(H, X) is by construction finite over the analytic space

E≤K(HZ) ∩B(F 0H̃) ⊆ B(H̃),

it suffices to prove that the restriction of π : B(H̃) → X to this subspace is finite.
This is again a local problem, and so we may assume that X = ∆n and that D
is the divisor given by s1 · · · sn = 0; we may also restrict our attention to what
happens near the fiber π−1(0). In the notation of §15, we have B(H̃) ≃ ∆n ×HC,

the subbundle B(F 0H̃) is the image of the holomorphic mapping

∆n × F 0 → ∆n ×HC, (s, v) 7→
(
s, eΓ(s)v

)
,

and E≤K(HZ) is the closure of the image of

ε : Hn ×HZ(K) → ∆n ×HC, ε(z, h) =
(
e2πiz1 , . . . , e2πizn , e−

∑
zjNjh

)
.

As a first step towards proving Theorem 14.2, we will show that the projection
to ∆n has finite fibers. This is somewhat unexpected, given that E≤K(HZ) can
have fibers of dimension up to n − 1. Because of how we choose the coordinate
system, it is enough to show that the fiber over 0 ∈ ∆n contains only finitely many
points.

Proposition 19.1. The intersection E≤K(HZ) ∩B(F 0H̃) ∩ π−1(0) is a finite set.

Proof. According to Proposition 18.1, any point (0, v) ∈ E≤K(HZ) ∩ π−1(0) is of

the form v = e−
∑

wjNjh for some w ∈ Cn and some h ∈ HZ(K); moreover, one has
Nh = 0 for some N ∈ C(N1, . . . , Nn), and therefore h ∈ W0. If the point belongs

to the subbundle B(F 0H̃), then e−
∑

wjNjh ∈ F 0, which means that

h ∈ W0 ∩ e
∑

wjNjF 0

is a Hodge class in the mixed Hodge structure
(
W, e

∑
wjNjF

)
. Thus, h ∈ I0,0,

where HC =
⊕

Ip,q is Deligne’s decomposition of this mixed Hodge structure.

It follows that h uniquely determines v. To see why, suppose that v′ = e−
∑

w′
jNjh

also satisfies (0, v′) ∈ B(F 0H̃). As before, we have

e−
∑

(w′
j−wj)Njh ∈ e

∑
wjNjF 0 =

⊕
p≥0

Ip,q;

now the left-hand side is an element of I0,0⊕I−1,−1⊕· · · , and therefore equal to h,
and this gives v′ = v. Since there are only countably many choices for h ∈ HZ(K),

this observation already tells us that E≤K(HZ) ∩B(F 0H̃) ∩ π−1(0) is discrete.
To show that the intersection is finite, we shall appeal to the technical result

in Theorem 17.1. Suppose that E≤K(HZ) ∩ B(F 0H̃) ∩ π−1(0) was an infinite set.
Then we could find a sequence of distinct elements h(m) ∈ HZ(K), a sequence of
vectors w(m) ∈ Cn, and a sequence a(m) ∈ Nn with positive entries, such that

h(m) ∈ e
∑

wj(m)NjF 0 and

n∑
j=1

aj(m)Njh(m) = 0.
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Now let Φnil : Hn → Ď be the associated nilpotent orbit as in (15.1), and choose a
sequence of positive real numbers t(m) ∈ R that are large enough to ensure that
z(m) = w(m) + ia(m)t(m) ∈ Hn and Φnil

(
z(m)

)
∈ D. Then each

h(m) ∈ HZ(K) ∩ Φ0
nil

(
z(m)

)
is an integral Hodge class in the Hodge structure Φnil

(
z(m)

)
, and so the sequence(

z(m), h(m)
)
∈ Hn×HZ(K) satisfies the assumptions of Theorem 17.1. Since h(m)

does not contain a constant subsequence, this is a contradiction. □

The next task is to prove that E≤K(HZ)∩B(F 0H̃) is proper over ∆n; here it is
convenient to use the formulation of properness in terms of sequences. In prepara-
tion for the proof, let us fix a subset J ⊆ {1, 2, . . . , n} and let us describe the points
of the intersection that lie over the stratum ∆n

J . According to Proposition 18.1, a

point (s, v) ∈ ∆n
J ×HC belongs to E≤K(HZ) if and only if

v = e−
∑

wjNjh and sj = e2πiwj for j ̸∈ J

for some w ∈ Cn and some h ∈ HZ(K) with
∑

j∈J ajNjh = 0. If the point in

question also belongs to B(F 0H̃), then v ∈ eΓJ (s)F 0; here ΓJ(s) is obtained from
Γ(s) by setting to zero all the variables sj with j ∈ J . In other words, we have

h ∈ e
∑

wjNjeΓJ (s)F 0;

By [CK89, Theorem 2.8], ΦJ(z) = e
∑

zjNjeΓJ (s)F is again the period mapping of a
polarized variation of integral Hodge structure of weight zero. Set aj = 0 for j ̸∈ J ;
then we have

h ∈ e
∑

(wj+itaj)NjeΓJ (s)F 0

for every t ∈ R, which means exactly that

h ∈ HZ(K) ∩ Φ0
J(w + ita)

is a Hodge class at the point w+ita for sufficiently large t. This observation reduces
the proof of properness to another application of Theorem 17.1.

Proposition 19.2. The restriction of the projection π : B(H̃) → ∆n to the analytic

subspace E≤K(HZ) ∩B(F 0H̃) is a proper mapping.

Proof. It suffices to show that any sequence of points in E≤K(HZ)∩B(F 0H̃) whose
projection to ∆n converges to the origin must have a convergent subsequence. Af-
ter passing to a subsequence, we may assume without loss of generality that our
sequence

(
s(m), v(m)

)
lies entirely over the stratum ∆n

J for some J ⊆ {1, 2, . . . , n}.
As explained above, there is a sequence w(m) ∈ Cn with bounded real parts
Rew(m) such that

v(m) = e−
∑

wj(m)Njh(m) and sj(m) = e2πiwj(m) for j ̸∈ J ,

and two further sequences a(m) ∈ Nn and t(m) ∈ R such that

h(m) ∈ HZ(K) ∩ Φ0
J

(
w(m) + it(m)a(m)

)
.

By applying Theorem 17.1 to the period mapping ΦJ , we obtain the existence of a
subsequence with the following properties: h(m) = h is constant, in the kernel of
some element of C(N1, . . . , Nn), and there is a vector w ∈ Cn such that

e−
∑

wjNjh = lim
m→∞

e−
∑

(wj(m)+it(m)aj(m))Njh(m) = lim
m→∞

v(m).
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But this is saying that
(
s(m), h(m)

)
converges to the point(

0, e−
∑

wjNjh
)
,

which again belongs to E≤K(HZ) ∩B(F 0H̃) according to Proposition 18.1. □

To complete the proof of Theorem 14.2, it remains to relate the points of the
analytic space Hdg(H,∆n) to our definition of limit Hodge classes in §9.

Proposition 19.3. The points of Hdg(H,∆n) are in one-to-one correspondence
with limit Hodge classes for H on ∆n.

Proof. We begin by collecting a few facts that we established earlier. By our choice
of coordinate system, it is again enough to consider what happens over the origin
in ∆n. Recall from Corollary 18.4 that the irreducible components of E(HZ) ⊆
∆n×HC are the closed sets C(h), and that C(h1) = C(h2) if and only if h1, h2 ∈ HZ
belong to the same orbit of the Zn-action. By Proposition 18.1, having a point
(0, v) ∈ C(h) requires that Nh = 0 for some N ∈ C(N1, . . . , Nn), and then v =
e−

∑
wjNjh for some w ∈ Cn. As we have seen during the proof of Proposition 19.1,

(0, v) ∈ B(F 0H̃) is equivalent to

h ∈ e
∑

wjNjF 0,

and in that case, v is uniquely determined by h. Lastly, we proved in Lemma 18.12

that ν : E(HZ)
ν
→ B(H̃) pulls apart the different irreducible components C(h), but

that the normalization of each C(h) contains exactly one point over (0, v) ∈ C(h).
The conclusion is that we have a one-to-one correspondence between points in

Hdg(H,∆n) that lie over the origin in ∆n and elements of the finite set

L =

{
[h] ∈ HZ/Zn

∣∣∣∣ h ∈ kerN ∩ e
∑

wjNjF 0, for some
w ∈ Cn and N ∈ C(N1, . . . , Nn)

}
To conclude the proof, it only remains to identify the elements of L with limit
Hodge classes for H at the point 0 ∈ ∆n. In the notion of §9, we have

M0(HZ) = HZ/Zn.

Suppose first that [h] ∈ HZ/Zn is a limit Hodge class. By definition, this means
that there is a germ of a holomorphic arc

f : (∆, 0) → (∆n, 0)

with f(∆∗) ⊆ (∆∗)n and f(0) = 0, such that some branch of h is a limit Hodge
class for f−1H at the point 0 ∈ ∆. After choosing a coordinate t on ∆, we can
write fj(t) = tajgj(t) for a positive integer aj and a holomorphic function gj with
gj(0) ̸= 0. In order to identify the space of global sections of f−1HZ on the
universal covering space of ∆∗ with HZ, we also need to choose a lifting of f to a
holomorphic mapping H → Hn; then the logarithm of the monodromy of f−1H is
equal to N = a1N1+ · · ·+anNn, and the limit mixed Hodge structure has the form(

W (N), e
∑

wjNjF
)
=
(
W, e

∑
wjNjF

)
with e2πiwj = gj(0). For at least one choice of lifting, we get

h ∈ HZ ∩ kerN ∩ e
∑

wjNjF,

and so [h] ∈ L.
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Conversely, suppose that we start from an element [h] ∈ L. Since h ∈ HZ, we
can find positive integers a1, . . . , an such that h ∈ ker(a1N1 + · · · + anNn). For
small enough r > 0, consider the holomorphic arc

∆r → ∆n, t 7→
(
ta1e2πiw1 , . . . , tane2πiwn

)
and the pullback of the variation of Hodge structure H to ∆∗

r . The logarithm of
the monodromy is a1N1 + · · ·+ anNn, and the limit mixed Hodge structure is(

W (a1N1 + · · ·+ anNn), e
∑

wjNjF
)
=
(
W, e

∑
wjNjF

)
.

Since h ∈ HZ ∩ ker(a1N1+ · · ·+ anNn)∩ e
∑

wjNjF 0, we conclude that [h] is a limit
Hodge class for H at the point 0 ∈ ∆n. □

20. Proof of Theorem 14.3. The purpose of this section is to deduce Theo-
rem 14.3 from the technical result in Theorem 17.4.

It suffices to show that the closure of the image of φ : E≤K(HZ) → T (F−1M) is
analytic in a neighborhood of any given point in T (F−1M). After choosing local
coordinates, we may therefore assume without loss of generality that X = ∆n and
X0 = (∆∗)n, and consider the behavior of the closure over the origin. Using the
notation introduced in §15, we have the following commutative diagram:

(20.1)

Hn ×HZ(K) E≤K(HZ) T (F−1M)

B(H̃) T (F 1H̃)

ε

φ̃

φ

p

Q

The first step towards understanding the topological closure of the image of φ
is to see what happens when a sequence of points in E≤K(HZ) has bounded image
in T (F−1M). Suppose then that we are given a sequence(

z(m), h(m)
)
∈ Hn ×HZ(K)

with the property that φ̃
(
z(m), h(m)

)
remains bounded inside the space T (F−1M),

while sj(m) = e2πizj(m) goes to zero for every j = 1, . . . , n. This means that the
sequence of imaginary parts yj(m) = Im zj(m) is going to infinity; using the relation
in (16.1), we can furthermore arrange that the sequence of real parts xj(m) =
Re zj(m) remains bounded.

Observe now that h ∈ HZ satisfies φ̃(z, h) = 0 if and only if h ∈ Φ0(z), which
suggests that the boundedness of φ̃

(
z(m), h(m)

)
should give us some control over

the distance from h(m) to the subspace Φ0
(
z(m)

)
. The following result makes this

idea precise, using the notion of a harmless sequence introduced in Definition 17.3.

Proposition 20.2. If the sequence φ̃
(
z(m), h(m)

)
∈ T (F−1M) is bounded, then

(20.3) h(m) ≡ b(m) mod Φ0
(
z(m)

)
,

for a sequence of vectors b(m) ∈ HC that is harmless with respect to Im z(m).

Proof. We are going to use the collection of holomorphic sections

σv(z) = e
∑

zjNjeΓ(s)v (for v ∈ F 1)

σv,k(z) = e
∑

zjNjeΓ(s)
Nkv

sk
(for v ∈ F 2)
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of the coherent sheaf F−1M; see Lemma 16.5 for details. Define the auxiliary
sequence of vectors

h′(m) = e−Γ(s(m))e−
∑

zj(m)Njh(m) ∈ HC.

Using Deligne’s decompositionHC =
⊕

p,q I
p,q of the mixed Hodge structure (W,F ),

we also define

h′(m)−1 =
∑
p≤−1

h′(m)p,q ∈
⊕
p≤−1

Ip,q.

We have h′(m) ≡ h′(m)−1 modulo F 0 =
⊕

p≥0 I
p,q, and therefore (20.3) holds with

b(m) = e
∑

zj(m)NjeΓ(s(m))h′(m)−1 ∈ HC.

It remains to show that b(m) is harmless with respect to the sequence of imaginary
parts y(m) = Im z(m). By assumption, the sequence of complex numbers

Q
(
h(m), σv

(
z(m)

))
= Q

(
h(m), e

∑
zj(m)NjeΓ(s(m))v

)
= Q

(
h′(m), v

)
is bounded for every v ∈ F 1. Since the pairing Q is nondegenerate and compatible
with Deligne’s decomposition, we conclude that ∥h′(m)−1∥ is bounded. Likewise,
the boundedness of the sequence

Q
(
h(m), σv,k

(
z(m)

))
= −Q

(
Nkh

′(m)

sk(m)
, v

)
for every v ∈ F 2 implies that ∥Nkh

′(m)−1∥ is in O(e−2πyk(m)). Combining both
observations, we find that the sequence h′(m)−1 is harmless (for α = 2π). But then
b(m) is also harmless (for any α < 2π) by the elementary Lemma 24.3 below. □

We can therefore apply the technical result in Theorem 17.4 to the given se-
quence; the conclusion is that there is a subsequence

(
z(m), h(m)

)
∈ Hn ×HZ(K)

with the following properties:

(a) The sequence h(m) is constant and equal to h ∈ HZ(K).
(b) One has (a1N1 + · · ·+ anNn)h = 0 for certain positive integers a1, . . . , an;

in particular, h ∈ W0.
(c) There is a vector w ∈ Cn such that

lim
m→∞

e−
∑

zj(m)Njh(m) = e−
∑

wjNjh.

(d) The sequence b(m) converges to a limit b ∈ HC, and one has

h ≡ b mod e
∑

wjNjF 0

as well as N1b = · · · = Nnb = 0.

One consequence is that our original sequence h(m) ∈ HZ can only take finitely
many values: otherwise, we could pass to a subsequence in which all values are
different, and this would obviously contradict (a). If we define, for each h ∈ HZ,
the holomorphic mapping

φ̃h = φ̃(−, h) : Hn → T (F−1M),

then what this says is that any bounded subset of T (F−1M) can intersect only
finitely many of the sets φ̃h(Hn). Moreover, unless h also satisfies the conditions in
(b) and (d), the set φ̃h(Hn) does not have any limit points that lie over the origin
in ∆n. If we apply Nk to the congruence in (d), we obtain Nkh ∈ e

∑
wjNjF−1;
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likewise, (b) implies that Nkh ∈ W−2. These observations reduce the proof of
Theorem 14.3 to the following statement.

Proposition 20.4. Let h ∈ HZ be an element with Nkh ∈ W−2 ∩ e
∑

wjNjF−1 for
all k = 1, . . . , n. Then the topological closure of the image of

φ̃h = φ̃(−, h) : Hn → T (F−1M)

is an analytic subset of T (F−1M).

Proof. As in (20.1), we denote by p : T (F−1M) → T (F 1H̃) the holomorphic map-

ping induced by the inclusion F 1H̃ ↪→ F−1M; note that it is an isomorphism over
(∆∗)n. We are going to prove the stronger result that the image of p ◦ φ̃h has

an analytic closure in the vector bundle T (F 1H̃). This is enough to conclude the
proof, because the image of φ̃h is then contained in the closed analytic subset

p−1
(
(p ◦ φ̃h)(Hn)

)
.

As p is an isomorphism over (∆∗)n, it follows that the closure of φ̃h(Hn) is also
analytic – in fact, it has to be a connected component of the above set.

The pairing Q giving the polarization on H induces a surjective morphism
Q : H̃ → Hom(F 1H̃,OX), and hence a surjective morphism of vector bundles

Q : B(H̃) → T (F 1H̃)

whose kernel is the subbundle B(F 0H̃). Using the notation from (18.3), we shall
deduce the assertion about the image of p ◦ φ̃h from the following stronger claim:
if h ∈ HZ is such that Nkh ∈ W−2 ∩ e

∑
wjNjF−1 for every k = 1, . . . , n, then the

restriction of Q to the closed analytic subset C(h) is a holomorphic embedding.
This evidently completes the proof, because it shows that the closure of the image
of p ◦ φ̃h is isomorphic to C(h).

The concrete description of F 1H̃ in §15 shows that T (F 1H̃) ≃ ∆n×Hom(F 1,C).
Using this isomorphism, the mapping p ◦ φ̃h is given in coordinates by the formula

(20.5) Hn → ∆n ×Hom(F 1,C), z 7→
(
s, v 7→ Q

(
h, e

∑
zjNjeΓ(s)v

))
.

As usual, the relation sj = e2πizj is implicit in the notation. Let HC =
⊕

p,q I
p,q

be Deligne’s decomposition of the mixed Hodge structure
(
W, e

∑
wjNjF

)
. Since

e
∑

zjNjeΓ(s) = e
∑

(zj−wj)Nj

(
e
∑

wjNjeΓ(s)e−
∑

wjNj

)
e
∑

wjNj ,

we may replace F by e
∑

wjNjF and eΓ(s) by the expression in parentheses, and
assume without essential loss of generality that w = 0. We then have Nkh ∈ I−1,−1

for every k = 1, . . . , n. Under the isomorphism⊕
p≤−1

Ip,q ≃ Hom(F 1,C)

induced by Q, the linear functional v 7→ Q
(
h, e

∑
zjNjeΓ(s)v

)
corresponds to

(20.6)
∑
p≤−1

(
e−Γ(s)e−

∑
zjNjh

)p,q
=
∑
p≤−1

(
e−Γ(s)h

)p,q
+ e−Γ(s)

(
e−

∑
zjNj − id

)
h;
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here we have used that Nkh ∈ I−1,−1 and that Γ(s) ∈
⊕

p≤−1 g
p,q. Now recall that

C(h) was defined as the closure of the image of the holomorphic mapping

H → ∆n ×HC, z 7→
(
s, e−

∑
zjNjh

)
.

Solving (20.6) for the term e−
∑

zjNjh, we find that

e−
∑

zjNjh = h− eΓ(s)
∑
p≤−1

(
e−Γ(s)h

)p,q
+ eΓ(s)

∑
p≤−1

(
e−Γ(s)e−

∑
zjNjh

)p,q
.

Since h is fixed and Γ(s) is holomorphic on ∆n, the formula on the right-hand side
defines a holomorphic mapping ∆n × Hom(F 1,C) → ∆n ×HC whose composition
with Q is equal to the identity on C(h), as claimed above. □

21. Proof of Corollary 14.4 and Corollary 14.5. Fix someK ≥ 0. We already
know from the result about Hodge structures in Lemma 3.1 that φ : E≤K(HZ) →
T (F 1H) has finite fibers; the purpose of this section is to understand its global
properties. The following diagram shows all the relevant mappings:

T (H)

E≤K(HZ) T (F 1H)

X0.

q

π

φ

The polarization defines a hermitian metric on the holomorphic vector bundle asso-
ciated with H, the so-called Hodge metric; it induces hermitian metrics on the two
bundles T (H) and T (F 1H). Let Br(H) ⊆ T (H) denote the closed tube of radius
r > 0 around the zero section. The proof of Lemma 3.1 shows that

φ−1
(
Br(H)

)
⊆ B√

K+4r2

(
F 1H

)
;

in particular, the discussion in §22 below applies to our situation. It follows that

φ : E≤K(HZ) → T (F 1H)

is finite, and that the induced mapping from E≤K(HZ) to the normalization of the
image is a finite covering space. To construct an extension that is finite over the
larger analytic space T (F−1M), we can now argue as follows.

Proof of Corollary 14.4. The closure of the image of φ is an analytic subset of
T (F−1M) according to Theorem 14.3. Let W denote its normalization; as we have
just seen, the induced mapping from E≤K(HZ) to W is a finite covering space over
its image. The Fortsetzungssatz of Grauert and Remmert [GPR94, VI.3.3] shows
that it extends in a unique way to a finite branched covering of W . If we define

Ẽ≤K(HZ) to be the analytic space in this covering, and φ̃ : Ẽ≤K(HZ) → T (F−1M)
to be the induced holomorphic mapping, then all the requirements are fulfilled. The
final assertion follows from the uniqueness statement in [GPR94, VI.3.3]. □

Now let us revisit the relationship between the two constructions.
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Proof of Corollary 14.5. Recall that we defined Ẽ(HZ) as the limit, over all K ∈ N,
of the normal analytic spaces Ẽ≤K(HZ); it is therefore itself normal and contains
the complex manifold E(HZ) an a dense open subset. Since the same is true for

E(HZ)
ν
, it is clear that there can be at most one holomorphic mapping with the

asserted properties; consequently, it is enough to construct such a mapping locally.
After choosing suitable local coordinates, we may therefore assume that we are
working in a neighborhood of the origin in ∆n. The local irreducible components

of the analytic space E(HZ)
ν
are the normalizations of the closed subsets C(h), for

h ∈ HZ. As we have seen during the proof of Proposition 20.4, each local irreducible

component of Ẽ(HZ) maps holomorphically to some C(h); the desired result follows
from this by passing the normalizations. □

22. Auxiliary results about a class of covering spaces. In this section, we
consider the following general situation. Let X be a complex manifold, and suppose
that we have a surjective mapping q : E1 → E2 between two holomorphic vector
bundles on X. We assume that E1 has a hermitian metric h1, and we endow E2

with the induced hermitian metric h2. Lastly, we shall assume that we have a
complex submanifold T ↪→ E1, with the property that π : T → X is a (possibly
disconnected) covering space. We denote by φ : T → E2 the induced holomorphic
mapping; see also the diagram below.

E1

T E2

X.

q

p1

π

φ

p2

For any real number r > 0, we denote by Br(Ej) the closed tube of radius r around
the zero section in the vector bundle Ej . We assume the following condition:

(22.1) For every r > 0, there exists R > 0 with T ∩ φ−1
(
Br(E2)

)
⊆ BR(E1).

Lemma 22.2. If (22.1) holds, then φ : T → E2 is a finite mapping.

Proof. Recall that a holomorphic mapping is called finite if it is closed and has
finite fibers [GPR94, I.2.4]; an equivalent condition is that the mapping is proper
and has finite fibers. Let us first show that φ is proper. Given an arbitrary compact
subset K ⊆ E2, we can find r > 0 such that K ⊆ Br(E2). According to (22.1), the
preimage φ−1(K) is contained in BR(E1) for some R > 0; because it is closed, it
must be compact. Now it is easy to show that φ has finite fibers: the fibers of φ
are contained in the fibers of π, which are discrete because π : T → X is a covering
space; being compact, they must therefore be finite sets. □

Corollary 22.3. The image of φ is an analytic subset of E2.

Proof. This follows from the finite mapping theorem [GPR94, I.8.2], which is a
special case of Remmert’s proper mapping theorem. □

Of course, φ is still a local biholomorphism; but the images of different sheets
of the covering space T may intersect in E2. This picture suggests the following
result about the normalization of φ(T ).
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Lemma 22.4. The normalization of φ(T ) is a complex manifold, and the induced
mapping from T to the normalization is a finite covering space.

Proof. Let Y denote the normalization of φ(T ); for the construction, see [GPR94,
I.14.9]. Because T is a complex manifold, we obtain a factorization

T Y E2

X;

f

φ

π

ν

p2

note that f is again a finite mapping. According to [GPR94, I.13.1], Y is locally
irreducible; now [GPR94, I.10.14] implies that f : T → Y is open. Since π : T → X
is a covering space, this is enough to guarantee that Y is again a complex manifold,
and that f : T → Y is a finite covering space. □

E. Asymptotic behavior of sequences of Hodge classes

23. Introduction. Cattani, Deligne, and Kaplan prove Theorem 17.1 by using the
theory of degenerating variations of Hodge structure, especially the multi-variable
SL(2)-orbit theorem [CKS86]. Roughly speaking, the argument is by induction on
the dimension of the smallest analytic subset of ∆n containing the image of the
sequence z(m); the description of period mappings in [CKS86] lends itself very well
to such an approach. A subtle point is that the assumption h(m) ∈ HZ is needed in
many places: it ensures that certain terms that would only be going to zero when
h(m) ∈ HR are actually equal to zero after passing to a subsequence.

We are going to prove Theorem 17.4 by adapting the method of Cattani, Deligne,
and Kaplan; to do that, we have to deal with the problem that the sequence of
error terms b(m) is no longer exponentially small. The proof is contained in §24
to §30; rather than giving an abstract description of the argument here, I have
decided to include, in §25, a careful discussion of the special case n = 1. All the
interesting features of the general case are already present there, but without the
added complications of having several nilpotent operators N1, . . . , Nn and several
variables z1(m), . . . , zn(m). Hopefully, this will help the reader understand the
proof in the general case.

24. Properties of harmless sequences. This section contains a few elementary
results about harmless sequences that will be useful later. Fix a sequence y(m) ∈ Rn

with the property that y1(m) ≥ y2(m) ≥ · · · ≥ yn(m) ≥ 1 for all m ∈ N; to simplify
the notation, we put yn+1(m) = 1. Of course, we can always get into this situation
by reordering the coordinates in Definition 17.3, so there is no loss of generality.
First, we prove the following structure theorem for harmless sequences.

Proposition 24.1. A harmless sequence can always be written in the form

b(m) = b0(m) + b1(m) + · · ·+ bn(m),

where bk(m) ∈ kerN1 ∩ · · · ∩ kerNk and ∥bk(m)∥ is in O(e−αyk+1(m)).

In other words, b0(m) is of size e−αy1(m); b1(m) is in the kernel of N1 and of
size e−αy2(m); and so on, down to bn(m), which is in the kernel of all the Nj and
bounded. The proof is based on the following simple result from linear algebra.
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Lemma 24.2. Let T : V → V be a linear operator on a finite-dimensional vector
space. Then every v ∈ V can be written in the form v = v0 + v1, where Tv1 = 0
and ∥v0∥ ≤ C∥Tv∥, for a constant C that depends only on V , T , and ∥−∥.

Proof. Recall that ∥−∥ comes from an inner product on V . By projecting to kerT ,
we get v = v0 + v1, with Tv1 = 0 and v0 ⊥ kerT . In particular, Tv = Tv0. Now

T : (kerT )⊥ → imT

is an isomorphism, and therefore has an inverse S. We then get

∥v0∥ = ∥S(Tv)∥ ≤ C∥Tv∥,
for a constant C that depends only on V , T , and the choice of norm. □

Proof of Proposition 24.1. Since N1, . . . , Nn commute with each other, we can use
the lemma and induction. First, we apply the lemma to V = HC and T = N1;
this gives b(m) = b0(m) + b′(m), with N1b

′(m) = 0 and ∥b0(m)∥ in O(e−αy1(m)).
In the next step, we apply the lemma to V = kerN1 and T = N2 to decompose
the sequence b′(m) = b1(m) + b′′(m), remembering that the norm of N2b

′(m) =
N2b(m)−N2b0(m) is still in O(e−αy2(m)); etc. □

We also need to know that harmless sequences are preserved when we apply
certain operators; this fact will be used during the proof of Proposition 20.2.

Lemma 24.3. Let Φ(z) = e
∑

zjNjeΓ(s)F be the normal form of a period mapping.
If b(m) ∈ HC is harmless/exponentially small with respect to Im z(m), then so are

e
∑

zj(m)Nj b(m) and eΓ(s(m))b(m),

provided that Im z1(m), . . . , Im zn(m) are going to infinity.

Proof. Both assertions are clear when b(m) is exponentially small; let us therefore
assume that b(m) ∈ HC is a harmless sequence. Since the operator e

∑
zjNj is

polynomial in z1, . . . , zn, whereas ∥Njb(m)∥ is in O(e−α Im zj(m)), it is not hard to

see that e
∑

zj(m)Nj b(m) is again harmless (for a slightly smaller value of α). On
the other hand, the operator eΓ(s) is holomorphic on ∆n, and therefore bounded;
moreover, Proposition 15.3 shows that the norm of

Nje
Γ(s(m))b(m)− eΓ(s(m))Njb(m)

is bounded by a constant multiple of |sj(m)| = e−2π Im zj(m). This is clearly enough

to conclude that eΓ(s(m))b(m) is a harmless sequence, too. □

Next, we consider the case when the sequence h(m) belongs to certain subspaces.
For any subset J ⊆ {1, . . . , n}, we let W (J) denote the weight filtration of the cone

C(J) =

{∑
j∈J

ajNj

∣∣∣∣ aj > 0 for every j ∈ J

}
.

We would like to know that when h(m) ∈ Ww(J), we can also take b(m) ∈ Ww(J).
This requires the following assumption on the period mapping.

Definition 24.4. Let J ⊆ {1, . . . , n} be a subset of the index set. We say that
Φ(z) = e

∑
zjNjeΓ(s)F is a nilpotent orbit in the variables {sj}j∈J if

∂Γ(s)

∂sj
= 0 for every j ∈ J ;
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in other words, if Γ(s) does not depend on the variables {sj}j∈J .

The point is that Γ(s) then commutes with Nj for j ∈ J (by Proposition 15.3),
and therefore preserves the weight filtration W (J). Note that nilpotent orbits in
the usual sense are the special case when J = {1, . . . , n}.

Lemma 24.5. Suppose that h(m) ≡ b(m) mod Φ0
(
z(m)

)
, with b(m) ∈ HC harm-

less/exponentially small. If h(m) ∈ Ww(J), and if Φ(z) is a nilpotent orbit in the
variables {sj}j∈J , then one can arrange that b(m) ∈ Ww(J) as well.

Proof. Define the auxiliary sequence of vectors

h′(m) = e−Γ(s(m))e−
∑

zj(m)Njh(m) ∈ HC.

In fact, we have h′(m) ∈ Ww(J): the reason is that Γ(s) commutes with Nj for
j ∈ J (by Proposition 15.3), and therefore preserves the weight filtration W (J).
Now consider Deligne’s decomposition

HC =
⊕
p,q

Ip,q

of the mixed Hodge structure (W,F ). Because each Nj is a (−1,−1)-morphism,
Ww(J) is a mixed Hodge substructure of (W,F ), and therefore compatible with
Deligne’s decomposition. This means that if we define

h′(m)−1 =
∑
p≤−1

h′(m)p,q ∈
⊕
p≤−1

Ip,q,

then h′(m)−1 ∈ Ww(J); moreover, we have

h′(m) ≡ h′(m)−1 mod F 0 =
⊕
p≥0

Ip,q.

By construction, h′(m) is congruent, modulo F 0, to the sequence of vectors

b′(m) = e−Γ(s(m))e−
∑

zj(m)Nj b(m) ∈ HC,

which shows that h′(m)−1 = b′(m)−1. Now b′(m), and therefore also its projection
b′(m)−1, is again harmless/exponentially small by Lemma 24.3. Consequently,

c(m) = e
∑

zj(m)NjeΓ(s(m))h′(m)−1 ∈ Ww(J)

is a harmless/exponentially small sequence with h(m) ≡ c(m) mod Φ0
(
z(m)

)
. □

We end this section with a word of caution. During the proof of Theorem 17.4,
the fact that b(m) ̸∈ HR causes some trouble. If being harmless was preserved by
the Hodge decomposition for the Hodge structure Φ

(
z(m)

)
, we could easily arrange

that b(m) ∈ HR. Unfortunately, this is not the case.

Example 24.6. Let n = 1, and consider the special case where HC = I1,1 ⊕ I−1,−1

splits over R. If b ∈ I−1,−1, then Nb = 0, and so the constant sequence b(m) = b
is harmless for any choice of y(m). Now consider the Hodge decomposition of b in
the pure Hodge structure of weight zero

eiyNF 0 ⊕ e−iyNF 1.

A short calculation gives

b = eiyN
N+b

2iy
− e−iyN N+b

2iy
=

(
b

2
+

N+b

2iy

)
+

(
b

2
− N+b

2iy

)
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and neither of the two components is harmless with respect to y = y(m). The best
one can say is that, even after applying the operator yN , they remain bounded;
this is consistent with [Sch12a, Proposition 24.3].

25. Proof in the one-dimensional case. In this section, we prove Theorem 17.4
in the special case n = 1. This case is technically easier, because it avoids the
complications coming from the presence of several variables and several nilpotent
operators. Because many key features of the proof are the same as in the general
case, it may be useful to understand them first in this special case.

Suppose then that
(
z(m), h(m)

)
∈ H×HZ(K) is a sequence of the type consid-

ered in Theorem 17.4. Fix an inner product on the space HC, and denote by ∥−∥
the corresponding norm. By Proposition 24.1, we can arrange that

h(m) ≡ b(m) = b0(m) + b1(m) mod Φ0
(
z(m)

)
,

with ∥b0(m)∥ in O(e−αy(m)), and b1(m) ∈ kerN bounded; passing to a subsequence,
we may therefore assume that the limit

b = lim
m→∞

b(m) = lim
m→∞

b1(m) ∈ kerN

exists. Our goal is to prove that, after taking a further subsequence, h(m) becomes
constant, and that the constant value satisfies Nh = 0 and h ≡ b mod F 0.

We first introduce some notation. Let (W, F̂ ) denote the R-split mixed Hodge
structure canonically associated with (W,F ) by the SL(2)-orbit theorem [CK89,
Corollary 3.15]. If Y ∈ gR denotes the corresponding splitting, the eigenspaces
Eℓ(Y ) define a real grading of the weight filtration W , meaning that

Wk =
⊕
ℓ≤k

Eℓ(Y ).

To simplify some of the arguments below, we shall choose the inner product on HC
in such a way that this decomposition is orthogonal. The most important tool in
the proof will be the following sequence of real operators:

e(m) = exp

(
1

2
log y(m) · Y

)
∈ End(HR)

Note that e(m) acts as multiplication by y(m)ℓ/2 on the subspace Eℓ(Y ), and

preserves the filtration F̂ . Because [Y,N ] = −2N , we have

(25.1) e(m)N =
1

y(m)
Ne(m).

Since the sequence of real parts x(m) is bounded, [CK89, Theorem 4.8] shows that

(25.2) F♯ =
def

eiN F̂ = lim
m→∞

e(m)Φ
(
z(m)

)
∈ D.

The filtration F♯ has two important properties: on the one hand, it belongs to D,
and therefore defines a polarized Hodge structure of weight zero on HC; on the
other hand, the pair (W,F♯) is a mixed Hodge structure.

We divide the proof of the theorem (in the case n = 1) into six steps; each of the
six steps will appear again in a similar form during the proof of the general case.
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Step 1 . We prove that b(m) and h(m) are bounded with respect to the Hodge norm.
This will also show that ∥h(m)∥ grows at most polynomially in y(m).

Lemma 25.3. The two sequences ∥b(m)∥Φ(z(m)) and ∥h(m)∥Φ(z(m)) are bounded.

Proof. Recall that the Hodge norm of a vector h ∈ HC with respect to the polarized
Hodge structure Φ(z) ∈ D is defined as

∥h∥2Φ(z) =
∑
p∈Z

∥hp,−p∥2Φ(z) =
∑
p∈Z

(−1)pQ
(
hp,−p, hp,−p

)
,

where h =
∑

hp,−p is the Hodge decomposition of h in Φ(z). We begin the proof
by observing that the sequence e(m)b(m) = e(m)b0(m) + e(m)b1(m) is bounded,
for the following reason. On the one hand, b1(m) ∈ kerN ⊆ W0 implies that

b1(m) =
∑
ℓ≤0

b1(m)ℓ ∈
⊕
ℓ≤0

Eℓ(Y );

consequently, the boundedness of b1(m) implies the boundedness of

e(m)b1(m) =
∑
ℓ≤0

y(m)ℓ/2b1(m)ℓ.

On the other hand, the term e(m)b0(m) is going to zero, because ∥b0(m)∥ is in
O(e−αy(m)), whereas e(m) grows at most polynomially in y(m). Because e(m) is a
real operator, we have

∥b(m)∥Φ(z(m)) = ∥e(m)b(m)∥e(m)Φ(z(m)),

which is bounded by virtue of (25.2). Now let

h(m) =
∑
p∈Z

h(m)p,−p

denote the Hodge decomposition of h(m) in the Hodge structure Φ(z(m)). The
difference h(m)− b(m) is an element of Φ0(z(m)), and for p ≤ −1,

∥h(m)p,−p∥Φ(z(m)) = ∥b(m)p,−p∥Φ(z(m))

is bounded. Recalling that h(m) ∈ HZ(K), we now have

∥h(m)∥2Φ(z(m)) = Q
(
h(m), h(m)

)
+
∑
p ̸=0

(
1− (−1)p

)
∥h(m)p,−p∥2Φ(z(m))

≤ K + 4∥b(m)∥2Φ(z(m)),

and so the Hodge norm of h(m) is bounded, too. □

Step 2 . Next, we reduce the problem to the case of a nilpotent orbit. Lemma 25.3
gives the boundedness of the sequence e(m)h(m). Since e(m)−1 is polynomial in
y(m), it follows that ∥h(m)∥ grows at most like a fixed power of y(m). We have

ez(m)Ne−Γ(s(m))e−z(m)N
(
h(m)− b(m)

)
∈ ez(m)NF 0,

and by using Lemma 24.3 and the bounds on ∥h(m)∥ and ∥b(m)∥, we see that h(m)
is congruent to a harmless sequence modulo ez(m)NF 0. We may therefore assume
without loss of generality that Φ(z) = ezNF is a nilpotent orbit. Note that we only
have Φ(z) ∈ D when the imaginary part of z ∈ H is sufficiently large; this does not
cause any problems because y(m) = Im z(m) is going to infinity anyway.
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Step 3 . We exploit the boundedness of e(m)h(m) to prove that h(m) ∈ W0. By
passing to a subsequence, we can arrange that there is a limit

v = lim
m→∞

e(m)h(m) ∈ HR.

With respect to the eigenspace decomposition of Y , we have

e(m)h(m) =
∑
ℓ∈Z

y(m)ℓ/2h(m)ℓ,

and so h(m)ℓ is going to zero when ℓ ≥ 1, and is bounded when ℓ = 0. Let ℓ ∈ Z be
the largest index such that h(m)ℓ ̸= 0 along a subsequence. The projection from
Eℓ(Y ) to grWℓ is an isomorphism, and because h(m) ∈ HZ, it follows that h(m)ℓ lies
in a discrete subset of Eℓ(Y ). This is only possible if ℓ ≤ 0, and hence h(m) ∈ W0;
moreover, the component h(m)0 takes values in a finite set. After passing to a
subsequence, we may therefore assume that

h(m) ≡ h0 mod W−1,

where h0 ∈ E0(Y ) is constant.

Step 4 . We prove that Nh0 = 0. Consider again the decomposition

b1(m) =
∑
ℓ≤0

b1(m)ℓ,

where b1(m)ℓ ∈ Eℓ(Y )∩kerN ; note that all summands are bounded, and that only
terms with ℓ ≤ 0 appear because b1(m) ∈ kerN ⊆ W0. Consequently,

e(m)b1(m) = b1(m)0 +
∑
ℓ≤−1

y(m)ℓ/2b1(m)ℓ

has the same limit as b1(m)0 ∈ E0(Y ) ∩ kerN . If we now look back at

e(m)h(m) ≡ e(m)b0(m) + e(m)b1(m) mod e(m)Φ0
(
z(m)

)
,

we find that all terms converge individually, and hence that

v = lim
m→∞

e(m)h(m) ≡ lim
m→∞

b1(m)0 mod F 0
♯ .

To show that Nv = 0, we apply the following version of [CDK95, Proposition 3.10]

to the R-split mixed Hodge structure (W, F̂ ), recalling that F♯ = eiN F̂ . This result
is, in a sense, an asymptotic form of Theorem 17.4.

Lemma 25.4. Let (W,F ) be an R-split mixed Hodge structure on HC, and let N
be a real (−1,−1)-morphism of (W,F ). If a vector h ∈ W2ℓ ∩HR satisfies

h ≡ b mod eiNF ℓ

for some b ∈ E2ℓ(Y ) ∩ kerN , then h ∈ E2ℓ(Y ) ∩ kerN .

Proof. If we apply e−iN to both sides and use the fact that Nb = 0, we get

e−iNh ∈ E2ℓ(Y ) +W2ℓ ∩ F ℓ.

Thus Nh ∈ W2ℓ−2∩F ℓ∩HR, which can only happen if Nh = 0, because (W,F ) is a
mixed Hodge structure. But then Y h−2ℓh ∈ W2ℓ−1∩F ℓ∩HR, and so Y h = 2ℓh for
the same reason. Alternatively, one can use the decomposition into the subspaces
Ip,q = Wp+q ∩ F p ∩ F q, which is preserved by Y . □
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Consequently, v ∈ E0(Y ) ∩ kerN . We can now project the congruence

e(m)h(m) ≡ h0 mod W−1

to the subspace E0(Y ) to conclude that v = h0, and hence that Nh0 = 0.

Step 5 . Next, we shall argue that Nh(m) = 0. Since Nh0 = 0, we already know
that Nh(m) ∈ W−3. In addition, we have Nb1(m) = 0, and so

e(m)Nh(m) ≡ e(m)Nb0(m) mod Ne(m)Φ0
(
z(m)

)
;

here we have used (25.1) to interchange N and e(m).
We claim that ∥e(m)Nh(m)∥ is bounded by a constant multiple of ∥e(m)Nb0(m)∥,

and therefore in O(e−αy(m)). If not, then the ratios

∥e(m)Nb0(m)∥
∥e(m)Nh(m)∥

would be going to zero; after passing to a subsequence, the unit vectors

e(m)Nh(m)

∥e(m)Nh(m)∥
∈ W−3 ∩HR

would then converge to a unit vector in W−3 ∩ NF 0
♯ ∩ HR ⊆ W−3 ∩ F−1

♯ ∩ HR;

but this is not possible because (W,F♯) is a mixed Hodge structure. Consequently,

∥e(m)Nh(m)∥ is in O(e−αy(m)); because e(m)−1 only grows like a power of y(m),
the same is true for the norm of Nh(m). But these vectors lie in a discrete set, and
so Nh(m) = 0 after passing to a subsequence.

Step 6 . To finish the proof, we have to show that h(m) is bounded. Choose a point
w ∈ H with sufficiently large imaginary part to ensure that Φ(w) = ewNF ∈ D;
this filtration defines a polarized Hodge structure of weight zero on HC. Since Φ(z)
is a nilpotent orbit and Nh(m) = 0, we then have

h(m) = ewN−z(m)Nh(m) ≡ ewN−z(m)Nb0(m) + b1(m) mod Φ0(w);

note that both terms on the right-hand side are bounded. This relation shows that,
with respect to the Hodge structure Φ(w), all the Hodge components h(m)p,−p

with p ≤ −1 are bounded. Because h(m) ∈ HZ(K), we conclude as in Lemma 25.3
that h(m) is bounded in the Hodge norm for Φ(w), and therefore bounded. After
passing to a subsequence, the sequence h(m) becomes constant. We now have

h(m) ≡ b(m) mod F 0,

and by taking limits, we obtain the desired relation h ≡ b mod F 0. This completes
the proof of Theorem 17.4 in the case n = 1.

26. Setup in the general case. In the remaining sections, we shall prove Theo-
rem 17.4 in general, by adapting the method in [CDK95, Section 4] to our setting.
The proof uses many results from the theory of degenerating variations of Hodge
structures; these will be introduced in the appropriate places. Thoughout the dis-
cussion, we fix an inner product on HC, and denote by ∥−∥ the corresponding norm;
we shall make a more specific choice later on.

To explain the idea of the proof, let us first consider a sequence z(m) ∈ Hn, with
the property that the real parts xj(m) = Re zj(m) are bounded, and the imaginary
parts yj(m) = Im zj(m) are going to infinity. In the course of the argument, it
will often be necessary to pass to a subsequence; to reduce clutter, we shall use
the same notation for the subsequence. A new feature of the general case is that
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we no longer have a unique scale on which we can measure the rate of growth of a
sequence; the reason is that y1(m), . . . , yn(m) may be going to infinity at different
rates. The most efficient way to deal with this problem is as follows.

Following [CDK95, (4.1.3)], we expand the sequence z(m) according to the rate
of growth of its imaginary parts. After passing to a subsequence, we can find an
integer 1 ≤ d ≤ n and an n× d-matrix A with nonnegative real entries, such that

(26.1) z(m) = iAt(m) + w(m).

Here w(m) ∈ Hn is a convergent sequence with Φ
(
limm→∞ w(m)

)
∈ D; and the

sequence of vectors t(m) ∈ Rd has the property that all the ratios

t1(m)

t2(m)
,
t2(m)

t3(m)
, . . . ,

td(m)

td+1(m)

are going to infinity. (To avoid having to deal with special cases, we always define
td+1(m) = 1.) Moreover, we can partition the index set

{1, 2, . . . , n} = J1 ⊔ J2 ⊔ · · · ⊔ Jd

in such a way that aj,k ̸= 0 if and only if j ∈ J1 ⊔ · · · ⊔Jk. By construction, |sj(m)|
is in O(e−αtk(m)) for every j ∈ Jk. We define new operators

(26.2) Tk =

n∑
j=1

aj,kNj ∈ C(J1 ⊔ · · · ⊔ Jk)

and have the identity

n∑
j=1

zj(m)Nj =

d∑
k=1

itk(m)Tk +

n∑
j=1

wj(m)Nj ,

Now suppose that b(m) ∈ HC is a harmless sequence with respect to Im z(m).
By definition, there is some α > 0 such that

∥b(m)∥+
n∑

j=1

eαyj(m)∥Njb(m)∥

is bounded; it is easy to see that the same is true (with a different α > 0) for

∥b(m)∥+
d∑

k=1

eαtj(m)∥Tjb(m)∥.

From now on, we shall use the expression harmless to refer to sequences with this
property. We also say that a sequence b(m) is exponentially small if ∥b(m)∥ is
in O(e−αt1(m)) for some α > 0; of course, all exponentially small sequences are
harmless. We are going to prove the following version of Theorem 17.4.

Theorem 26.3. Suppose we are given a sequence of points(
z(m), h(m)

)
∈ Hn ×HZ(K),

where z(m) = iAt(m) + w(m) is as above, and h(m) ≡ b(m) mod Φ0
(
z(m)

)
for

a sequence of vectors b(m) ∈ HC that is harmless with respect to t(m). Then after
passing to a subsequence, h(m) becomes constant, and T1h(m) = · · · = Tdh(m) = 0.
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Proof that Theorem 26.3 implies Theorem 17.4. Suppose we are given a sequence
of points

(
z(m), h(m)

)
as in Theorem 17.4. After replacing it by a subsequence,

we may clearly assume that b(m) converges to a vector b ∈ HC; since b(m) was
harmless, we have N1b = · · · = Nnb = 0. As explained above, we can choose
a subsequence along which z(m) = iAt(m) + w(m); after passing to a further
subsequence, h(m) is constant and T1h(m) = · · · = Tdh(m) = 0. Let h ∈ HZ(K)
denote the constant value. We have

Tdh =

n∑
j=1

aj,dNjh = 0

for positive real numbers a1,d, . . . , an,d. Since Njh ∈ HQ, we can then obviously
find positive integers a1, . . . , an with the property that a1N1h+ · · ·+ anNnh = 0.
At the same time,

lim
m→∞

e−
∑

zj(m)Njh(m) = lim
m→∞

e−
∑

wj(m)Njh = e−
∑

wjNjh,

where w ∈ Cn is the limit of the sequence w(m). Finally,

e−Γ(s(m))e−
∑

zj(m)Njh(m) ≡ e−Γ(s(m))e−
∑

zj(m)Nj b(m) mod F 0,

and since Γ vanishes at the origin and b(m) is harmless, the left-hand side converges
to e−

∑
wjNjh and the right-hand side to b. □

The proof of Theorem 26.3 is organized as follows. In §27, we introduce a
common Zd-grading for the weight filtrations of T1, . . . , Td, and a correspond-
ing sequence of operators e(m) ∈ End(HR), and show that the boundedness of
Q
(
h(m), h(m)

)
is equivalent to the boundedness of the sequence e(m)h(m) ∈ HR.

In §28, we show that the subquotients of the weight filtration W (T1) again sat-
isfy the assumptions of the theorem. In §29, we explain how the boundedness of
e(m)h(m) can be used to control the position of the sequence h(m) with respect to
the above Zd-grading. The actual proof of the theorem will be given in §30.

27. Boundedness results. The purpose of this section is to translate the bound-
edness of Q

(
h(m), h(m)

)
into a more manageable condition. Since the existence of

an integral structure is not important here, we consider an arbitrary sequence of
real vectors h(m) ∈ HR, subject only to the condition that

(27.1) h(m) ≡ b(m) mod Φ0
(
z(m)

)
for a harmless sequence b(m) ∈ HC. By Proposition 24.1, we have

b(m) = b0(m) + b1(m) + · · ·+ bd(m),

where bk(m) ∈ kerT1∩· · ·∩kerTk is in O(e−αtk+1(m)). By passing to a subsequence,
we can also arrange that bd(m) converges to an element of HC.

Proposition 27.2. Given (27.1), the following statements are equivalent:

(1) The sequence Q
(
h(m), h(m)

)
is bounded

(2) The sequence of Hodge norms ∥h(m)∥Φ(z(m)) is bounded.
(3) The sequence e(m)h(m) ∈ HR is bounded.

If any of them is satisfied, ∥h(m)∥ is in O(t1(m)N ) for some N ∈ N.
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The proof is based on the existence of a Zd-grading on HC with good properties.
Before we can define it, we have to recall a few results from the theory of degener-
ating variations of Hodge structure. Let W k = W (Tk) denote the weight filtration
of the nilpotent operator Tk; it agrees with that of the cone C(J1 ⊔ · · · ⊔Jk), and is
therefore defined over Q, even though Tk is only defined over R. The multi-variable
SL(2)-orbit theorem [CK89, Theorem 4.3] associates with(

W,F, T1, . . . , Td

)
a sequence of mutually commuting splittings Y1, . . . , Yd ∈ End(HR). Their common
eigenspaces define a real Zd-grading

(27.3) HC =
⊕
ℓ∈Zd

H
(ℓ1,...,ℓd)
C

of the vector space HC (and also of HR), with the property that

W k
w =

⊕
ℓ1+···+ℓk≤w

H
(ℓ1,...,ℓd)
C .

Given a vector h ∈ HC, we denote its component in the subspace H
(ℓ1,...,ℓd)
C by

the symbol h(ℓ1,...,ℓd). To simplify some arguments below, we shall assume that the
norm ∥−∥ comes from an inner product for which the decomposition is orthogonal.
As in the one-variable case, we then define a sequence of operators

(27.4) e(m) = exp

(
1

2

d∑
k=1

tk(m)Yk

)
∈ End(HR);

note that e(m) acts on the subspace H
(ℓ1,...,ℓd)
C as multiplication by

t1(m)ℓ1/2t2(m)ℓ2/2 · · · td(m)ℓd/2

=

(
t1(m)

t2(m)

)ℓ1/2( t2(m)

t3(m)

)(ℓ1+ℓ2)/2

· · ·
(

td(m)

td+1(m)

)(ℓ1+···+ℓd)/2(27.5)

What makes these operators useful is that the filtrations e(m)Φ
(
z(m)

)
have a well-

defined limit, which is again a polarized Hodge structure. In other words,

(27.6) F♯ = lim
m→∞

e(m)Φ
(
z(m)

)
∈ D.

This is explained in [CK89, Theorem 4.8], and depends on the fact that w(m) is
bounded and all the ratios tk(m)/tk+1(m) are going to infinity. This is one reason
for using an expansion of the form z(m) = iAt(m) + w(m).

The multi-variable SL(2)-orbit theorem gives some additional information about
the filtration F♯. According to [CK89, Theorem 4.3], there are nilpotent operators

T̂k ∈ C(J1 ⊔ · · · ⊔ Jk), with the property that

[Yj , T̂k] =

{
−2T̂k if j = k,

0 otherwise;

note that T̂1 = T1. In this notation, each of the d pairs(
W k, e−i(T̂1+···+T̂k)F♯

)
defines an R-split mixed Hodge structure on HC, whose associated grading is given
by Y1+ · · ·+Yk [CK89, Theorem 4.3]. In particular, every (W k, F♯) is itself a mixed
Hodge structure; this fact will be important later.
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We now turn to the proof of Proposition 27.2. As in the one-variable case, we
first study the effect of the operator e(m) on the harmless sequence b(m).

Lemma 27.7. Suppose that b(m) ∈ HC is a harmless sequence. Then

lim
m→∞

e(m)b(m) = lim
m→∞

bd(m)(0,...,0),

and the limit belongs to H
(0,...,0)
C ∩ kerT1 ∩ · · · ∩ kerTd.

Proof. Since b(m) is harmless with respect to t(m), it is easy to see that e(m)b(m)
is bounded. Indeed, we have

e(m)b(m) = e(m)b0(m) + e(m)b1(m) + · · ·+ e(m)bd(m).

Now ∥bk(m)∥ is in O(e−αtk+1(m)), and so the same is true for each of the components
in the decomposition

bk(m) =
∑
ℓ∈Zd

bk(m)(ℓ1,...,ℓd).

On the other hand, bk(m) is in kerT1 ∩ · · · ∩ kerTk ⊆ W 1
0 ∩ · · · ∩W k

0 ; this means
that bk(m)(ℓ1,...,ℓd) = 0 unless ℓ1 ≤ 0, ℓ1 + ℓ2 ≤ 0, and so on up to ℓ1 + · · ·+ ℓk ≤ 0.
It follows from this and (27.5) that

e(m)bk(m) =
∑
ℓ∈Zd

t1(m)ℓ1/2 · · · td(m)ℓd/2 · bk(m)(ℓ1,...,ℓd)

is going to zero for k = 0, . . . , d − 1, and converges for k = d. This implies the
asserted formula for the limit. □

Proof of Proposition 27.2. By the previous lemma, the sequence e(m)b(m) con-
verges, and so

∥b(m)∥Φ(z(m)) = ∥e(m)b(m)∥e(m)Φ(z(m))

is bounded by virtue of (27.6). With respect to the Hodge structure Φ
(
z(m)

)
,

h(m)−p,p = h(m)p,−p = b(m)p,−p

for every p ≤ −1. This gives us a bound on the difference

∥h(m)∥2Φ(z(m)) −Q
(
h(m), h(m)

)
=
∑
p ̸=0

(
1− (−1)p

)
∥h(m)p,−p∥2Φ(z(m));

the boundedness of Q
(
h(m), h(m)

)
is therefore equivalent to the boundedness of

∥h(m)∥Φ(z(m)). Because we also have

∥e(m)h(m)∥e(m)Φ(z(m)) = ∥h(m)∥Φ(z(m)),

both conditions are equivalent to the boundedness of the sequence e(m)h(m). The
last assertion follows from the fact that the operator e(m)−1 depends polynomially
on t1(m), . . . , td(m). □



48 CHRISTIAN SCHNELL

28. Mechanism of the induction. The proof of Theorem 26.3 is by induction
on d ≥ 1. One situation where we can potentially apply the inductive hypothesis
is for a subquotient of the form

H̃C = grW
1

ℓ1 = W 1
ℓ1/W

1
ℓ1−1.

In this section, we show that if the period mapping Φ(z) is a nilpotent orbit in the
variables {sj}j∈J1

, in the sense of Definition 24.4, the quotient again supports a
polarized variation of integral Hodge structure of weight ℓ1.

Denote by F̃ the filtration on H̃C induced by F . We also write Ñj , T̃k, and Ỹk

for the operators induced by Nj , Tk, and Yk respectively, and W̃ k for the filtration
induced by W k; then

W̃ k = W (T̃k)[−ℓ1] = W (T̃2, . . . , T̃k)[−ℓ1]

because W k is the relative weight filtration of Tk on W 1 by [CK89, Theorem 2.9].

By construction, the operators T̃1 and Ñj with j ∈ J1 are equal to zero; moreover, Ỹ1

is multiplication by the integer ℓ1. The operators Ỹ2, . . . , Ỹd define a Zd−1-grading
on H̃C, which is compatible with the Zd-grading on HC; in fact, the projection

H
(ℓ1,ℓ2,...,ℓd)
C → H̃

(ℓ2,...,ℓd)
C

is an isomorphism. As in (27.4), we define a sequence of operators

ẽ(m) = exp

(
1

2

d∑
k=2

tk(m)Ỹk

)
∈ End(H̃R).

Finally, let ∥−∥ denote the norm on H̃C induced by the isomorphism Eℓ1(Y1) ≃ H̃C.

Proposition 28.1. Suppose that Φ(z) is a nilpotent orbit in the variables {sj}j∈J1
.

Then the induced period mapping

Φ̃(z) = e
∑

j ̸∈J1
zjÑjeΓ̃(s)F̃

defines a polarizable variation of integral Hodge structure of weight ℓ1 on H̃C.

Proof. We first explain how Γ̃(s) is defined. For j ∈ J1, the operator Γ(s) does not
depend on sj , and therefore commutes with Nj by Proposition 15.3. Consequently,

Γ(s) preserves the weight filtration W 1 = W (J1), and induces an operator Γ̃(s) on

H̃C. By [CK89, Proposition 2.10], the pair(
W 1, e

∑
j ̸∈J1

zjNjeΓ(s)F
)

is a mixed Hodge structure, polarized by the form Q and every element of the cone
C(J1), in the sense of [CK89, Definition 1.16]. In particular, Φ̃(z) gives a Hodge

structure of weight ℓ1 on H̃C for every z ∈ Hn with sufficiently large imaginary
parts. To construct a polarization Q̃ : H̃Q ⊗ H̃Q → Q, we fix an arbitrary rational
element N ∈ C(J1) and use the Lefschetz decomposition [CK89, (1.11)]

H̃Q =
⊕
k≥0

NkPℓ1+2k(N).

The decomposition is orthogonal with respect to the bilinear form induced by Q; if
we define Q̃ on the subspace NkPℓ1+2k(N) by the formula

Q̃(h1, h2) = (−1)kQ(h1, N
ℓ1h2),
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then [CK89, Definition 1.16] shows that Q̃ polarizes the Hodge structure Φ̃(z).

Since we get an integral structure H̃Z by taking the image of HZ, it follows that
Φ̃(z) is the period mapping of a variation of integral Hodge structure of weight ℓ1
on H̃C, polarized by the form Q̃. □

We note that this construction reduces the value of d, in the following sense.

Corollary 28.2. Notation being as above, Φ̃
(
z(m)

)
only depends on

z̃(m) = iAt̃(m) + w(m),

where t̃(m) =
(
0, t2(m), . . . , td(m)

)
, and A and w(m) are as in (26.1).

Proof. Because Φ(z) is a nilpotent orbit in the variables {sj}j∈J1
, it is clear that

Φ̃(z) only depends on the variables {zj}j ̸∈J1
; but zj(m) = z̃j(m) for j ̸∈ J1. □

The period mapping Φ̃ determines a mixed Hodge structure and various opera-
tors and splittings on H̃C, and our next goal is to show that they are induced by
the ones on HC. Because Φ̃ has weight ℓ1, the limiting mixed Hodge structure is(

W (T̃2, . . . , T̃d)[−ℓ1], F̃
)
=
(
W̃ d, F̃

)
.

As before, the multi-variable SL(2)-orbit theorem [CK89, Theorem 4.3] associates

with the data
(
W̃ d, F̃ , T̃2, . . . , T̃d

)
a sequence of d− 1 commuting splittings of H̃R.

Proposition 28.3. These splittings are equal to Ỹ2, . . . , Ỹd. The Zd−1-grading of
H̃C and the sequence of operators ẽ(m) thus have the same properties as in §27.

Proof. Before we prove the assertion, let us quickly recall the construction of the
splittings Y1, . . . , Yd from [CK89, §4]. Given a mixed Hodge structure (W,F ), there
is a canonical way to get an R-split mixed Hodge structure (W,F0) = σ(W,F ) with
the same weight filtration [CK89, Theorem 3.15]. Its Hodge filtration is given by

F0 = eξe−iδF,

where δ ∈ L−1,−1
R (W,F ) is the unique element such that (W, e−iδF ) is an R-split

mixed Hodge structure [CK89, Theorem 1.15], and ξ is a universal non-commutative
polynomial in the components δp,q. This R-split mixed Hodge structure defines a
semisimple endomorphism Y0 ∈ End(HR), which acts as multiplication by p + q
on the subspace Ip,q(W,F0) in Deligne’s decomposition. Note that if (W,F ) is
polarized by a bilinear form Q and a nilpotent operator N , in the sense of [CK89,
Definition 1.16], the splitting Y0 is automatically an infinitesimal isometry of Q.

Now the operators Y1, . . . , Yd, T̂1, . . . , T̂d and the filtration F♯ in the multi-variable
SL(2)-orbit theorem are obtained by the following recursive procedure. Consider
the R-split mixed Hodge structure(

W d, F(d)

)
= σ

(
W d, F

)
,

and denote by Y(d) ∈ End(HR) its associated splitting. The pair
(
W d−1, eiTdF(d)

)
is again a mixed Hodge structure on HC; define(

W d−1, F(d−1)

)
= σ

(
W d−1, eiTdF(d)

)
and denote by Y(d−1) ∈ End(HR) the associated splitting. Continuing in this man-
ner, one has for k = 1, . . . , d− 1 an R-split mixed Hodge structure(

W k, F(k)

)
= σ

(
W k, eiTk+1F(k+1)

)
,
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and a corresponding splitting Y(k) ∈ End(HR). Since each of these mixed Hodge
structures is polarized by Q and any element in the cone C(J1 ⊔ · · · ⊔ Jk), the
operators Y(1), . . . , Y(d) are infinitesimal isometries of Q. Now define Y1, . . . , Yn by

asking that Y(k) = Y1 + · · · + Yk; also set T̂1 = T1, and for k = 2, . . . , d, let T̂k

be the component of Tk in ker adY1 ∩ · · · ∩ ker adYk−1. Then the point of [CK89,
Theorem 4.3] is that Y1, . . . , Yd commute, and that the filtration

F♯ = ei(T̂1+···+T̂k)F(k)

is independent of k.
The splittings Ỹ2, . . . , Ỹd ∈ End(H̃R) are obtained by applying the same proce-

dure to
(
W̃ d, F̃ , T̃2, . . . , T̃d

)
. To prove the assertion, it is enough to show that at

each stage, the R-split mixed Hodge structure on H̃C is induced by the one on HC.
For k = 2, . . . , d, let F̃(k) be the filtration of H̃C induced by F(k). Then we have

σ
(
W̃ d, F̃

)
=
(
W̃ d, F̃(d)

)
,

for the following reason: δ ∈ L−1,−1
R (W d, F ) commutes with T1, hence preserves

W 1; the induced operator δ̃ belongs to L−1,−1
R

(
W̃ d, F̃

)
and must therefore be equal

to the one in [CK89, Theorem 1.15]; and ξ is given by a universal non-commutative
polynomial in the δp,q. Taking the shift in weight into account, it follows that the
corresponding splitting is Ỹ(d)− ℓ1 = Ỹ2+ · · ·+ Ỹd. The same argument proves that

σ
(
W̃ k, eiT̃k+1 F̃(k+1)

)
=
(
W̃ k, F̃(k)

)
,

with corresponding splitting Ỹ(k) − ℓ1 = Ỹ2 + · · ·+ Ỹk. This is obviously enough to
conclude the proof. □

Now suppose that ℓ1 = 0, so that we are again dealing with a polarized variation
of integral Hodge structure of weight zero. Suppose we have a sequence h(m) ∈ HR
with

h(m) ≡ b(m) mod Φ0
(
z(m)

)
for a harmless sequence b(m) ∈ HC. Let h̃(m) ∈ H̃R denote the image of h(m); note

that h̃(m) ∈ H̃Z if the initial sequence satisfies h(m) ∈ HZ. Lemma 24.5 allows us
to assume that the harmless sequence b(m) lies in W 1

ℓ1
; consequently,

h̃(m) ≡ b̃(m) mod Φ̃0
(
z(m)

)
for a harmless sequence b̃(m) ∈ H̃C. The sequence h̃(m) automatically inherits the
following boundedness property from h(m).

Lemma 28.4. If Q
(
h(m), h(m)

)
is bounded, then Q̃

(
h̃(m), h̃(m)

)
is also bounded.

Proof. By Proposition 27.2, the assertion is equivalent to the boundedness of the
sequence ẽ(m)h̃(m); note that this requires ℓ1 = 0. But clearly

∥ẽ(m)h̃(m)∥ ≤ t1(m)−ℓ1/2∥e(m)h(m)∥,

which is bounded as long as ℓ1 ≥ 0. □
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29. Position relative to the Zd-grading. In the proof of Theorem 17.4 for
n = 1, one of the key steps was to use the boundedness of the sequence e(m)h(m)
to show that a subsequence of h(m) has to lie inW0. Here we investigate the general
case of this problem, namely how to conclude from the boundedness of e(m)h(m)
that certain components of h(m) with respect to the Zd-grading in (27.3) have
to vanish. We give a slightly streamlined version of [CDK95, Lemma 4.4 and
Lemma 4.5].

Since we are going to argue by induction on n ≥ 1, we relax the condition
on the weight and only assume that Φ(z) is the period mapping of a polarized
variation of integral Hodge structure of weight w ≥ 0. We also fix a sequence
z(m) = iAt(m)+w(m) as in (26.1), and consider on HC the Zd-grading defined by
Y1, . . . , Yd.

Definition 29.1. The position of a sequence h(m) ∈ HR relative to the Zd-grading
is the largest multi-index (ℓ1, . . . , ℓd) ∈ Zd in the lexicographic ordering with the
property that h(m)(ℓ1,...,ℓd) ̸= 0 for infinitely many m ∈ N.

Now suppose we are given a sequence h(m) ∈ HR that is in the position (ℓ1, . . . , ℓd)
relative to the Zd-grading defined by Y1, . . . , Yd. Assume moreover that

∥h(m)(ℓ1,...,ℓd)∥ ≥ ε

for a positive constant ε > 0; this replaces the condition that h(m) ∈ HZ. Our goal
is to show that if t1(m)w/2 · e(m)h(m) is bounded, then the sequence h(m) must
be in the position (−w, 0, . . . , 0) with respect to the Zd-grading.

Proposition 29.2. Suppose that we have h(m) ≡ b(m) mod Φ0
(
z(m)

)
for an

exponentially small sequence b(m) ∈ HC. If t1(m)w∥e(m)h(m)∥2 is bounded, then
w + ℓ1 = ℓ2 = · · · = ℓd = 0.

Proof. Since b(m) is exponentially small with respect to t(m), whereas e(m) grows
at most polynomially in t1(m), it is clear that ∥e(m)b(m)∥ is in O(e−αt1(m)) for
some α > 0. Now the key observation is that the ratios

∥e(m)b(m)∥2

∥e(m)h(m)∥2

are going to zero. Indeed, ∥e(m)b(m)∥2 is in O(e−2αt1(m)), whereas ∥e(m)h(m)∥2
is bounded from below by

t1(m)ℓ1 · · · td(m)ℓd∥h(m)(ℓ1,...,ℓd)∥2 ≥ t1(m)ℓ1 · · · td(m)ℓd · ε2.

The unit vectors ∥e(m)h(m)∥−1 · e(m)h(m) therefore converge to a unit vector in
W 1

w+ℓ1
∩F 0

♯ ∩HR, and so w+ ℓ1 ≥ 0 because (W 1, F♯) is a mixed Hodge structure.

Because of the bound on e(m)h(m), we know that ∥h(m)∥ grows at most like a
fixed power of t1(m). We can therefore assume that Φ(z) is a nilpotent orbit in the
variables {sj}j∈J1 (by Lemma 29.3 below), and that b(m) ∈ W 1

ℓ1
(by Lemma 24.5).

We now project the sequence to H̃C = grW
1

w+ℓ1
, which carries a polarized variation

of Hodge structure of weight w + ℓ1 by Proposition 28.1. The new sequence h̃(m)

is in the position (ℓ2, . . . , ℓd) relative to the Zd−1-grading on H̃C, and congruent to

an exponentially small sequence modulo Φ̃0
(
z(m)

)
. Moreover, the expression

t2(m)w+ℓ1∥ẽ(m)h̃(m)∥2 ≤ t1(m)w+ℓ1∥ẽ(m)h̃(m)∥2 ≤ t1(m)w∥e(m)h(m)∥2
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is bounded (because w + ℓ1 ≥ 0), and we still have

∥h̃(m)(ℓ2,...,ℓd)∥ = ∥h(m)(ℓ1,...,ℓd)∥ ≥ ε.

By induction, w + ℓ1 + ℓ2 = ℓ3 = · · · = ℓd = 0. But now we get

t1(m)w∥e(m)h(m)∥2 ≥ ε2 · t1(m)w+ℓ1t2(m)ℓ2 · · · td(m)ℓn = ε2
(
t1(m)

t2(m)

)w+ℓ1

.

This can only be bounded if w + ℓ1 ≤ 0; since we already know that w + ℓ1 ≥ 0,
we conclude that w + ℓ1 = 0 and ℓ2 = 0. □

The following lemma was used during the proof; it will make another appearance
when we prove Theorem 26.3. We put the period mapping into the standard form
Φ(z) = e

∑
zjNjeΓ(s)F . Let Γ1(s) denote the result of setting all the variables

{sj}j∈J1
in Γ(s) to zero, and define Φ1(z) = e

∑
zjNjeΓ1(s)F , which is still a period

mapping by [CK89, p. 76], but now also a nilpotent orbit in the variables {sj}j∈J1
.

Lemma 29.3. Suppose that h(m) is congruent, modulo Φ0
(
z(m)

)
, to a sequence

that is harmless/exponentially small with respect to t(m). Then the same is true
modulo Φ0

1

(
z(m)

)
, provided that ∥h(m)∥ is in O(t1(m)N ) for some N ∈ N.

Proof. Suppose that h(m) ≡ b(m) mod Φ0
(
z(m)

)
, with b(m) either harmless or

exponentially small. We have

e
∑

zjNjeΓ(s) =
(
e
∑

zjNjeΓ(s)e−Γ1(s)e−
∑

zjNj

)
e
∑

zjNjeΓ1(s),

and because |sj(m)| is in O(e−αt1(m)) for j ∈ J1, Proposition 15.3 shows that the
sequence of operators

∆(m) =
(
e
∑

zj(m)NjeΓ1(s(m))e−Γ(s(m))e−
∑

zj(m)Nj

)
− id

is in O(e−αt1(m)) with respect to the operator norm. We therefore have

h(m) ≡ b(m) + ∆(m)
(
b(m)− h(m)

)
mod e

∑
zj(m)NjeΓ1(s(m))F 0,

and because ∥b(m)∥ is bounded and ∥h(m)∥ is in O(t1(m)N ), the extra term on
the right-hand side is exponentially small with respect to t(m). □

30. Proof in the general case. We now prove Theorem 26.3 by induction on
d ≥ 1. As in the one-variable case, the argument can be divided into six steps.

Step 1 . To get started, we have to prove that the sequence h(m) ∈ HZ(K) is
bounded in the Hodge norm at the point Φ

(
z(m)

)
. This follows immediately from

Proposition 27.2. As in the one-variable case, we will later use only the equivalent
fact that the sequence e(m)h(m) is bounded. We also note that the sequence
∥h(m)∥ grows at most like a fixed power of t1(m).

Step 2 . We now reduce to the case where Φ(z) is a nilpotent orbit in the variables
{sj}j∈J1 ; those are the ones that are going to zero most quickly. Recall that

Φ(z) = e
∑

zjNjeΓ(s)F ;

let Γ1(s) denote the result of setting sj = 0 for every j ∈ J1. The claim is that we
can replace Γ(s) by Γ1(s) without affecting any of the conditions of the problem;
this is proved in Lemma 29.3. After making the obvious replacements, we can
therefore assume without loss of generality that the operator Γ(s) does not depend
on the variables sj with with j ∈ J1. In particular, eΓ(s) now commutes with T1
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by Proposition 15.3, and therefore preserves the weight filtration W 1. Note that
we only have Φ(z) ∈ D when all the imaginary parts of z ∈ Hn are sufficiently
large; after passing to a subsequence, we may assume that this is the case along
our sequence z(m).

Step 3 . Our next goal is to show that h(m) ∈ W 1
0 . As in the one-variable case,

we will deduce this from the boundedness of the sequence e(m)h(m) ∈ HR. Let
ℓ ∈ Zd be the largest index (in the lexicographic ordering) with the property that
h(m)(ℓ1,...,ℓd) is nonzero for infinitely many m. After passing to a subsequence, we

therefore have h(m) ∈ W 1
ℓ1
; its projection to grW

1

ℓ1
lies in the image of W 2

ℓ1+ℓ2
, and

so on. Note that the projection

H
(ℓ1,...,ℓd)
C → grW

d

ℓ1+···+ℓd
· · · grW

2

ℓ1+ℓ2 gr
W 1

ℓ1

is an isomorphism; because h(m) ∈ HZ, it follows that h(m)(ℓ1,...,ℓd) takes values in
a discrete set. In particular, we have ∥h(m)(ℓ1,...,ℓd)∥ ≥ ε for a constant ε > 0.

Now suppose that h(m) ̸∈ W 1
0 ; in other words, suppose that ℓ1 ≥ 1. Define

H̃C = grW
1

ℓ1
; according to Proposition 28.1, it again supports a polarized variation

of integral Hodge structure of weight ℓ1. Let h̃(m) denote the image of h(m) in H̃C.
Because Φ(z) is a nilpotent orbit in the variables {sj}j∈J1

, we can use Lemma 24.5
to make sure that b(m) ∈ W 1

ℓ1
. In the congruence

h(m)−
(
b1(m) + · · ·+ bd(m)

)
≡ b0(m) mod Φ0

(
z(m)

)
,

the term in parentheses is contained in kerT1 ⊆ W 1
0 , and therefore disappears when

we project to H̃C. Under the assumption that ℓ1 ≥ 1, our sequence h̃(m) is therefore

exponentially close to the subspace Φ̃0
(
z(m)

)
. We can now apply Proposition 29.2

to the sequence h̃(m) and the polarized variation of Hodge structure Φ̃(z) on H̃C;
the result is that ℓ1 + ℓ2 = 0 and ℓ3 = · · · = ℓd = 0. But then

∥e(m)h(m)∥2 ≥ ∥e(m)h(m)(ℓ1,...,ℓd)∥2 ≥ ε2
(
t1(m)

t2(m)

)ℓ1

,

and since ℓ1 ≥ 1, this inequality contradicts the boundedness of e(m)h(m). Conse-
quently, h(m) ∈ W 1

0 after all.

Step 4 . Using the notation from §28, we now apply the induction hypothesis to the

sequence
(
z̃(m), h̃(m)

)
and the period mapping Φ̃(z) on the space H̃C = grW

1

0 ; the
construction in Proposition 28.1 shows that all the assumptions are again satisfied,
but with a smaller value of d. After passing to a subsequence, h̃(m) has a constant

value h̃ ∈ H̃Z, and T̃kh̃ = 0 for k = 2, . . . , d. In order to lift these results back to
HC, we define

h0 =
∑

ℓ2,...,ℓd

h(m)(0,ℓ2,...,ℓd) ∈ HR;

note that h0 is constant, because it projects to the constant sequence h̃ under the
isomorphism E0(Y1) ≃ H̃C. We also have h0 ∈ W k

0 for every k = 2, . . . , d, because

h̃ ∈ W̃ k
0 . The conclusion is that

h(m) ≡ h0 mod W 1
−1.

Our next task is to prove that T1h
(0,...,0)
0 = 0.
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If we apply the operator e(m) to the congruence in (27.1), we obtain

e(m)h(m) ≡ e(m)b(m) mod e(m)Φ0
(
z(m)

)
.

Because e(m)h(m) is bounded, and because we have already computed the limit of
e(m)b(m) in Lemma 27.7, we can pass to a subsequence where

v = lim
m→∞

e(m)h(m) ≡ lim
m→∞

bd(m)(0,...,0) mod F 0
♯ .

Now comes the crucial point: by Lemma 27.7, the right-hand side of the congruence
is an element of E0(Yk)∩kerTk for every k = 1, . . . , d. Because v ∈ W 1

0 ∩HR, we can
apply Lemma 25.4 from the one-variable case to the R-split mixed Hodge structure(
W 1, e−iT1F♯

)
and conclude that v ∈ E0(Y1) and T1v = 0.

On the other hand, we can project the congruence

e(m)h(m) ≡ e(m)h0 mod W 1
−1

to the subspace E0(Y1); because h0 ∈ W k
0 for every k = 1, . . . , d, we get

v = lim
m→∞

e(m)h0 = h
(0,...,0)
0 .

In particular, we have T1h
(0,...,0)
0 = 0.

Step 5 . Now we show that ∥T1h(m)∥ is in O(e−αt1(m)); the method is almost the
same as in the one-variable case. We have

e(m)T1h(m) ≡ e(m)T1b0(m) mod T1e(m)Φ0
(
z(m)

)
;

here we used the fact that T1e(m) = t1(m)·e(m)T1, because T1 = T̂1 commutes with
Y2, . . . , Yd and satisfies [Y1, T1] = −2T1. We claim that ∥e(m)T1h(m)∥ is bounded
by a constant multiple of ∥e(m)T1b0(m)∥. If not, then the ratios

∥e(m)T1b0(m)∥
∥e(m)T1h(m)∥

are going to zero. After passing to a subsequence, the sequence of unit vectors

(30.1) u(m) =
e(m)T1h(m)

∥e(m)T1h(m)∥
∈ W 1

−2 ∩HR

converges to a unit vector u ∈ W 1
−2 ∩ F−1

♯ ∩HR. Now
(
W 1, e−iT1F♯

)
is an R-split

mixed Hodge structure; we can therefore apply Lemma 25.4 from the one-variable
case to deduce that u ∈ E−2(Y1).

Recall that the decomposition W 1
−2 = E−2(Y1)⊕W 1

−3 is orthogonal with respect
to the inner product on HC. If we project the congruence

u(m) ≡ e(m)T1h0

∥e(m)T1h(m)∥
mod W 1

−3

to the subspace E−2(Y1), we find that

u = lim
m→∞

e(m)T1h0

∥e(m)T1h(m)∥
.

Because the right-hand side belongs to W 2
−2 ∩ · · · ∩ W d

−2, it follows that u lies in

the intersection W 1
−2 ∩ · · · ∩W d

−2 ∩F−1
♯ ∩HR. We can therefore apply Lemma 25.4

again, this time to the R-split mixed Hodge structure(
W k, e−i(T̂1+···+T̂k)F♯

)
,



ON THE LOCUS OF LIMIT HODGE CLASSES 55

to show that (Y1 + · · · + Yk)u = −2u for every k = 1, · · · , d. These relations are

saying that u ∈ H
(−2,0,...,0)
C . But if we project (30.1) to that summand and use the

fact that h(m) ≡ h0 mod W 1
−1, we find that

u(m)(−2,0,...,0) =
e(m)T1h

(0,...,0)
0

∥e(m)T1h(m)∥
= 0.

This forces u = 0, in contradiction to the fact that u is a unit vector. Consequently,
∥e(m)T1h(m)∥ must be bounded by a constant multiple of ∥e(m)T1b0(m)∥, and
therefore in O(e−αt1(m)). Because e(m)−1 grows at most like a power of t1(m), this
is enough to conclude that ∥T1h(m)∥ is exponentially small.

Step 6 . We can now complete the proof by the method of [CDK95, 4.9]. If d ≥ 2,
we observe that

e−it1(m)T1h(m) ≡ e−it1(m)T1b0(m)+b1(m) + · · ·+ bd(m)

mod e−it1(m)T1Φ0
(
z(m)

)
.

(30.2)

Because ∥T1h(m)∥ is in O(e−αt1(m)), it follows that h(m) is the sum of a harm-
less element and an element of e−it1(m)T1Φ0

(
z(m)

)
. Remembering that Φ(z) is a

nilpotent orbit in the variables {sj}j∈J1
, the sequence of filtrations

e−it1(m)T1Φ
(
z(m)

)
∈ D

no longer involves either t1(m) or T1; this means that we have managed to reduce
the value of d. By induction, we can pass to a subsequence and arrange that h(m)
is constant and in the kernel of T2, . . . , Td. Since T1h(m) is exponentially small, it
has to be zero as well, concluding the proof in the case d ≥ 2.

If d = 1, then we argue as in the one-variable case. Recall that

Φ
(
z(m)

)
= e

∑
zj(m)NjF = eit(m)T1e

∑
wj(m)NjF

is a nilpotent orbit, with w(m) ∈ Cn convergent and Φ
(
w(m)

)
∈ D. The formula

in (30.2) shows that the Hodge norm of h(m) with respect to Φ
(
w(m)

)
is bounded.

Since these Hodge filtrations lie in a compact set, ∥h(m)∥ must be bounded; after
passing to a subsequence, h(m) is constant, and then T1h(m) = 0 as before. This
completes the proof of Theorem 17.4 for all n ≥ 1.

F. The universal family of hyperplane sections

31. Description of the variation of Hodge structure. The purpose of this
chapter is to apply the general construction from Chapter C to the universal family
of hyperplane sections of a smooth projective variety. Let X be a smooth projective
variety of odd dimension 2n + 1, and let L be a very ample line bundle on X. It
determines an embedding of X into the projective space P

(
H0(X,L)

)
. We denote

by B = P
(
H0(X,L)∗

)
the dual projective space; a point b ∈ B corresponds to a

hyperplane Hb, and therefore to a hyperplane section Hb ∩ X of X. There is a
natural incidence variety

X =
{
(b, x) ∈ B ×X

∣∣ x ∈ Hb ∩X
}
;

it is a projective bundle over X, and therefore again a smooth projective variety of
dimension 2n+dimB. Let f : X → B denote the first projection, and f0 : X0 → B0

its restriction to the Zariski-open subset where Hb ∩X is nonsingular.



56 CHRISTIAN SCHNELL

On B0, we have a polarized variation of integral Hodge structure H of weight
zero, obtained by taking the quotient ofR2nf0∗Z(n) by the constant partH2n

(
X,Z(n)

)
;

note that the polarization is only defined over Q in general. Recall that for a smooth
hyperplane section Y = H ∩X, the quotient

H2n
(
Y,Z(n)

)/
H2n

(
X,Z(n)

)
is torsion-free (by the Lefschetz theorems); tensored with Q, it becomes isomorphic
to the variable part

ker
(
H2n

(
Y,Q(n)

)
→ H2n+2

(
X,Q(n+ 1)

))
,

and is therefore canonically polarized by the intersection product on Y .
As usual, let M denote the polarized Hodge module of weight dimB with strict

support B, associated with H. In this situation, the filtered D-module (M, F•) can
be described concretely in terms of residues [Sch12b]. Recall that when Y = H ∩X
is a smooth hyperplane section, we have a residue mapping

ResY : H0
(
X,Ω2n+1

X (kY )
)
→ F 2n+1−kH2n(Y,C).

By applying this construction on each smooth hyperplane section, we can obtain
sections of H from meromorphic (2n+1)-forms on B×X with poles along X . To
state the precise result, let j : B0 ↪→ B denote the inclusion. Then M is a subsheaf
of j∗H, and the space of sections H0(U,FkM) on an open set U ⊆ B consists
exactly of those s ∈ H0(U, j∗H) that satisfy

s(b) = ResHb∩X

(
ω
∣∣
{b}×X

)
at every point b ∈ U ∩B0

for some choice of meromorphic (2n+ 1)-form

ω ∈ H0
(
U ×X,Ω2n+1

B×X

(
(n+ 1 + k)X

))
.

In addition to this description, the following result is proved in [Sch12b, Corollary 4].

Theorem 31.1. The coherent sheaf FkM is a quotient of the ample vector bundle

H0
(
X,Ω2n+1

X ⊗ Ln+1+k
)
⊗ OB(n+ 1 + k),

and therefore globally generated.

32. Properties of the extension space. Now let us see what our general con-
struction produces in the special case of the universal family of hyperplane sections.
As before, we denote by E(HZ) the (possibly disconnected) covering space of B0

determined by the local system HZ, and by φ : E(HZ) → T (F−1M) the holomor-
phic mapping induced by the polarization. Fix some K ≥ 0. According to the
general result in Theorem 13.1, we have a finite holomorphic mapping

φ̃ : E(HZ)(K) → T (F−1M)

from a normal analytic space E(HZ)(K) that contains E≤K(HZ) as a dense open

subset. Also recall from Corollary 13.3 that the intersection H̃dg(H) ∩ E(HZ)(K)
with the extended locus of Hodge classes is finite over B, and therefore again a
projective scheme. Now the fact that F−1M is a quotient of an ample vector bundle
has the following interesting consequence; it was predicted by Clemens several years
ago.
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Theorem 32.1. The analytic space E(HZ)(K) is holomorphically convex. Every
compact analytic subset of dimension ≥ 1 lies inside the extended locus of Hodge
classes, and is therefore necessarily a projective algebraic variety.

Proof. For a discussion of holomorphic convexity, see [Car60]. The result in Theo-
rem 31.1 shows that T (F−1M) embeds into the holomorphic vector bundle

E = T
(
H0
(
X,Ω2n+1

X ⊗ Ln
)
⊗ OB(n)

)
.

Since E is the dual of an ample vector bundle, the zero section can be contracted
to produce a Stein space Y ; in particular, E is holomorphically convex. Because
φ̃ : E(HZ)(K) → T (F−1M) is finite, it follows that E(HZ)(K) is proper over Y , and
therefore also holomorphically convex. Every compact analytic subset of positive
dimension has to map into the zero section of E, and must therefore be contained
in the extended locus of Hodge classes. □

G. The example of Calabi-Yau threefolds

33. Hodge loci on Calabi-Yau threefolds. The purpose of this paper is to
describe the construction of the extended locus of Hodge classes for polarized vari-
ations of integral Hodge structure of weight zero. Before defining things more
precisely, we shall consider a typical example that shows why this is an interesting
problem, and what some of the issues are.

Let X be a smooth projective Calabi-Yau threefold; this means that Ω3
X ≃ OX ,

and that H1(X,OX) = H2(X,OX) = 0. We fix an embedding of X into projective
space, with OX(1) the corresponding very ample line bundle, and consider the
family of hyperplane sections of X. These are parametrized by the linear system

B =
∣∣OX(1)

∣∣,
and we let B0 ⊆ B denote the open subset that corresponds to smooth hyperplane
sections. Given a cohomology class γ ∈ H2(S,Z) on a smooth hyperplane section
S ⊆ X, we can use parallel transport along paths in B0 to move γ to other hyper-
plane sections; this operation is of course purely topological and does not preserve
the Hodge decomposition. The Hodge locus of γ is the set{

b ∈ B0

∣∣ γ can be transported to a Hodge class on Sb

}
.

Most of these loci are non-empty: in fact, Voisin [Voi92] has proved that the union
of the Hodge loci of all classes γ ∈ H2(S,Z) is a dense subset of B0. Since Hodge
classes on surfaces are algebraic, the Hodge locus is an algebraic subvariety of B0;
in basic terms, what we are looking at are curves (or algebraic one-cycles) on X
that lie on hyperplane sections.

We observe that the expected dimension of the Hodge locus is zero. Indeed, a
class γ ∈ H2(S,Z) is Hodge exactly when it pairs to zero against every holomorphic
two-form on S; because X is a Calabi-Yau threefold, we have

h0(S,Ω2
S) = h0

(
X,Ω3

X(S)
)
− h0(X,Ω3

X) = h0
(
X,OX(1)

)
− 1 = dimB.

The number of conditions is the same as the dimension of the parameter space,
and the Hodge locus of γ should therefore have a “virtual” number of points; those
numbers are of interest in Donaldson-Thomas theory [KMPS10]. But there are two
issues that need to be dealt with:
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(1) If the Hodge locus actually has finitely many points, one can of course
just count them. But there may be components of positive dimension, and
before one can use excess intersection theory (or some other method) to
assign them a number, one has to compactify such components.

(2) An obvious idea is to take the closure of the Hodge locus inside the pro-
jective space B; but this is not the right thing to do because there are
interesting limit phenomena that one cannot see in this way.

Example. Here is a typical example. Consider a family of hyperplane sections
St ⊆ X, parametrized by t ∈ ∆, with St smooth for t ̸= 0, and S0 having a single
ordinary double point. In this case, H2(St,Z) contains a vanishing cycle γt, namely
the class of an embedded two-sphere with self-intersection number γ2

t = −2. The
vanishing cycle is not a Hodge class on St, but becomes one “in the limit”. On the
one hand, one has the limit mixed Hodge structure, which is pure of weight two in
this case; γt is a Hodge class in this Hodge structure. On the other hand, one can
blow up S0 at the node; the exceptional divisor E ≃ P1 satisfies [E]2 = −2, and in
a sense, [E] is the limit of the γt as t → 0.
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