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Torsion points on cohomology support loci:
from D-modules to Simpson’s theorem

Christian Schnell

Abstract

We study cohomology support loci of regular holonomic D-modules on

complex abelian varieties, and obtain conditions under which each irre-

ducible component of such a locus contains a torsion point. One case is

that both the D-module and the corresponding perverse sheaf are de-

fined over a number field; another case is that the D-module underlies a

graded-polarizable mixed Hodge module with a Z-structure. As a conse-

quence, we obtain a new proof for Simpson’s result that Green-Lazarsfeld

sets are translates of subtori by torsion points.

1.1 Overview of the paper

1.1.1 Introduction

Let X be a projective complex manifold. In their two influential papers

about the generic vanishing theorem [6, 7], Green and Lazarsfeld showed

that the so-called cohomology support loci

Σp,qm (X) =
{
L ∈ Pic0(X)

∣∣ dimHq
(
X,ΩpX ⊗ L

)
≥ m

}
,

are finite unions of translates of subtori of Pic0(X). Beauville and Cata-

nese [2] conjectured that the translates are always by torsion points, and

this was proved by Simpson [20] with the help of the Gelfond-Schneider

theorem from transcendental number theory. There is also a proof using

positive characteristic methods by Pink and Roessler [13].

Over the past ten years, the results of Green and Lazarsfeld have been

reinterpreted and generalized several times [8, 14, 18], and we now un-

derstand that they are consequences of a general theory of holonomic
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D-modules on abelian varieties. The purpose of this paper is to investi-

gate under what conditions the result about torsion points on cohomol-

ogy support loci remains true in that setting. One application is a new

proof for the conjecture by Beauville and Catanese that does not use

transcendental number theory or reduction to positive characteristic.

Note In a recent preprint [21], Wang extends Theorem 1.4 to polariz-

able Hodge modules on compact complex tori; as a corollary, he proves

the conjecture of Beauville and Catanese for arbitrary compact Kähler

manifolds.

1.1.2 Cohomology support loci for D-modules

Let A be a complex abelian variety, and let M be a regular holonomic

DA-module; recall that a D-module is called holonomic if its charac-

teristic variety is a union of Lagrangian subvarieties of the cotangent

bundle. Denoting by A\ the moduli space of line bundles with integrable

connection on A, we define the cohomology support loci of M as

Skm(A,M) =
{

(L,∇) ∈ A\
∣∣∣ dim Hk

(
A,DRA

(
M⊗OA

(L,∇)
))
≥ m

}
for k,m ∈ Z. It was shown in [18, Theorem 2.2] that Skm(A,M) is always

a finite union of linear subvarieties of A\, in the following sense.

Definition 1.1 A linear subvariety of A\ is any subset of the form

(L,∇)⊗ im
(
f \ : B\ → A\

)
,

for f : A→ B a homomorphism of abelian varieties, and (L,∇) a point

of A\. An arithmetic subvariety is a linear subvariety that contains a

torsion point.

Moreover, the analogue of Simpson’s theorem is true for semisimple

regular holonomic D-modules of geometric origin: for such M, every

irreducible component of Skm(A,M) contains a torsion point. We shall

generalize this result in two directions:

1. Suppose that M is regular holonomic, and that both M and the

corresponding perverse sheaf DRA(M) are defined over a number

field. We shall prove that the cohomology support loci ofM are finite

unions of arithmetic subvarieties; this is also predicted by Simpson’s

standard conjecture.
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2. Suppose thatM underlies a graded-polarizable mixed Hodge module

with Z-structure; for example,M could be the intermediate extension

of a polarizable variation of Hodge structure with coefficients in Z. We

shall prove that the cohomology support loci of M are finite unions

of arithmetic subvarieties.

1.1.3 Simpson’s standard conjecture

In his article [19], Simpson proposed several conjectures about regular

holonomic systems of differential equations whose monodromy represen-

tation is defined over a number field. The principal one is the so-called

“standard conjecture”; restated in the language of regular holonomic

D-modules and perverse sheaves, it takes the following form.

Conjecture 1.2 LetM be a regular holonomic D-module on a smooth

projective variety X, both defined over Q̄. If DRX(M) is the complexifi-

cation of a perverse sheaf with coefficients in Q̄, then M is of geometric

origin.

He points out that, “there is certainly no more reason to believe it

is true than to believe the Hodge conjecture, and whether or not it is

true, it is evidently impossible to prove with any methods which are now

under consideration. However, it is an appropriate motivation for some

easier particular examples, and it leads to some conjectures which might

in some cases be more tractable” [19, p. 372].

In the particular example of abelian varieties, Conjecture 1.2 predicts

that when M is a regular holonomic D-module with the properties de-

scribed in the conjecture, then the cohomology support loci ofM should

be finite unions of arithmetic subvarieties. Our first result – actually a

simple consequence of [18] and an old theorem by Simpson [20] – is that

this prediction is correct.

Theorem 1.3 Let A be an abelian variety defined over Q̄, and let

M be a regular holonomic DA-module. If M is defined over Q̄, and

if DRA(M) is the complexification of a perverse sheaf with coefficients

in Q̄, then all cohomology support loci Skm(A,M) are finite unions of

arithmetic subvarieties of A\.

Proof Let Char(A) = Hom
(
π1(A),C∗

)
be the space of rank one charac-

ters of the fundamental group; for a character ρ ∈ Char(A), we denote

by Cρ the corresponding local system of rank one. We define the co-

homology support loci of a constructible complex of C-vector spaces
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K ∈ Db
c(CA) to be the sets

Skm(A,K) =
{
ρ ∈ Char(A)

∣∣∣ dim Hk
(
A,K ⊗C Cρ

)
≥ m

}
.

The correspondence between local systems and vector bundles with inte-

grable connection gives a biholomorphic mapping Φ: A\ → Char(A); it

takes a point (L,∇) to the local system of flat sections of ∇. According

to [18, Lemma 14.1], the cohomology support loci satisfy

Φ
(
Skm(A,M)

)
= Skm

(
A,DRA(M)

)
.

Note that Char(A) is an affine variety defined over Q; in our situa-

tion, A\ is moreover a quasi-projective variety defined over Q̄, because

the same is true for A. The assumptions on the D-module M imply

that Skm(A,M) ⊆ A\ is defined over Q̄, and that Skm
(
A,DRA(M)

)
⊆

Char(A) is defined over Q̄. We can now use [20, Theorem 3.3] to conclude

that both must be finite unions of arithmetic subvarieties.

1.1.4 Mixed Hodge modules with Z-structure

We now consider a much larger class of regular holonomic DA-modules,

namely those that come from mixed Hodge modules with Z-structure.

This class includes, for example, intermediate extensions of polarizable

variations of Hodge structure defined over Z; the exact definition can be

found in Definition 1.9 below.

We denote by MHM(A) the category of graded-polarizable mixed

Hodge modules on the abelian varietyA, and by Db MHM(A) its bounded

derived category [17, §4]; because A is projective, every mixed Hodge

module is automatically algebraic. Let

rat : Db MHM(A)→ Db
c(QA)

be the functor that takes a complex of mixed Hodge modules to the

underlying complex of constructible sheaves of Q-vector spaces; then a

Z-structure on M ∈ Db MHM(A) is a constructible complex E ∈ Db
c(ZA)

with the property that ratM ' Q⊗Z E.

To simplify the notation, we shall define the cohomology support loci

of a complex of mixed Hodge modules M ∈ Db MHM(A) as

Skm(A,M) =
{
ρ ∈ Char(A)

∣∣ dimHk
(
A, ratM ⊗Q Cρ

)
≥ m

}
,

where k ∈ Z and m ≥ 1. Our second result is the following structure

theorem for these sets.
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Theorem 1.4 If a complex of mixed Hodge modules M ∈ Db MHM(A)

admits a Z-structure, then all of its cohomology support loci Skm(A,M)

are complete unions of arithmetic subvarieties of Char(A).

Definition 1.5 A collection of arithmetic subvarieties of Char(A) is

called complete if it is a finite union of subsets of the form{
ρk
∣∣ gcd(k, n) = 1

}
· im

(
Char(f) : Char(B)→ Char(A)

)
,

where ρ ∈ Char(A) is a point of finite order n, and f : A → B is a

surjective morphism of abelian varieties with connected fibers.

The proof of Theorem 1.4 occupies the remainder of the paper; it is

by induction on the dimension of the abelian variety. Since we already

know that the cohomology support loci are finite unions of linear subva-

rieties, the issue is to prove that every irreducible component contains a

torsion point. Four important ingredients are the Fourier-Mukai trans-

form for DA-modules [11, 15]; results about Fourier-Mukai transforms of

holonomic DA-modules [18]; the theory of perverse sheaves with integer

coefficients [3]; and of course Saito’s theory of mixed Hodge modules

[17]. Roughly speaking, they make it possible to deduce the assertion

about torsion points from the following elementary special case: if V is a

graded-polarizable variation of mixed Hodge structure on A with coeffi-

cients in Z, and if Cρ is a direct factor of V ⊗Z C for some ρ ∈ Char(A),

then ρ must be a torsion character. The completeness of the set of com-

ponents follows from the fact that Skm(A,M) is defined over Q, hence

stable under the natural Gal(C/Q)-action; note that the Gal(C/Q)-orbit

of a character ρ of order n consists exactly of the characters ρk with

gcd(k, n) = 1.

1.1.5 The conjecture of Beauville and Catanese

Now let X be a projective complex manifold. As a consequence of Theo-

rem 1.4, we obtain a purely analytic proof for the conjecture of Beauville

and Catanese.

Theorem 1.6 Each Σp,qm (X) is a finite union of subsets of the form

L ⊗ T , where L ∈ Pic0(X) is a point of finite order, and T ⊆ Pic0(X)

is a subtorus.

Proof Inside the group Char(X) of rank one characters of the funda-

mental group of X, let Char0(X) denote the connected component of

the trivial character. If f : X → A is the Albanese morphism (for some
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choice of base point on X), then Char(f) : Char(A) → Char0(X) is an

isomorphism. As above, we denote the local system corresponding to a

character ρ ∈ Char(X) by the symbol Cρ. Define the auxiliary sets

Σkm(X) =
{
ρ ∈ Char0(X)

∣∣ dim Hk
(
X,Cρ

)
≥ m

}
;

by the same argument as in [1, Theorem 3], it suffices to prove that

each Σkm(X) is a finite union of arithmetic subvarieties of Char0(X).

But this follows easily from Theorem 1.4. To see why, consider the com-

plex of mixed Hodge modules M = f∗QHX [dimX] ∈ Db MHM(A). The

underlying constructible complex is ratM = Rf∗Q[dimX], and so

Σk+dimX
m (X) = Char(f)

(
Skm(A,M)

)
.

Because Rf∗Z[dimX] is a Z-structure on M , the assertion is an imme-

diate consequence of Theorem 1.4.

For some time, I thought that each Σp,qm (X) might perhaps also be

complete in the sense of Definition 1.5, meaning a finite union of subsets

of the form {
L⊗k

∣∣ gcd(k, n) = 1
}
⊗ T,

where n is the order of L. Unfortunately, this is not the case.

Example 1.7 Here is an example of a surface X where certain coho-

mology support loci are not complete. Let A be an elliptic curve. Choose

a nontrivial character ρ ∈ Char(A) of order three, let L = Cρ ⊗C OA,

and let B → A be the étale cover of degree three that trivializes ρ. The

Galois group of this cover is G = Z/3Z, and if we view G as a quotient

of π1(A, 0), then the three characters of G correspond exactly to 1, ρ, ρ2.

Finally, let ω be a primitive third root of unity, and let Eω be the elliptic

curve with an automorphism of order three. Now G acts diagonally on

the product Eω × B, and the quotient is an isotrivial family of elliptic

curves f : X → A. Let us consider the variation of Hodge structure on

the first cohomology groups of the fibers. Setting H = H1(Eω,Z), the

corresponding representation of the fundamental group of A factors as

π1(A, 0)→ G→ Aut(H),

and is induced by the G-action on Eω. This representation is the direct

sum of the two characters ρ and ρ2, because G acts as multiplication by

ω and ω2 on H1,0(Eω) and H0,1(Eω), respectively. For the same reason,

f∗ωX ' L and R1f∗ωX ' OA. Since f∗ : Pic0(A) → Pic0(X) is an
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isomorphism, the projection formula gives

Σ2,0
1 (X) =

{
L−1

}
and Σ2,1

1 (X) =
{
L−1,OA

}
.

We conclude that not all cohomology support loci of X are complete.

Note Although he does not state his result in quite this form, Pareschi

[12, Scholium 4.3] shows that the set of positive-dimensional irreducible

components of

V 0(ωX) = ΣdimX,0
1 (X)

is complete, provided that X has maximal Albanese dimension.
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1.2 Preparation for the proof

1.2.1 Variations of Hodge structure

In what follows, A will always denote a complex abelian variety, and

g = dimA its dimension. To prove Theorem 1.4, we have to show that

certain complex numbers are roots of unity; we shall do this with the help

of Kronecker’s theorem, which says that if all conjugates of an algebraic

integer have absolute value 1, then it is a root of unity. To motivate what

follows, let us consider the simplest instance of Theorem 1.4, namely a

polarizable variation of Hodge structure with coefficients in Z.

Lemma 1.8 If a local system with coefficients in Z underlies a polariz-

able variation of Hodge structure on A, then it is a direct sum of torsion

points of Char(A).
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Proof The associated monodromy representation µ : π1(A)→ GLn(Z),

tensored by C, is semisimple [4, §4.2]; the existence of a polarization

implies that it is isomorphic to a direct sum of unitary characters of

π1(A). Since µ is defined over Z, the collection of these characters is

preserved by the action of Gal(C/Q). This means that the values of

each character, as well as all their conjugates, are algebraic integers of

absolute value 1; by Kronecker’s theorem, they must be roots of unity.

It follows that µ is a direct sum of torsion characters.

Corollary Let V be a local system of C-vector spaces on A. If V under-

lies a polarizable variation of Hodge structure with coefficients in Z, all

cohomology support loci of V are finite unions of arithmetic subvarieties.

Proof By Lemma 1.8, we have V ' Cρ1 ⊕ · · · ⊕ Cρn for torsion points

ρ1, . . . , ρn ∈ Char(A). All cohomology support loci of V are then obvi-

ously contained in the set {
ρ−1

1 , . . . , ρ−1
n

}
,

and are therefore trivially finite unions of arithmetic subvarieties.

1.2.2 Mixed Hodge modules with Z-structure

We shall say that a mixed Hodge module has a Z-structure if the under-

lying perverse sheaf, considered as a constructible complex with coeffi-

cients in Q, can be obtained by extension of scalars from a constructible

complex with coefficients in Z. A typical example is the intermediate

extension of a variation of Hodge structure with coefficients in Z. To be

precise, we make the following definition.

Definition 1.9 A Z-structure on a complex of mixed Hodge modules

M ∈ Db MHM(A)

is a constructible complex E ∈ Db
c(ZA) such that ratM ' Q⊗Z E.

The standard operations on complexes of mixed Hodge modules clearly

respect Z-structures. For instance, suppose that M ∈ Db MHM(A) has

a Z-structure, and that f : A → B is a homomorphism of abelian va-

rieties; then f∗M ∈ Db MHM(B) again has a Z-structure. The proof is

straightforward:

rat
(
f∗M

)
= Rf∗(ratM) ' Rf∗

(
Q⊗Z E

)
' Q⊗Z Rf∗E

By [3, Section 3.3] and [9], there are two natural perverse t-structures
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on the category Db
c(ZA); after tensoring by Q, both become equal to the

usual perverse t-structure on Db
c(QA). We shall use the one correspond-

ing to the perversity p+; concretely, it is defined as follows:

E ∈ p+D≤0
c (ZA)⇐⇒

{ for any stratum S, the local system

Hmi∗SE is zero if m > −dimS + 1,

and Q⊗Z H− dimS+1i∗SE = 0

E ∈ p+D≥0
c (ZA)⇐⇒

{ for any stratum S, the local system

Hmi!SE is zero if m < −dimS,

and H− dimSi!SE is torsion-free

We can use the resulting formalism of perverse sheaves with integer

coefficients to show that Z-structures are also preserved under taking

cohomology.

Lemma 1.10 If M ∈ Db MHM(A) admits a Z-structure, then each

cohomology module Hk(M) ∈ MHM(A) also admits a Z-structure.

Proof Let p+Hk(E) denote the p+-perverse cohomology sheaf in degree

k of the constructible complex E ∈ Db
c(ZA). With this notation, we have

ratHk(M) = pHk(ratM) ' pHk
(
Q⊗Z E

)
' Q⊗Z

p+Hk(E),

which gives the desired Z-structure on Hk(M).

There is also a notion of intermediate extension for local systems with

integer coefficients. If i : X ↪→ A is a subvariety of A, and j : U ↪→ X is a

Zariski-open subset of the smooth locus of X, then for any local system

V on U with coefficients in Z, one has a canonically defined p+-perverse

sheaf

i∗
(
j!∗V [dimX]

)
∈ p+D≤0

c (ZA) ∩ p+D≥0
c (ZA).

After tensoring by Q, it becomes isomorphic to the usual intermediate

extension of the local system Q⊗Z V . This has the following immediate

consequence.

Lemma 1.11 Let M be a polarizable Hodge module. Suppose that M is

the intermediate extension of Q⊗Z V , where V is a polarizable variation

of Hodge structure with coefficients in Z. Then M admits a Z-structure.

Proof In fact, E = i∗
(
j!∗V [dimX]

)
gives a Z-structure on M .

We conclude our discussion of Z-structures by improving Lemma 1.8.
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Lemma 1.12 Let M be a mixed Hodge module with Z-structure. Let

ρ ∈ Char(A) be a character with the property that, for all g ∈ Gal(C/Q),

the local system Cgρ[dimA] is a subobject of C ⊗Q ratM . Then ρ is a

torsion point of Char(A).

Proof Let j : U ↪→ A be the maximal open subset with the property

that j∗M = V [dimA] for a graded-polarizable variation of mixed Hodge

structure V . Consequently, j∗Cρ embeds into the complex variation of

mixed Hodge structure C⊗QV . Since the variation is graded-polarizable,

and since j∗ : π1(U)→ π1(A) is surjective, it follows that ρ must be uni-

tary [5, §1.12]. On the other hand, we have ratM ' Q ⊗Z E for a

constructible complex E with coefficients in Z. Then H− dimAj∗E is a

local system with coefficients in Z, and j∗Cρ embeds into its complexi-

fication. The values of the character ρ are therefore algebraic integers of

absolute value 1. We get the same conclusion for all their conjugates, by

applying the argument above to the characters gρ, for g ∈ Gal(C/Q).

Now Kronecker’s theorem shows that ρ takes values in the roots of unity,

and is therefore a torsion point of Char(A).

1.2.3 The Galois action on the space of characters

In this section, we study the natural action of Gal(C/Q) on the space

of characters, and observe that the cohomology support loci of a regular

holonomic D-module with Q-structure are stable under this action.

The space of characters Char(A) is an affine algebraic variety, and its

coordinate ring is easy to describe. We have A = V/Λ, where V is a

complex vector space of dimension g, and Λ ⊆ V is a lattice of rank 2g;

note that Λ is canonically isomorphic to the fundamental group π1(A, 0).

For a field k, we denote by

k[Λ] =
⊕
λ∈Λ

keλ

the group ring of Λ with coefficients in k; the product is determined by

eλeµ = eλ+µ. As a complex algebraic variety, Char(A) is isomorphic to

SpecC[Λ]; in particular, Char(A) can already be defined over SpecQ,

and therefore carries in a natural way an action of the Galois group

Gal(C/Q).

Proposition 1.13 Let M ∈ Db MHM(A) be a complex of mixed Hodge

modules on a complex abelian variety A. Then all cohomology support

loci of ratM are stable under the action of Gal(C/Q) on Char(A).
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Proof The natural Λ-action on the group ring k[Λ] gives rise to a local

system of k-vector spaces Lk[Λ] on the abelian variety. The discussion

in [18, Section 14] shows that the cohomology support loci of ratM are

computed by the complex

Rp∗
(
ratM ⊗Q LC[Λ]

)
∈ Db

coh

(
C[Λ]

)
,

where p : A→ pt denotes the morphism to a point. In the case at hand,

Rp∗
(
ratM ⊗Q LC[Λ]

)
' Rp∗

(
ratM ⊗Q LQ[Λ]

)
⊗Q[Λ] C[Λ]

is obtained by extension of scalars from a complex of Q[Λ]-modules [18,

Proposition 14.7]; this means that all cohomology support loci of M

are defined over Q, and therefore stable under the Gal(C/Q)-action on

Char(A).

1.2.4 The Fourier-Mukai transform

In this section, we review a few results about Fourier-Mukai transforms

of holonomic DA-modules from [18]. The Fourier-Mukai transform, intro-

duced by Laumon [11] and Rothstein [15], is an equivalence of categories

FMA : Db
coh(DA)→ Db

coh(OA\);

for a single coherent DA-module M, it is defined by the formula

FMA(M) = R(p2)∗DRA×A\/A\

(
p∗1M⊗ (P \,∇\)

)
,

where (P \,∇\) is the universal line bundle with connection on A×A\.
The Fourier-Mukai transform satisfies several useful exchange formu-

las [11, Section 3.3]; recall that for f : A→ B a homomorphism of abelian

varieties,

f+ : Db
coh(DA)→ Db

coh(DB) and f+ : Db
coh(DB)→ Db

coh(DA)

denote, respectively, the direct image and the shifted inverse image func-

tor, while DA : Db
coh(DA)→ Db

coh(DA)opp is the duality functor.

Theorem 1.14 Let M,M1,M2 ∈ Db
coh(DA) and N ∈ Db

coh(DB).

(a) For any homomorphism of abelian varieties f : A→ B, one has

L(f \)∗ FMA(M) ' FMB

(
f+M

)
,

Rf \∗ FMB(N ) ' FMA

(
f+N

)
.

(b) One has FMA

(
DAM

)
' 〈−1A\〉∗RHom

(
FMA(M),OA\

)
.
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(c) Let m : A×A→ A be the addition morphism. Then one has

FMA

(
m+(M1 �M2)

)
' FMA(M1)

L
⊗O

A\
FMA(M2).

Now let Db
h(DA) be the full subcategory of Db

coh(DA) consisting of co-

homologically bounded and holonomic complexes. We already mentioned

that the cohomology support loci Skm(A,M) of a holonomic complex are

finite unions of linear subvarieties; here is another result from [18] that

will be used below.

Theorem 1.15 Let M be a holonomic DA-module. Then FMA(M) ∈
D≥0

coh(OA\), and for any ` ≥ 0, one has codim SuppH` FMA(M) ≥ 2`.

The precise relationship between the support of FMA(M) and the

cohomology support loci of M is given by the base change theorem,

which implies that, for every n ∈ Z, one has⋃
k≥n

SuppHk FMA(M) =
⋃
k≥n

Sk1 (A,M) (1.1)

In particular, the support of the Fourier-Mukai transform FMA(M) is

equal to the union of all the cohomology support loci of M.

1.3 Proof of the theorem

Consider a complex of mixed Hodge modules M ∈ Db MHM(A) that

admits a Z-structure, and denote by ratM ∈ Db
c(QA) the underlying

complex of constructible sheaves. To prove Theorem 1.4, we have to

show that that all cohomology support loci of M are complete unions of

arithmetic subvarieties of Char(A).

1.3.1 Reduction steps

Our first task is to show that every Skm(A,M) is a finite union of arith-

metic subvarieties. The proof is by induction on the dimension of A; we

may therefore assume that the theorem is valid on every abelian variety

of strictly smaller dimension. This has several useful consequences.

Lemma 1.16 Let f : A→ B be a homomorphism from A to a lower-

dimensional abelian variety B. Then every intersection

Skm(A,M) ∩ im Char(f)

is a finite union of arithmetic subvarieties.
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Proof The complex f∗M ∈ Db MHM(B) again admits a Z-structure. If

we now tensor by points of Char(B) and take cohomology, we find that

Char(f)−1Skm(A,M) = Skm(B, f∗M).

By induction, we know that the right-hand side is a finite union of arith-

metic subvarieties of Char(B); consequently, the same is true for the

intersection Skm(A,M) ∩ im Char(f).

The inductive assumption lets us to show that all positive-dimensional

components of the cohomology support loci of M are arithmetic.

Lemma 1.17 Let Z be an irreducible component of some Skm(A,M).

If dimZ ≥ 1, then Z is an arithmetic subvariety of Char(A).

Proof Since Z is a linear subvariety, it suffices to prove that Z contains a

torsion point. Now A is an abelian variety, and so we can find a surjective

homomorphism f : A → B to an abelian variety of dimension dimA −
dimZ/2, such that Z ∩ im Char(f) is a finite set of points. According to

Lemma 1.16, the intersection is a finite union of arithmetic subvarieties,

hence a finite set of torsion points. In particular, Z contains a torsion

point, and is therefore an arithmetic subvariety of Char(A).

Irreducible components that are already contained in a proper arith-

metic subvariety of Char(A) can also be handled by induction.

Lemma 1.18 Let Z be an irreducible component of Skm(A,M). If Z is

contained in a proper arithmetic subvariety of Char(A), then Z is itself

an arithmetic subvariety.

Proof It again suffices to show that Z contains a torsion point. For

some n ≥ 1, there is a torsion point of order n on the arithmetic subva-

riety that contains Z. After pushing forward by the multiplication-by-n

morphism 〈n〉 : Char(A)→ Char(A), which corresponds to replacing M

by its inverse image 〈n〉∗M under 〈n〉 : A → A, we can assume that

Z ⊆ im Char(f), where f : A→ B is a morphism to a lower-dimensional

abelian variety. The assertion now follows from Lemma 1.16.

The following result allows us to avoid cohomology in degree 0.

Lemma 1.19 Let M ∈ MHM(A), and let Z be an irreducible compo-

nent of some cohomology support locus of M . If Z 6= Char(A), then Z

is contained in Skm(A,M) for some k 6= 0 and some m ≥ 1.
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Proof This follows easily from the fact that the Euler characteristic

χ
(
A, ratM ⊗Q Cρ

)
=
∑
k∈Z

(−1)k dimHk
(
A, ratM ⊗Q Cρ

)
is independent of the point ρ ∈ Char(A).

1.3.2 Torsion points on components

Let Z be an irreducible component of some cohomology support locus of

M . If dimZ ≥ 1, Lemma 1.17 shows that Z is an arithmetic subvariety;

we may therefore assume that Z = {ρ} consists of a single point. We

have to prove that ρ has finite order in Char(A). There are three steps.

Step 1 We begin by reducing the problem to the case where M is a

single mixed Hodge module. Each of the individual cohomology mod-

ules Hq(M) ∈ MHM(A) also admits a Z-structure (by Lemma 1.10);

we know by induction that all positive-dimensional irreducible compo-

nents of its cohomology support loci are arithmetic subvarieties. If ρ is

contained in such a component, Lemma 1.18 proves that ρ is a torsion

point; we may therefore assume that whenever there is some p 6= 0 such

that Hp
(
A, ratHq(M) ⊗Q Cρ

)
is nontrivial, ρ is an isolated point of

the corresponding cohomology support locus. To exploit this fact, let us

consider the spectral sequence

Ep,q2 = Hp
(
A, ratHq(M)⊗Q Cρ

)
=⇒ Hp+q

(
A, ratM ⊗Q Cρ

)
.

If Ep,q2 6= 0 for some p 6= 0, then ρ must be an isolated point in some

cohomology support locus of Hq(M); in that case, we can replace M by

the single mixed Hodge module Hq(M). If Ep,q2 = 0 for every p 6= 0,

then the spectral sequence degenerates and

Hk
(
A, ratM ⊗Q Cρ

)
' H0

(
A, ratHk(M)⊗Q Cρ

)
.

But ρ ∈ Skm(A,M) is an isolated point, and so by semi-continuity, it

must also be an isolated point in S0
m

(
A,Hk(M)

)
; again, we can replace

M by the single mixed Hodge module Hk(M).

Step 2 We now construct another mixed Hodge module with Z-structure,

such that the union of all cohomology support loci contains ρ but is

not equal to Char(A). We can then use the inductive hypothesis to re-

duce the problem to the case where Cρ−1 [dimA] is a direct factor of
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C ⊗Q ratM ; because of Lemma 1.12, this will be sufficient to conclude

that the character ρ has finite order.

The idea for the construction comes from a recent article by Krämer

and Weissauer [10, Section 13]. Since M ∈ MHM(A) is a single mixed

Hodge module, we can use Lemma 1.19 to arrange that ρ ∈ Skm(A,M)

is an isolated point for some k 6= 0 and some m ≥ 1; to simplify the

argument, we shall take the absolute value |k| to be as large as possible.

Now let A × · · · × A denote the d-fold product of A with itself, and let

m : A × · · · × A → A be the addition morphism. The d-fold exterior

product M � · · ·�M is mixed Hodge module on A×· · ·×A, and clearly

inherits a Z-structure from M . Setting

Md = m∗
(
M � · · ·�M

)
∈ Db MHM(A),

it is easy to see from our choice of k that

Hkd
(
A, ratMd ⊗Q Cρ

)
' Hk

(
A, ratM ⊗Q Cρ

)⊗d
.

The right-hand side is nonzero, and so ρ ∈ Skdmd(A,Md). By a similar

spectral sequence argument as above, we must have

Hp
(
A, ratHq(Md)⊗Q Cρ

)
6= 0

for some p, q ∈ Z with p+ q = kd and −g ≤ p ≤ g. If we take d > g, this

forces q 6= 0. In other words, we can find q 6= 0 such that ρ lies in some

cohomology support locus of the mixed Hodge module Hq(Md).

Lemma 1.20 If q 6= 0, all nontrivial cohomology support loci of Hq(Md)

are properly contained in Char(A).

Proof It suffices to prove this for the underlying regular holonomic

D-module Hqm+(M � · · · �M). The properties of the Fourier-Mukai

transform in Theorem 1.14 imply that

FMA

(
m+(M� · · ·�M)

)
' FMA(M)

L
⊗O

A\
· · ·

L
⊗O

A\
FMA(M),

and all cohomology sheaves of this complex, except possibly in degree 0,

are torsion sheaves (by Theorem 1.15). In the spectral sequence

Ep,q2 = Hp FMA

(
Hqm+(M� · · ·�M)

)
=⇒ Hp+q FMA

(
m+(M� · · ·�M)

)
,

the sheaf Ep,q2 is zero when p < 0, and torsion when p > 0, for the same

reason. It follows that E0,q
2 is also a torsion sheaf for q 6= 0, which proves

the assertion.
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Step 3 Now we can easily finish the proof. The mixed Hodge module

Hq(Md) again admits a Z-structure by Lemma 1.10; by induction, all

positive-dimensional irreducible components of its cohomology support

loci are proper arithmetic subvarieties of Char(A). If ρ is contained in one

of them, we are done by Lemma 1.18. After replacing M by Hq(Md), we

can therefore assume that, whenever Hk
(
A, ratM ⊗Q Cρ

)
is nontrivial,

ρ is an isolated point of the corresponding cohomology support locus.

Note that we now have this for all values of k ∈ Z, including k = 0.

LetM denote the regular holonomic D-module underlying the mixed

Hodge module M . If (L,∇) ∈ A\ is the flat line bundle corresponding to

our character ρ, the assumptions on M guarantee that (L,∇) is an iso-

lated point in the support of FMA(M). This means that, in the derived

category, FMA(M) has a direct factor supported on the point (L,∇).

But the Fourier-Mukai transform is an equivalence of categories, and

so M 'M′ ⊕M′′, where M′ is a regular holonomic D-module whose

Fourier-Mukai transform is supported on (L,∇). It is well-known that

M′ is the tensor product of (L,∇)−1 and a unipotent flat vector bun-

dle; in particular, M contains a sub-D-module isomorphic to (L,∇)−1.

Equivalently, C⊗QratM has a subobject isomorphic to Cρ−1 [dimA]. Be-

cause the cohomology support loci of M are stable under the Gal(C/Q)-

action on Char(A) (by Proposition 1.13), the same is true for every

conjugate gρ, where g ∈ Gal(C/Q). We can now apply Lemma 1.12 to

show that ρ must be a torsion point.

This concludes the proof that all cohomology support loci of M are

finite unions of arithmetic subvarieties of Char(A).

1.3.3 Completeness of the set of components

We finish the proof of Theorem 1.4 by showing that each cohomology

support locus of M is a complete union of arithmetic subvarieties of

Char(A). The argument is based on the following simple criterion for

completeness.

Lemma 1.21 A finite union of arithmetic subvarieties of Char(A) is

complete if and only if it is stable under the action by Gal(C/Q).

Proof For a point τ ∈ Char(A) of order n, the orbit under the group

G = Gal(C/Q) consists precisely of the characters τk with gcd(k, n) = 1;

consequently, a complete collection of arithmetic subvarieties is stable

under the G-action. To prove the converse, let Z be a finite union of
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arithmetic subvarieties stable under the action by G. Let τL be one of

its components; here L is a linear subvariety and τ ∈ Char(A) a point of

order n, say. Let p be any prime number with gcd(n, p) = 1, and denote

by L[p] the set of points of order p. For any character ρ ∈ L[p], we have

ord(τρ) = np; the G-orbit of the set τL[p] is therefore equal to

(Gτ) · L[p] =
{
τk
∣∣ gcd(k, n) = 1

}
· L[p].

Because the union of all the finite subsets L[p] with gcd(n, p) = 1 is

dense in the linear subvariety L, it follows that{
τk
∣∣ gcd(k, n) = 1

}
· L ⊆ Z;

this proves that Z is complete.

Theorem 1.22 Let M ∈ Db MHM(A) be a complex of mixed Hodge

modules that admits a Z-structure. Then all cohomology support loci of

M are complete collections of arithmetic subvarieties of Char(A).

Proof We already know that each Skm(A,M) is a finite union of arith-

metic subvarieties of Char(A). By Proposition 1.13, it is stable under

the Gal(C/Q)-action on Char(A); we can now apply Lemma 1.21 to

conclude that Skm(A,M) is complete.
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[3] Bĕılinson, A. A., Bernstein, J., and Deligne, P. 1982. Faisceaux pervers.
Pages 5–171 of: Analysis and topology on singular spaces, I (Luminy,
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[5] Deligne, P. 1987. Un théorème de finitude pour la monodromie. Pages
1–19 of: Discrete groups in geometry and analysis (New Haven, Conn.,
1984). Progr. Math., vol. 67. Boston, MA: Birkhäuser Boston.
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