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1 Introduction

1. The purpose of this paper is to establish several new results about the Hodge theory
of Lagrangian fibrations on (not necessarily compact) holomorphic symplectic manifolds.
In particular, we prove two beautiful recent conjectures by Maulik, Shen and Yin; and we
show, without using hyperkähler metrics, that every Lagrangian fibration gives rise to an
action by the Lie algebra sl3(C) (in the noncompact case) or sl4(C) (in the compact case).

2. The most interesting Lagrangian fibration is arguably the Hitchin fibration on the moduli
space of stable Higgs bundles on a smooth projective curve of genus g ≥ 2. It was famously
used by Ngô in his proof of the fundamental lemma [Ngô10], and is also the central object
in the P = W conjecture by de Cataldo, Hausel, and Migliorini [dCHM12], recently proved
by Maulik and Shen [MS22] and Hausel, Mellit, Minets, and Schiffmann [HMMS22]. But
Lagrangian fibrations are also very useful for studying compact hyperkähler manifolds, which
are compact holomorphic symplectic manifolds with a hyperkähler metric. For example, de
Cataldo, Rapagnetta, and Saccà [dCRS21] used a pair of Lagrangian fibrations to compute
the Hodge numbers of O’Grady’s 10-dimensional sporadic compact hyperkähler manifold.

3. Let M be a holomorphic symplectic manifold of dimension 2n that is Kähler but not
necessarily compact, and let π : M → B be a Lagrangian fibration over a complex manifold
B of dimension n. The general fiber of π is an n-dimensional abelian variety, but very
little is known about the singular fibers. The method we use in this paper is to apply the
decomposition theorem; this produces certain perverse sheaves on the base of the Lagrangian
fibration. In some cases, such as Ngô’s support theorem [Ngô17], these perverse sheaves are
controlled by what happens on the smooth locus, but in general, their behavior is a mystery.
This mystery is the subject of the conjectures by Maulik, Shen, and Yin [SY22a, MSY23].

4. Our main result is that there is a very close relationship between two seemingly unrelated
objects: the k-th perverse sheaf Pk in the decomposition theorem for π, and the derived
direct image Rπ∗Ω

n+k
M of the sheaf of holomorphic (n+ k)-forms on M (see §22 Theorem).

This is formulated – and proved – with the help of Saito’s theory of Hodge modules, and the
BGG correspondence (between graded modules over the symmetric and exterior algebras).
On both sides, we need to take the associated graded with respect to a certain filtration: in
the case of Pk, this is the Hodge filtration of Pk, viewed as a Hodge module; in the case of
Rπ∗Ω

n+k
M , it is the perverse filtration coming from the decomposition theorem.
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5. Along the way, we prove a relative Hard Lefschetz theorem for the action of the holomor-
phic symplectic form (in §15 Theorem), as well as the symmetry conjecture Gi,k

∼= Gk,i of
Shen and Yin for the complexes Gi,k = grF−k DR(Pi)[−i] (in §12 Conjecture). The structure
that one gets on the direct sum of all the complexes Gi,k looks somewhat like the “Hodge
diamond” of a compact hyperkähler manifold, except that it has a hexagonal shape (see
§16) and comes with an action by the Lie algebra sl3(C) (see §17). One interesting aspect is
that all of these structures are only visible in the derived category. Perhaps the most useful
feature of the present work is that no restrictions on the singular fibers are needed: all the
results below apply for example to the entire Hitchin fibration on the moduli space of stable
Higgs bundles (provided that the rank and the degree are coprime).

6. One application of our main result is a different proof for the “numerical perverse =
Hodge” symmetry for irreducible compact hyperkähler manifolds [SY22b] that does not rely
on the existence of a hyperkähler metric (see §27 Theorem). Another application is that the
Lie algebra sl4(C) ∼= so6(C) acts on the cohomology of a compact holomorphic symplectic
manifold with a Lagrangian fibration (see Chapter 10); this generalizes a result by Looijenga-
Lunts [LL97, §4] and Verbitsky [Ver96], who proved this for irreducible compact hyperkähler
manifolds. Once again, our proof does not rely on the existence of a hyperkähler metric.

1.1 Lagrangian fibrations

7. We now give a more detailed summary of the paper. Let M be a holomorphic symplectic
manifold of dimension 2n; we assume that M is Kähler, but we allow M to be noncompact.
We denote by σ ∈ H0(M,Ω2

M ) the holomorphic symplectic form; σ is nondegenerate, which
means that it induces an isomorphism between the holomorphic tangent sheaf TB and the
sheaf of holomorphic 1-forms Ω1

B . We need to add the assumption that dσ = 0; this would
of course be automatic in the compact case (by Hodge theory). We also fix a Kähler form
ω ∈ A1,1(M); recall that ω is real and positive, and satisfies dω = 0. In the special case
where M is a compact hyperkähler manifold, this might be the Kähler form of a hyperkähler
metric; but in the noncompact case, any Kähler metric seems to be as good as any other.

8. Further, let π : M → B be a Lagrangian fibration on M . This means that B is a
complex manifold of dimension n, and that π is a proper surjective holomorphic mapping
whose smooth fibers are Lagrangian, in the sense that σ restricts to zero on every smooth
fiber of π. For a very nice introduction to the general theory of Lagrangian fibrations, see
the recent paper by Huybrechts and Mauri [HM22]. It is known that the smooth fibers are
abelian varieties of dimension n. Moreover, according to a theorem by Matsushita [Mat00,
Thm. 1], all fibers of π have dimension n, and σ pulls back to zero on a resolution of
singularities (of the reduction) of every fiber. Let me emphasize again that B is assumed to
be a complex manifold; in the special case where M is an irreducible compact hyperkähler
manifold, this implies that B is isomorphic to Pn [Hwa08].

9. The starting point for the work by Shen and Yin [SY22a] is the following curious analogy
between two completely different sets of objects. On the one hand, we have the sheaves of
holomorphic forms Ωn+k

M for k = −n, . . . , n. The rank of Ωn+k
M

∼=
∧n+k

Ω1
M is of course(

2n
n+k

)
. In addition, wedge product with the symplectic form induces an isomorphism

σk : Ωn−k
M → Ωn+k

M .

On the other hand, we have a collection of perverse sheaves Pi on the base B of the La-
gragian fibration, where Pi is defined as the i-th perverse cohomology sheaf of the complex
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Rπ∗QM [2n]. The fact that all fibers of π have dimension n implies that Pi is nonzero only
for i = −n, . . . , n. The restriction of Pi to the smooth locus of π is just the local system
on the (n + i)-th cohomology of the fibers, which are n-dimensional abelian varieties. As

it happens, Hn+i(A,C) ∼=
∧n+i

H1(A,C), which means that the generic rank of Pi is also(
2n
n+i

)
. The most striking part of the analogy is that wedge product with the Kähler form

induces isomorphisms
ωi : P−i → Pi.

This result, called the relative Hard Lefschetz theorem, used to be known only for projective
morphisms, but recent work by Mochizuki [Moc22] shows that it also holds for proper
holomorphic mappings from Kähler manifolds.1 The same is true for the decomposition
theorem, which guarantees the existence of a decomposition

Rπ∗QM [2n] ∼=
n⊕

i=−n

Pi[−i]

in the derived category. Since we have chosen a Kähler form, there is a preferred choice of
decomposition, constructed by Deligne; this is described in §35.

1.2 The symmetry conjecture of Shen and Yin

10. Are the two objects Ωn+k
M and Pk actually related in some way? In [SY22a], Shen

and Yin proposed a conjectural symmetry that would relate at least certain complexes of
coherent sheaves derived from the two objects. Their conjecture is formulated using Saito’s
theory of Hodge modules [Sai88, Sai90]. Recall that QM [2n] is actually a Hodge module of
weight 2n. We can adjust the weight by a Tate twist, making QM (n)[2n] a Hodge module
of weight 0. Saito’s version of the decomposition theorem

Rπ∗QM (n)[2n] ∼=
n⊕

i=−n

Pi[−i]

then shows that each Pi is a Hodge module of weight i on B. We denote by Pi the under-
lying (regular holonomic) right DB-module, and by F•Pi its Hodge filtration, which is an
increasing filtration by coherent OB-modules. The perverse sheaf Pi and the DB-module Pi

are related by the Riemann-Hilbert correspondence:

Pi ⊗Q C ∼= DR(Pi)

Here DR(Pi) is the de Rham complex; since Pi is a right DB-module, the de Rham complex
(which is usually called the “Spencer complex” in the D-module literature) is the complex

DR(Pi) =
[
Pi ⊗

∧n TB → · · · → Pi ⊗ TB → Pi

]
.

It lives in cohomological degrees −n, . . . , 0, and the differential is induced by the multipli-
cation map Pi ⊗ TB → Pi. The de Rham complex is filtered by the subcomplexes

Fk DR(Pi) =
[
Fk−nPi ⊗

∧n TB → · · · → Fk−1Pi ⊗ TB → FkPi

]
,

1Locally on the base, Lagrangian fibrations are actually projective [Cam21].
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and the graded pieces of this filtration give us several complexes of coherent OB-modules

grFk DR(Pi) =
[
grFk−n Pi ⊗

∧n TB → · · · → grFk−1 Pi ⊗ TB → grFk Pi

]
.

One consequence of Saito’s theory is that one has an isomorphism (in the derived category)

Rπ∗Ω
n+k
M [n− k] ∼=

n⊕
i=−n

grF−k DR(Pi)[−i]; (10.1)

here the decomposition is induced by the one in the decomposition theorem.

11. In [SY22a], Shen and Yin introduced what they call the “perverse-Hodge complexes”

Gi,k = grF−k DR(Pi)[−i],

although with a different choice of indexing.2 These are complexes of coherent OB-modules
on the base manifold B of the Lagrangian fibration. The two indices i and k have the
following meaning:

1. The first index i records the cohomological degree, in the sense that Gi,k is associated
(over the smooth locus of π) with the (n+ i)-th cohomology groups of the fibers.

2. The second index k records the holomorphic degree, in the sense that Gi,k is associated
with the sheaf Ωn+k

M of holomorphic forms of degre (n+ k).

12. Over the smooth locus of π, the complexes Gi,k can be described fairly explicitly using
the Hodge bundles Vp,q in the variation of Hodge structure: in fact, the restriction of Gi,k

to the smooth locus is the complex[
Ωk

B ⊗ Vn,i → Ωk+1
B ⊗ Vn−1,i+1 → · · · → Ωn

B ⊗ Vk,n+i−k
]
.

Note again that the cohomological degree of each term is n + i, whereas the holomorphic
degree is n + k. But the behavior of these complexes on the singular locus of π is quite
mysterious. Shen and Yin proved that the two complexes Gi,k and Gk,i are isomorphic over
the smooth locus of π, and motivated by this, they made the following bold conjecture.

Conjecture. In the derived category of coherent OB-modules, one has Gi,k
∼= Gk,i.

Note that the complexes Gi,k are in general not determined by their restriction to the
smooth locus of π; there are also examples where Gi,k and Gk,i are isomorphic in the derived
category, but not isomorphic as complexes [SY22a, §2.4]. In any case, if the conjecture by
Shen and Yin is true, then one can combine it with Saito’s isomorphism (10.1) to get

Rπ∗Ω
n+k
M [n] ∼=

n⊕
i=−n

Gi,k[k] ∼=
n⊕

i=−n

Gk,i[k] =

n⊕
i=−n

grF−i DR(Pk),

which relates Ωn+k
M and Pk at least in a sort of indirect way.

2In the notation of [SY22a, 0.2], one has Gi,k = Gi−n,k−n.
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13. The original motivation for §12 Conjecture is the “numerical perverse = Hodge” sym-
metry for compact hyperkähler manifolds in [SY22b, Thm. 0.2]. Its proof by Shen and Yin
makes heavy use of the hyperkähler metric, and the conjecture arose in at attempt to find
a more “local” explanation for this symmetry, and to extend it to Lagrangian fibrations on
noncompact holomorphic symplectic manifolds. In terms of the complexes Gi,k, the main
result in [SY22b] is the statement that

Hj(B,Gi,k) ∼= Hj(B,Gk,i)

for all i, j, k ∈ Z, provided that M is an irreducible compact hyperkähler manifold. In my
opinion, this was the most convincing piece of evidence for the conjecture.

14. Our first result explains the symmetry between Gi,k and Gk,i as coming from a new
relative Hard Lefschetz theorem for the symplectic form (which, unlike the relative Hard Lef-
schetz theorem for the Kähler form, only holds in the derived category). The decomposition
theorem gives us a decomposition

π+(ωM , F•ωM ) ∼=
n⊕

i=−n

(Pi, F•Pi)[−i]

for the direct image of the D-module ωM (again with the filtration for which grF−n ωM = ωM ),
in the derived category of filtered DB-modules. Since the Kähler form ω is closed and of
type (1, 1), it gives rise to a morphism

ω :

n⊕
i=−n

(Pi, F•Pi)[−i] →
n⊕

i=−n

(Pi, F•−1Pi)[2− i].

Let us denote by ωj : (Pi, F•Pi) → (Pi+j , F•−1Pi+j)[2− j] the individual components of ω
with respect to this decomposition. The topmost component ω2 accounts for the action of
the Kähler form on the cohomology of the fibers of π. In these terms, the relative Hard
Lefschetz theorem (for proper holomorphic mappings from Kähler manifolds) is saying that

ωi
2 : (P−i, F•P−i) → (Pi, F•−iPi)

is an isomorphism for every i ≥ 1. From ω2, we also get a morphism of complexes

ω2 : Gi,k → Gi+2,k+1[2],

and as a consequence of the relative Hard Lefschetz theorem, the induced morphism

ωi
2 : G−i,k → Gi,i+k[2i]

is an isomorphism for every i ≥ 1 and every k ∈ Z.

15. The symplectic form σ is closed and of type (2, 0), and so it gives rise to a morphism

σ :

n⊕
i=−n

(Pi, F•Pi)[−i] →
n⊕

i=−n

(Pi, F•−2Pi)[2− i],

again in the derived category of filtered DB-modules. As before, we denote the compo-
nents of σ with respect to this decomposition by σj : (Pi, F•Pi) → (Pi+j , F•−2Pi+j)[2− j].
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This time, we get σ2 = 0 because π is a Lagrangian fibration and σ acts trivially on the
cohomology of the fibers (see §37 Lemma). The first nonzero component of σ is therefore

σ1 : (Pi, F•Pi) → (Pi+1, F•−2Pi+1)[1].

From σ1, we get another morphism (which now only exists in the derived category)

σ1 : Gi,k → Gi+1,k+2[2],

The following result might be called the “symplectic relative Hard Lefschetz theorem”.

Theorem. The induced morphism

σk
1 : Gi,−k → Gi+k,k[2k]

is an isomorphism for every k ≥ 1 and every i ∈ Z.

16. The following picture may be helpful in understanding this result. The complexes Gi,k

are exact unless −n ≤ i, k ≤ n and −n ≤ i − k ≤ n (see §44 Lemma). We can therefore
arrange them on a hexagonal grid by putting Gi,k at the point with coordinates iρ + k,
where ρ = 1

2 (−1 +
√
−3) is a cube root of unity:

(−n,−n)

(n, n)

(−n, 0)

(n, 0)

(0,−n) (0, n)

(i, k)

(k, i)

ω2

σ1

The symmetry coming from the relative Hard Lefschetz theorem for the Kähler form ω,
which exchanges the two points (−i, k) and (i, i + k), is reflection in one of the diagonals
of this hexagon; the symmetry coming from §15 Theorem, which exchanges the two points
(i,−k) and (i+ k, k), is reflection in another one.3 These two reflections together generate
the symmetric group S3, and the reflection in the remaining diagonal that we get in this way
exchanges the two points (i, k) and (k, i). This gives a conceptual proof for §12 Conjecture.

17. Note that S3 is the Weyl group of the Lie algebra sl3(C); this suggests that the direct
sum of all the complexes Gi,k should form a representation of sl3(C). The precise statement
is slightly more cumbersome because both ω2 and σ1 involve a shift.

3If we forget about the shifts that appear when applying ω2 and σ1
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Theorem. The two operators ω2 : Gi,k → Gi+2,k+1[2] and σ1 : Gi,k → Gi+1,k+2[2] deter-
mine a representation of the Lie algebra sl3(C) on the object

n⊕
i,k=−n

Gi,k

[
⌊ 2
3 (i+ k)⌋

]
,

in the derived category.

18. The sl2(C)-representations determined by ω2 and σ1 give us two more operators

Yω2 : Gi,k → Gi−2,k−1[−2] and Yσ1 : Gi,k → Gi−1,k−2[−2].

We prove §17 Theorem by verifying that the four operators ω2, σ1, Yω2
, and Yσ1

satisfy
the Serre relations for the Lie algebra sl3(C). (This is similar to the sl2(C)-action on the
cohomology of a compact Kähler manifold, which is also described in terms of generators
and relations.) Since ω and σ commute as 2-forms on M , it is easy to see that [ω2, σ1] = 0.
The nonobvious part of the Serre relations is that [Yω2

,Yσ1
] = 0. This sort of identity

may be familiar from the work of Looijenga and Lunts [LL97, Sec. 4], specifically from the
computation of the total Lie algebra acting on the cohomology of an irreducible compact
hyperkähler manifold. That said, the proof is completely different in our case, because we
do not have the hyperkähler metric (or harmonic forms) to work with.

19. The nontrivial Serre relation also explains very nicely the analogy between the relative
Hard Lefschetz theorems for ω2 and σ1 that we had observed in §9.

Corollary. The isomorphism Gi,k
∼= Gk,i can be chosen in such a way that it interchanges

the action of ω2 : Gi,k → Gi+2,k+1[2] and σ1 : Gi,k → Gi+1,k+2[2].

Concretely, this is saying that the reflection along the third diagonal in the picture
in §16 also interchanges the two arrows marked ω2 and σ1. This is a general fact about
representations of the Lie algebra sl3(C).

1.3 Relating holomorphic forms and perverse sheaves

20. We will deduce §15 Theorem from a much more precise relationship between Ωn+i
M and

Pi. The main result, stated below, is a sharpening of another conjecture by Maulik, Shen
and Yin [MSY23], who had proposed relating the two objects with the help of the Fourier-
Mukai transform (whose existence for arbitrary Lagrangian fibrations is unfortunately still a
conjecture). It is formulated using the BGG correspondence [BGG78, EFS03], which relates
graded modules over the symmetric algebra SB = Sym(TB) and graded modules over the
algebra ΩB =

⊕
j Ω

j
B of holomorphic forms on B.4 More precisely, the BGG correspondence

gives an equivalence between derived categories

RB : Db
cohG(SB) → Db

cohG(ΩB).

From the filtered DB-module (Pi, F•Pi), we obtain the graded SB-module grF• Pi, and under
the BGG correspondence, this goes to the complex of graded ΩB-modules

RB

(
grF• Pi

)
=

n⊕
k=−n

grF−k DR(Pi)[k] =

n⊕
k=−n

Gi,k[i+ k].

4One can think of the BGG correspondence as being a linearization of the Fourier-Mukai transform.
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Here the grading in the direct sum is by k, and the ΩB-module structure is induced by the
natural morphism of complexes

Ωj
B ⊗ grF−k DR(Pi) → grF−k−j DR(Pi)[j]

that contracts forms against vector fields. The content of the BGG correspondence is that
one can recover the graded SB-module grF• Pi from this object.

21. It turns out that one can also construct a complex of graded ΩB-modules from Ωn+k
M .

If we rewrite (10.1) in terms of the complexes Gi,k, it becomes

Rπ∗Ω
n+k
M [n] ∼=

n⊕
i=−n

Gi,k[k].

The filtration by increasing i might be called the “perverse filtration”, because it is induced
by the usual perverse filtration in the decomposition theorem. Now the derived pushforward
Rπ∗OM clearly acts on this complex; it preserves the perverse filtration, but not the grading
in the above isomorphism. According to a theorem of Matsushita [Mat05], Rπ∗OM is formal
and closely related to ΩB , in the sense that

Rπ∗OM
∼=

n⊕
j=0

Rjπ∗OM [−j] ∼=
n⊕

j=0

Ωj
B [−j].

From Rπ∗Ω
n+k
M [n], we obtain a complex of graded ΩB-modules by the following procedure.

First, we take the associated graded with respect to the perverse filtration; this gives

Rπ∗Ω
n+k
M [n] ∼=

n⊕
i=−n

Gi,k[k]

the structure of a graded module over
⊕

j Ω
j
B [−j]. Then we turn it into a complex of graded

modules over ΩB by adding suitable shifts; in this way, we arrive at

n⊕
i=−n

Gi,k[i+ k].

Here the summand Gi,k has degree i with respect to the grading, and the ΩB-module
structure is induced by the collection of morphisms

Rjπ∗OM ⊗ grF−k DR(Pi) → grF−k DR(Pi+j)

together with Matsushita’s theorem (see §49 Theorem).

22. The next result, which is really the main result of the paper, is that the two complexes
of graded ΩB-modules derived from Pi and Ωn+i

M are isomorphic in the derived category.

Theorem. The two complexes

n⊕
k=−n

Gi,k[i+ k] and

n⊕
k=−n

Gk,i[i+ k]

with their respective gradings and ΩB-module structures, are isomorphic in Db
cohG(ΩB).
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According to this theorem, Pi and Ωn+i
M are related in the following way. Starting from

the filtered DB-module (Pi, F•Pi), we first take the associated graded with respect to the
Hodge filtration, and then we apply the BGG correspondence to produce a complex of graded
ΩB-modules. This complex is isomorphic to the complex that we get from Rπ∗Ω

n+i
M [n]

by taking the associated graded with respect to the perverse filtration, and then using
Matsushita’s theorem to convert the action by Rπ∗OM into an action by ΩB .

23. Note the very striking symmetry in this procedure: on one side, we start from a perverse
sheaf and take the associated graded with respect to the Hodge filtration (which involves
holomorphic forms); on the other side, we start from the sheaf of holomorphic forms and
take the associated graded with respect to the perverse filtration. In fact, the perverse sheaf
Pi is one of the graded pieces of the complex Rπ∗QM (n)[2n] with respect to the perverse
filtration, and the sheaf Ωn+i

M is one of the graded pieces of the de Rham complex DR(ωM )
with respect to the Hodge filtration. The main result is therefore saying that

grF ◦ grP ∼= grP ◦ grF ;

in words, taking the associated graded with respect to the Hodge filtration commutes with
taking the associated graded with respect to the perverse filtration.

1.4 An outline of the proof

24. Let us a give a very brief outline of the proof, with references to the relevant sections
of the paper. From the fact that σk : Ωn−k

M → Ωn+k
M is an isomorphism for every k ≥ 1, we

first deduce the following theorem (which is §57 Theorem below).

Theorem. The following three statements are equivalent:

(a) The complexes Gi,k and Gk,i are isomorphic in the derived category (for all i, k).

(b) For every k = −n, . . . , n, there is an isomorphism (in the derived category)

n⊕
i=−n

Gi,k[i+ k] ∼=
n⊕

i=−n

Gk,i[i+ k].

(c) For every k ≥ 1, the morphism σk
1 : Gi,−k → Gi,k[2k] is an isomorphism.

Along the way, we give a short proof for Matsushita’s theorem (in Chapter 4), because it
serves as a nice introduction to the general method. This reduces the proof of the symplectic
relative Hard Lefschetz theorem to establishing the isomorphism in (b).

25. The heart of the matter is the proof of §22 Theorem. This is a result about the
relationship between grF• Pi and Rπ∗Ω

n+i
M [n] for each i = −n, . . . n separately – but it turns

out that by combining all these objects into one, we get some additional structure that we
can exploit. With that idea in mind, we consider the direct sum

n⊕
i=−n

grF• Pi[−i], (25.1)
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which lives in the derived category of graded modules over SB = Sym(TB). Under the BGG
correspondence (see Chapter 7), this goes to the complex

G =

n⊕
i,k=−n

Gi,k[k] = RB

(
n⊕

i=−n

grF• Pi[−i]

)
.

Our starting point is a concrete description ofG in terms of smooth differential forms. Saito’s
version of the decomposition theorem gives us an isomorphism between (25.1) and a certain
complex of graded SB-modules grF• Cπ (see §34). If we apply the BGG correspondence to
this isomorphism, we obtain an isomorphism (in the derived category)

G ∼= (M,d),

where (M,d) is the complex of graded ΩB-modules with

M i
k = π∗An+k,n+i

M and d = (−1)k∂̄.

The module structure on (M,d) is the obvious one: a local section β of Ωj
B acts as wedge

product with the pulllback π∗β.

26. The next idea is to transform this module structure into a different one with the help
of the symplectic form σ and the Kähler form ω. This is based on the following simple
construction (which is also behind Matsushita’s theorem). Suppose that β ∈ H0(U,Ω1

B) is
a holomorphic 1-form, defined on an open subset U ⊆ B. Using the symplectic form, we
can transform the holomorphic 1-form π∗β into a holomorphic vector field

v(β) ∈ H0
(
π−1(U),TM

)
, π∗β = v(β) ⌟σ,

where ⌟ means contraction with a vector field. Using the Kähler form, we can further
transform the vector field v(β) into a ∂̄-closed (0, 1)-form

f(β) ∈ A0,1
(
π−1(U)

)
, f(β) = −v(β) ⌟ω.

All three of these objects act on the complex (M,d), either by wedge product or by con-
traction. We use the reflection operator (or Weil element) coming from the symplectic form
σ to show that G is isomorphic to the auxiliary object

Gv =

n⊕
i,k=−n

Gi,−k[−k],

in a way that exchanges the action by β ∈ Ω1
B and the action of the vector field v(β). We

then use the Weil operator coming from the relative Hard Lefschetz theorem for the Kähler
form ω to show that Gv is in turn isomorphic to

Gf =

n⊕
i,k=−n

Gi,k[i+ k],

in a way that exchanges the action by the vector field v(β) and the action of the (0, 1)-form
f(β). §22 Theorem follows from the isomorphism G ∼= Gf by a careful analysis of the BGG
correspondence and some general facts about Hodge modules.
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1.5 Some applications

27. One application is a new proof for the “numerical perverse = Hodge” symmetry [SY22b]
for compact holomorphic symplectic manifolds. Our proof does not use the existence of a
hyperkähler metric on M ; in return, we need to assume that B is a complex manifold.

Theorem (Shen-Yin). Let M be a holomorphic symplectic manifold that is compact and
Kähler. If π : M → B is a Lagrangian fibration whose base B is a complex manifold, then

Hj(B,Gi,k) ∼= Hj(B,Gk,i) for all i, j, k ∈ Z.

28. Looijenga-Lunts [LL97, §4] and Verbitsky [Ver96] showed that cohomology of a com-
pact hyperkähler manifold with a Lagrangian fibration carries an action by the Lie algebra
so6(C) ∼= sl4(C). We prove a generalization of this result to Lagrangian fibrations on com-
pact holomorphic symplectic manifolds.

Theorem. Let M be a holomorphic symplectic compact Kähler manifold, and let π : M →
B be a Lagrangian fibration over a compact Kähler manifold B. In this situation, the
cohomology of M is a representation of the Lie algebra sl4(C).

More precisely, the weight spaces of this representation are

Hi,j,k = Hi+j(B,Gj,k) = Hj
(
B, grF−k DR(Pi)

)
,

and the representation on

n⊕
j,k=−n

Hn+k,n+j(M) ∼=
n⊕

i,j,k=−n

Hi,j,k

is built from the two operators ω2 and σ1 and the action by a Kähler form on B. Besides
the symplectic relative Hard Lefschetz theorem, our proof relies on some identities among
differential forms on M ; this is entirely different from Verbitsky’s proof, which needs a
hyperkähler metric and the theory of harmonic forms.

29. Another (quite elementary) byproduct is the following bound on the supports in the
decomposition theorem for Lagrangian fibrations (see §47 Proposition); this only relies on
the the fact the Lagrangian fibrations are equidimensional.

Proposition. In the decomposition by strict support of the Hodge module Pi, the support of
every summand has dimension ≥ |i|.

For example, consider the decomposition by strict support of the Hodge module P−n+1,
whose restriction to the smooth locus of π is the variation of Hodge structure on H1(Mb,Q),
where Mb = π−1(b). The summand with strict support B is the intersection complex of the
variation of Hodge structure. The proposition is telling us that all other summands in the
decomposition by strict support must be supported on divisors in B.

2 Hodge modules and the decomposition theorem

30. In this chapter, we review a few relevant results about Hodge modules and introduce
the main objects of study. For a short overview of Hodge modules, one can look at Saito’s
“Introduction to Mixed Hodge Modules” [Sai89] or my more recent survey paper [Sch20];
for more details, there are Saito’s original papers [Sai88, Sai90], as well as the “Mixed Hodge
Module Project” by Sabbah and myself [SS16].
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31. Recall that a Hodge module on a complex manifold B has three components: a perverse
sheaf P with coefficients in Q; a right DB-module P; and a good filtration F•P by coherent
OB-modules. The three components are related by the Riemann-Hilbert correspondence:
the precise requirement is that

DR(P) ∼= P ⊗Q C
are isomorphic as perverse sheaves with coefficients in C. The de Rham complex (or Spencer
complex) of the right D-module P is the complex

DR(P) =
[
P ⊗

∧n TB → · · · → P ⊗ TB → P
]

which lives in cohomological degrees −n, . . . , 0, where n = dimB. The differential in the de
Rham complex is given by the (local) formula

δ : P ⊗
∧k TB → P ⊗

∧k−1 TB , δ(s⊗ ∂J) =

n∑
j=1

sgn(J, j) · s∂j ⊗ ∂J\{j}.

Here the notation is as follows. Let t1, . . . , tn be local holomorphic coordinates on B, and
denote by ∂j = ∂/∂tj the resulting holomorphic vector fields. For any subset J ⊆ {1, . . . , n},
we list the elements in increasing order as j1 < · · · < jℓ, and then define

∂J = ∂j1 ∧ · · · ∧ ∂jℓ

with the convention that this expression equals 1 when J is empty. We also define

sgn(J, j) =

{
(−1)k−1 if j = jk,

0 if j ̸∈ J .

Note that we are always using Deligne’s Koszul sign rule, according to which swapping two
elements of degrees p and q leads to a sign (−1)pq; this is the reason for the factor sgn(J, j).

32. The de Rham complex DR(P) is filtered by the subcomplexes

Fk DR(P) =
[
Fk−nP ⊗

∧n TB → · · · → Fk−1P ⊗ TB → FkP
]
.

The graded pieces of this filtration give us a collection of complexes of coherent OB-modules

grFk DR(P) =
[
grFk−n P ⊗

∧n TB → · · · → grFk−1 P ⊗ TB → grFk P
]
.

Since the rational structure on P is mostly irrelevant for our purposes, we generally work
with the underlying filtered D-module (P, F•P).

33. As in the introduction, let M be a holomorphic symplectic complex manifold of dimen-
sion 2n, and let π : M → B be a Lagrangian fibration. Then QM [2n] is a Hodge module
of weight 2n on M , and so the Tate twist QM (n)[2n] has weight 0. The underlying filtered
D-module is ωM , with the filtration for which grF−n ωM = ωM . Since we are interested in the
cohomology of the fibers, we now apply the decomposition theorem [Sai88, Thm. 5.3.1]; this
holds for proper holomorphic mappings from Kähler manifolds by recent work of Mochizuki
[Moc22]. According to the decomposition theorem, the direct image decomposes as

Rπ∗QM (n)[2n] ∼=
n⊕

i=−n

Pi[−i],

12



where each Pi is a polarizable Hodge module of weight i on the complex manifold B. Note
that Pi can only be nonzero for i = −n, . . . , n; this is because all fibers of π have dimension
n by [Mat00, Thm. 1]. On the open subset of B over which π is submersive, the fibers of
π are n-dimensional abelian varieties, and Pi is just the variation of Hodge structure on
the (n + i)-th cohomology of the fibers. If we write (Pi, F•Pi) for the filtered D-module
underlying Pi, we get an induced decomposition

π+

(
ωM , F•ωM

) ∼= n⊕
i=−n

(Pi, F•Pi)[−i].

in the derived category of filtered right DB-modules.

34. We are going to need a more concrete description for the direct image of (ωM , F•ωM ) in
terms of smooth forms. This is easily derived from Saito’s formalism of induced D-modules
[Sai88, §2.1]. Let Ap,q

M be the sheaf of smooth (p, q)-forms on M ; this is a fine sheaf, and
therefore acyclic for the functor π∗. Let Cπ be the complex of filtered right DB-modules
whose i-th term is the filtered right DB-module

Ci
π =

⊕
p+q=i

π∗An+p,n+q
M ⊗OM

(DB , F•+pDB),

and whose differential is given (in local coordinates) by the formula

dπ : Ci
π → Ci+1

π , dπ
(
α⊗D

)
= dα⊗D +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jD,

where ∂j = ∂/∂tj . The indexing is done is such a way that (Pi, F•Pi) is exactly the i-th
cohomology module of the complex Cπ; the decomposition theorem tells us that

Cπ ∼=
n⊕

i=−n

(Pi, F•Pi)[−i] (34.1)

in the derived category of filtered right DB-modules. (More precisely, this is a consequence
of the strictness property for the direct image of the underlying filtered D-modules.) Passing
to the associated graded objects, we get an isomorphism

grF• Cπ ∼=
n⊕

i=−n

grF• Pi[−i]

in the derived category of graded modules over grF• DB
∼= Sym•(TB). The left-hand side is

the complex with terms

grF• Ci
π =

⊕
p+q=i

π∗An+p,n+q
M ⊗OM

Sym•+p(TB),

and with differential (again in local coordinates)

dπ
(
α⊗ P

)
= ∂̄α⊗ P +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jP.

Compare this with Laumon’s description [Lau83, Constr. 2.3.3] of the associated graded of
the direct image in the derived category of filtered D-modules.
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35. Let ω ∈ A1,1(M) be a Kähler form on M . Once we have made this choice, there is
a preferred decomposition in the decomposition theorem, constructed by Deligne [Del94];
with considerable understatement, Deligne calls it “less bad” than the others. This works
as follows. Since dω = 0, the Kähler form induces a morphism of complexes

ω : Cπ → Cπ(−1)[2]

that increases the cohomological degree by 2 and decreases the degree with respect to the
filtration by 1. For any choice of decomposition in the decomposition theorem, the isomor-
phism in (34.1) lets us break up

ω :

n⊕
i=−n

(Pi, F•Pi)[−i] →
n⊕

i=−n

(Pi, F•−1Pi)[2− i]

into a finite sum ω = ω2 + ω1 + ω0 + · · · , where each component ωj is a morphism

ωj : (Pi, F•Pi) → (Pi+j , F•−1Pi+j)[2− j]

in the derived category of filtered right DB-modules. According to the relative Hard Lef-
schetz theorem, the morphism

ωi
2 : (P−i, F•Pi) → (Pi, F•−iPi)

is an isomorphism for every i ≥ 1. This means that we get a representation of the Lie
algebra sl2(C) on the direct sum

n⊕
i=−n

Pi.

If H,X,Y ∈ sl2(C) denote the three standard generators, then X acts as ω2 and H acts as
multiplication by the integer i on the summand Pi. Deligne proves that there is a unique
choice of decomposition for which the components ωj with j ≤ 1 are primitive, meaning
that they commute with the operator Y in the sl2(C)-representation. Since the weight of a
primitive element (with respect to adY) must be ≤ 0, it follows that ω1 = 0. In general,
Deligne’s decomposition tends to eliminate unwanted components in the decomposition of
various operators; we will exploit this effect later on.

36. Let us now turn our attention to the symplectic form σ ∈ H0(M,Ω2
M ). Since we are

assuming that dσ = 0, the symplectic form also induces a morphism of complexes

σ : Cπ → Cπ(−2)[2]

that increases the cohomological degree by 2 and decreases the degree with respect to the
filtration by 2. Using (34.1), we again get a decomposition of

σ :

n⊕
i=−n

(Pi, F•Pi)[−i] →
n⊕

i=−n

(Pi, F•−2Pi)[2− i]

into a finite sum σ = σ2 + σ1 + σ0 + · · · , where each component σj is now a morphism

σj : (Pi, F•Pi) → (Pi+j , F•−2Pi+j)[2− j].

14



37. The Lagrangian condition implies the vanishing of the topmost component σ2.

Lemma. We have σ2 = 0.

Proof. Since there is no shift, σ2 : Pi → Pi+2 is a morphism of right DB-modules. Both D-
modules underlie polarizable Hodge modules on B, and therefore admit a decomposition by
strict support [Sai88, §5.1]. It is then enough to show that σ2 vanishes on every summand in
this decomposition; the reason is that morphisms of D-modules respect the decomposition
by strict support. If we take one of the summands of the Hodge module Pi, say with strict
support Z ⊆ B, then on a dense open subset of Z, it comes from a variation of Hodge
structure of weight i− dimZ [Sai88, Lem. 5.1.10]. The strict support condition then means
that we only have to check that the restriction of σ2 to a general point b ∈ Z is zero. Let
ib : {b} → B be the inclusion. By proper base change for Hodge modules, we have

i∗bRπ∗QM (n)[2n] ∼= Rπ∗QMb
(n)[2n],

where Mb = π−1(b); consequently, H− dimZi∗bPi, which is a Hodge structure of weight

i−dimZ, is isomorphic to a direct summand in H2n+i−dimZ(Mb,Q)(n). If we let M̃b → Mb

be a resolution of singularities, then for weight reasons, the composition

H− dimZi∗BPi → H2n+i−dimZ(Mb,Q)(n) → H2n+i−dimZ(M̃b,Q)(n)

is injective. This reduces the problem to showing that the pullback of σ to M̃b is trivial;
but this follows from the fact that π : M → B is Lagrangian, according to a theorem by
Matsushita [Mat00, Thm. 1].

38. Since we are using Deligne’s decomposition, we can say a bit more about the other
components of σ = σ1 + σ0 + · · · . This is not really going to play a role in what follows,
but the same kind of proof will appear later on.

Lemma. We have [ω2, σ1] = 0, and the components σj with j ≤ 0 are primitive (with
respect to the representation of sl2(C) determined by ω2).

Proof. Since the two forms ω and σ commute, we get [ω, σ] = 0. Decomposing this relation
by degree, we find that [ω2, σ1] = 0; likewise, [ω2, σ0] = 0, and because σ0 has weight 0
(in the sl2(C)-representation), this means that σ0 is primitive. We can therefore assume by
induction that σ0, . . . , σ−k+1 are primitive for some k ≥ 1. Let us prove that σ−k is also
primitive. From the relation [ω, σ] = 0, we get

[ω2, σ−k] + [ω0, σ−k+2] + · · ·+ [ω−k+3, σ1] = 0.

We know that (adω2)
j+1ω−j = 0 for all j ≥ 0, due to the fact that ω−j is primitive;

similarly, (adω2)
j+1σ−j = 0 for j = 0, . . . , k − 1. Now adω2 is a derivation, and so

−(adω2)
k+1σ−k = (adω2)

k[ω0, σ−k+2] + · · ·+ (adω2)
k[ω−k+3, σ1] = 0.

Since σ−k has weight −k, this proves that it is primitive.
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39. We are going to need two other facts about Hodge modules. The first is the compati-
bility of the de Rham complex with direct images [Sai88, §2.3.7]. It says that

Rπ∗ gr
F
−k DR(ωM ) ∼=

n⊕
i=−n

grF−k DR(Pi)[−i],

where we give ωM the filtration for which grF−n ωM = ωM , in accordance with the Tate twist

in QM (n)[2n]. Since we have grF−k DR(ωM ) = Ωn+k
M [n− k], it follows that

Rπ∗Ω
n+k
M [n− k] ∼=

n⊕
i=−n

grF−k DR(Pi)[−i]. (39.1)

40. The second fact about Hodge modules concerns duality. Let DB denote the duality
functor on Hodge modules. The polarization on QM (n)[2n] induces an isomorphism P−i

∼=
DB(Pi) between Hodge modules of weight i. On the level of filtered D-modules, this gives
us an isomorphism of right DB-modules

P−i
∼= ωB ⊗RHomDB

(
Pi,DB

)
[n],

compatible with the filtrations on both sides. Passing to the associated graded modules over
grF• DB

∼= Sym(TB), we get

grF• P−i
∼= ωB ⊗RHomSym(TB)

(
grF• Pi,Sym(TB)

)
[n],

where sections of Symj(TB) act with an extra factor of (−1)j on the right-hand side (due
to the sign in the conversion from left to right D-modules). The important fact, which is
hidden inside the definition of the duality functor for Hodge modules, is that grF• Pi is an
n-dimensional Cohen-Macaulay module over Sym•(TB) [Sai88, Lem 5.1.13]. In geometric
terms, grF• Pi gives a coherent sheaf on the cotangent bundle T ∗B, whose support is the
(n-dimensional) characteristic variety of the D-module Pi, and the statement is that this
sheaf is Cohen-Macaulay. This is one of the special properties of Hodge modules, and the
proof of §22 Theorem would not work without this fact.

3 Basic properties of the complexes Gi,k

41. The conjecture by Shen and Yin is about the complexes of coherent OB-modules

Gi,k = grF−k DR(Pi)[−i].

In this chapter, we are going to look at the basic properties of these complexes. The results
that we prove here only rely on the fact that M and B are complex manifolds and that all
fibers of π : M → B have the same dimension.5

42. The first observation is that the Gi,k are related to the direct image of Ωn+k
M under the

Lagrangian fibration π : M → B. Indeed, if we rewrite (39.1) in these terms, we get

Rπ∗Ω
n+k
M [n− k] ∼=

n⊕
i=−n

Gi,k. (42.1)

Since Pi can only be nonzero for −n ≤ i ≤ n, and since Ωn+k
M can only be nonzero for

−n ≤ k ≤ n, it follows that Gi,k = 0 unless −n ≤ i, k ≤ n.

5I thank Junliang Shen for pointing this out to me.
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43. Next, let us see what duality can tell us about the complexes Gi,k. From the fact that
DB(Pi) ∼= P−i are isomorphic as Hodge modules, we get an isomorphism

RHomOB

(
grFk DR(Pi), ωB [n]

)
∼= grF−k DR(P−i),

and therefore an isomorphism between G−i,−k and the Grothendieck dual of Gi,k:

RHomOB

(
Gi,k, ωB [n]

) ∼= G−i,−k; (43.1)

44. The isomorphism in (42.1) is also good for computing the amplitude of the complexes
Gi,k, which is in agreement with §12 Conjecture. We know that all fibers of the Lagrangian
fibration π : M → B have dimension n, and so the left-hand side of (42.1) is concentrated
in degrees {−n + k, . . . , k}. The same thing is therefore true for the individual summands
Gi,k. On the other hand, we have F−n−1Pi = 0, and so all nonzero terms in

Gi,k =
[
grF−k−n Pi ⊗

∧n TB → · · · → grF−k−1 Pi ⊗ TB → grF−k Pi

]
[−i] (44.1)

live in cohomological degrees
{
−n+max(i, i+ k), . . . , i

}
. Taken together with (43.1), these

simple observations prove the following lemma.

Lemma. The complex Gi,k is concentrated in degrees{
−n+max(i, k, i+ k), . . . ,min(i, k, i+ k)

}
.

In particular, it is exact unless −n ≤ i− k ≤ n.

The bound on the amplitude is symmetric in i and k, as predicted by §12 Conjecture.
Note that the complex Gi,k is exact unless |i| ≤ n and |k| ≤ n and |i− k| ≤ n. This is the
reason for the hexagonal shape of the drawing in §16.

45. One nice consequence of the lemma is a sharp bound on the generation level of the Hodge
filtration on Pi; this is very hard to come by in general. The complex grF−k DR(Pi) = Gi,k[i]
has no cohomology in degree 0 provided that k − i < 0, and this means that

grFp−1 Pi ⊗ TB → grFp Pi

is surjective for p ≥ −i+1. The Hodge filtration on the D-module Pi is therefore generated
in degree −i; in symbols, F−i+jPi = F−iPi ·FjDB for j ≥ 0. In Saito’s terminology [Sai09],
this is saying that the generation level of Pi is ≤ −i. (The bound is of course achieved over
the smooth locus of π, since the smooth fibers are n-dimensional abelian varieties.)

46. Another consequence is that we can compute the projective amplitude of Gi,k.

Lemma. On every Stein open subset of B, the complex Gi,k is isomorphic (in the derived
category) to a complex of locally free OB-modules concentrated in degrees{

−n+max(i, k, i+ k), . . . ,min(i, k, i+ k)
}
.

Proof. After restricting to the open subset in question, we may assume that B is a Stein
manifold. In particular, every coherent OB-module has a bounded resolution by locally free
OB-modules. In the derived category, the complex Gi,k is therefore isomorphic to a bounded
complex E • of locally free OB-modules, where E j = 0 for j > min(i, k, i + k). The dual
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complex HomOB
(E −•, ωB) computes RHomOB

(
Gi,k, ωB

) ∼= G−i,−k[−n], and according to
§44 Lemma, the complex G−i,−k[−n] is concentrated in degrees{

−min(i, k, i+ k), . . . , n−max(i, k, i+ k)
}
.

After truncating the complex HomOB
(E −•, ωB) in degrees ≤ n−max(i, k, i+k), it becomes

a complex of locally free OB-modules in degrees{
−min(i, k, i+ k), . . . , n−max(i, k, i+ k)

}
.

We now get the result for the original complex Gi,k by dualizing again.

Taken together with (42.1), this tells us that Rπ∗Ω
n+k
M is isomorphic, on every Stein

open subset of B, to a complex of locally free OB-modules in degrees {0, . . . , n}. Again, this
is obviously true over the smooth locus of π; the surprising thing is that it continues to be
true on the locus where the fibers are singular.

47. Recall that any polarizable Hodge module admits, even locally on B, a decomposition
by strict support [Sai88, §5.1]. The bound on the amplitude of the complexes Gi,k puts the
following unexpected restriction on the structure of the Hodge modules Pi.

Proposition. In the decomposition by strict support of the Hodge module Pi, the support
of every summand has dimension ≥ |i|.

Proof. Since P−i
∼= Pi(i) by the relative Hard Lefschetz theorem, we may assume without

loss of generality that i ≥ 0. Let P be one of the summands in the decomposition of Pi by
strict support. For any k ≥ i, consider the complex grF−k DR(P). It is supported on SuppP
and lives in degrees ≤ 0, and so the dual complex

RHomOB

(
grF−k DR(P), ωB

)
is concentrated in degrees ≥ r, where r = codimB(SuppP ). It is also a direct summand in

RHomOB

(
grF−k DR(Pi), ωB

)
= RHomOB

(
Gi,k, ωB [n]

)
[−n− i] ∼= G−i,−k[−n− i],

and by §44 Lemma, it is therefore concentrated in degrees ≤ n−k. Now if we had r > n− i,
then the complex grF−k DR(P) would be exact for every k ≥ i, and so grF−k P = 0 for k ≥ i,
and therefore F−iP = 0. But this would say that P = 0, because the Hodge filtration on Pi

(and therefore on P) is generated in degree −i. Since this is impossible, we get r ≤ n−i.

48. We end this chapter by recording the effect of the Kähler form ω and the symplectic
form σ on the complexes Gi,k. We already said in the introduction that the relative Hard
Lefschetz theorem can be interpreted as a symmetry among the complexes Gi,k. From
ω2 : (Pi, F•Pi) → (Pi+2, F•−1Pi+2), we obtain a morphism of complexes

ω2 : Gi,k → Gi+2,k+1[2],

and the relative Hard Lefschetz theorem implies that

ωi
2 : G−i,k → Gi,i+k[2i] (48.1)

is an isomorphism for every i ≥ 1. Similarly, σ1 : (Pi, F•Pi) → (Pi+1, F•−2Pi+1)[1] gives us
a morphism (in the derived category)

σ1 : Gi,k → Gi+1,k+2[2],

18



and the “symplectic relative Hard Lefschetz theorem” (in §15 Theorem) claims that

σk
1 : Gi,−k → Gi+k,k[2k] (48.2)

is also an isomorphism (in the derived category). We will prove this in Chapter 5.

4 Matsushita’s theorem

49. The fact that σk : Ωn−k
M → Ωn+k

M is an isomorphism for every k ≥ 1 gives us at least some
information about the morphisms σ1 : Gi,k → Gi+1,k+2[2]. On its own, this is not strong
enough to prove §15 Theorem, but it does lead to a rather short proof for the following
theorem by Matsushita [Mat05, Thm. 1.3], mentioned in the introduction.

Theorem (Matsushita). Let π : M → B be a Lagrangian fibration on a holomorphic sym-
plectic manifold of dimension dimM = 2n. If M is Kähler, one has

Rπ∗OM
∼=

n⊕
i=0

Ωi
B [−i].

In this chapter, we explain the proof of Matsushita’s result, to demonstrate in an inter-
esting special case how to use the symplectic form σ.

50. Since M is holomorphic symplectic, σn gives an isomorphism between OM and the
canonical bundle Ω2n

M . From (39.1) with k = n, we therefore get

Rπ∗OM
∼= Rπ∗Ω

2n
M

∼=
n⊕

i=−n

grF−n DR(Pi)[−i].

In the special case where M and B are projective complex manifolds, this kind of result was
first proved by Kollár [Kol86b]. In order to prove §49 Theorem, it is then enough to show
that grF−n DR(Pi) ∼= Ωi

B . (Note that grF−n DR(Pi) = grF−n Pi is actually a sheaf, due to the
fact that F−n−1Pi = 0.)

51. We will deduce this from the isomorphism σk : Ωn−k
M → Ωn+k

M . Recall from (42.1) that

Rπ∗Ω
n+k
M [n− k] ∼=

n⊕
i=−n

Gi,k.

If we take cohomology in the lowest possible degree, this gives

π∗Ω
n+k
M

∼=
n−k⊕
i=0

Hk−nG−i,k

for every k ≥ 0, due to the bound on the amplitude of the complex Gi,k in §44 Lemma. In
a similar manner, we find (still for k ≥ 0) that

π∗Ω
n−k
M

∼=
n⊕

i=k

H−k−nG−i,−k.

19



From the fact that σk : Ωn−k
M → Ωn+k

M is an isomorphism, we now deduce that

σk :

n⊕
i=k

H−k−nG−i,−k →
n−k⊕
i=0

Hk−nG−i,k (51.1)

must be an isomorphism for every k ≥ 1.

52. Let us look at how this isomorphism acts on the summand with i = n. Recall from §37
Lemma that σ = σ1 + σ0 + · · · , where the individual components are morphisms

σj : Gi,k → Gi+j,k+2[2− j]

in the derived category. By expanding σk = (σ1 + σ0 + · · · )k, we find that the component
of highest degree is exactly the morphism

σk
1 : H−k−nG−n,−k → Hk−nG−n+k,k. (52.1)

All the other components of σk go into the remaining summands (with i < n − k) of the
second sum. This puts us into the situation of the following abstract lemma.

Lemma. Let A,B,C,D be objects in an abelian category. Suppose that we have morphisms
f : A → C, g : B → C, and h : B → D, such that

A⊕B C ⊕D

(
f g
0 h

)

is an isomorphism. Then f is injective, C ∼= A⊕ coker(f) and B ∼= coker(f)⊕D.

Proof. It is easy to see that f is injective and that the composition

B → C ⊕D → coker(f)⊕D

is an isomorphism. Now the composition

coker(f) B C coker(f)
g

is the identity, and this gives us the desired splitting C ∼= A⊕ coker(f).

53. We apply this lemma to the isomorphism in (51.1), letting A be the n-th summand
in the first sum and C the (n − k)-th summand in the second sum. The result is that the
morphism in (52.1) is injective, and that we have a direct sum decomposition

Hk−nG−n+k,k
∼= H−k−nG−n,−k ⊕ coker(σk

1 ). (53.1)

Now Pn is just the Hodge module QB [n], and so the underlying right D-module is Pn
∼= ωB ,

with the filtration for which grF−n Pn
∼= ωB . Together with the relative Hard Lefschetz

isomorphism in (48.1), this gives

G−n,−k
∼= Gn,n−k[2n] = grFk−n DR(Pn)[n] ∼= Ωn−k

B [n+ k],

and therefore H−k−nG−n,−k
∼= Ωn−k

B . For the same reason, we have

G−n+k,k
∼= Gn−k,n[2n− 2k]
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and so Hk−nG−n+k,k
∼= grF−n Pn−k

∼= Rn−kπ∗ωB . This is a torsion-free coherent sheaf
[Kol86a, Thm. 2.1] of generic rank

(
n

n−k

)
. The reason is that over the smooth locus of the

Lagrangian fibration, Pi comes from the variation of Hodge structure (of weight i − n) on
the cohomology groups Hn+i(Mb,Q)(n), and grF−n Pi is the tensor product of ωB with the
Hodge bundle whose fibers are the subspaces Hn,i(Mb) in the Hodge decomposition. Since
Mb is a compact complex torus (and in fact an abelian variety) of dimension n, this subspace
has dimension

(
n
i

)
.

54. Now the first and the second term in (53.1) have the same generic rank, and because the
left-hand side is torsion-free, it follows that coker(σk

1 ) = 0, which means that grF−n Pn−k
∼=

Ωn−k
B , as required for the proof of §49 Theorem. So we see that Matsushita’s theorem holds

mostly for formal reasons: the only geometric facts that we used are that π is equidimensional
and that the generic fiber of π is a compact complex torus of dimension n. (Along the way,
we also proved the case k = n of §15 Theorem.)

55. By a similar method, one can still do the next case of §15 Theorem, namely that

σn−1
1 : Gi,−n+1 → Gi+n−1,n−1[2n− 2]

is an isomorphism for every i ∈ Z. As before, it turns out that the two complexes can differ
only by the addition of a single locally free sheaf on B; and from the geometric fact that the
general fiber of π is a compact complex torus of dimension n, one can deduce that the rank
of this locally free sheaf must be zero. But in all other cases, just knowing what happens
over the smooth locus of π is not enough.

5 Proof of the symmetry conjecture

56. In this chapter, we investigate the relationship between §12 Conjecture (which predicts
that Gi,k

∼= Gk,i) and the “symplectic relative Hard Lefschetz theorem” in §15 Theorem.
Perhaps surprisingly, it turns out that the two statements are basically equivalent. The proof
below relies a more careful analysis of the isomorphism between Rπ∗Ω

n−k
M and Rπ∗Ω

n+k
M .

We are going to need the following small lemma, which generalizes §52 Lemma to decom-
positions in the derived category.

Lemma. Let A,B,C,D be objects in the derived category of an abelian category. Suppose
that we have morphisms f : A → C, g : B → C, and h : B → D, such that

A⊕B C ⊕D

(
f g
0 h

)

is an isomorphism. Then C ∼= A⊕ Cone(f) and B ∼= Cone(f)⊕D.

Proof. Recall that the mapping cone Cone(f) sits in a distinguished triangle

A C Cone(f) A[1].
f

The assumptions imply that f : A → C is injective on cohomology, and so

0 → Hi(A) → Hi(C) → Hi
(
Cone(f)

)
→ 0
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is short exact for every i ∈ Z. Now consider the composition

B → C ⊕D → Cone(f)⊕D.

It is easy to see that this induces isomorphisms on cohomology, using the short exact se-
quence and the fact that Hi(A)⊕Hi(B) ∼= Hi(C)⊕Hi(D). Therefore B ∼= Cone(f)⊕D,
because we are in the derived category. The composition

Cone(f) B C Cone(f)
g

is the identity, and this again gives us the desired splitting C ∼= A⊕ Cone(f).

57. The following result relates §12 Conjecture and §15 Theorem. Since

Rπ∗Ω
n+k
M [n] ∼=

n⊕
i=−n

Gi,k[k],

this will also be useful later on, when we prove §22 Theorem.

Theorem. The following three statements are equivalent:

(a) The complexes Gi,k and Gk,i are isomorphic in the derived category (for all i, k).

(b) For every k = −n, . . . , n, there is an isomorphism (in the derived category)

n⊕
i=−n

Gi,k[i+ k] ∼=
n⊕

i=−n

Gk,i[i+ k].

(c) For every k ≥ 1, the morphism σk
1 : Gi,−k → Gi+k,k[2k] is an isomorphism.

Note that we are not making any assumptions about the isomorphisms in (a) or (b),
only that they exist (in the derived category). Obviously, the statement in (a) implies the
statement in (b). As explained in §16, the statement in (c), together with the relative Hard
Lefschetz isomorphism G−i,k

∼= Gi,i+k[2i], implies the statement in (a); in more detail,

Gi,k
∼= G−i,k−i[−2i] ∼= G−k,i−k[−2k] ∼= Gk,i

where the first and third isomorphism come from the relative Hard Lefschetz theorem, and
the second isomorphism from (c). Now we only need to show that the statement in (b) is
strong enough to prove the one in (c).

58. We are going to prove, by descending induction on 0 ≤ i ≤ n, that

σk
1 : G−i,−k → G−i+k,k[2k] and σk

1 : Gi−k,−k → Gi,k[2k]

are isomorphisms for every 1 ≤ k ≤ n. (The two statements are equivalent to each other by
duality.) Our starting point is the isomorphism between the two complexes

Rπ∗Ω
n−k
M [n+ k] ∼=

n−k⊕
i=−n

Gi,−k and Rπ∗Ω
n+k
M [n+ k] ∼=

n⊕
i=k−n

Gi,k[2k]
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induced by σk : Ωn−k
M → Ωn+k

M , for 1 ≤ k ≤ n. Consequently,

σk :

n−k⊕
i=−n

Gi,−k →
n⊕

i=−n+k

Gi,k[2k] (58.1)

is an isomorphism (in the derived category); the range of the summation is controlled
by §44 Lemma. As in the proof of Matsushita’s theorem (in Chapter 4), we can expand
σk = (σ1 + σ0 + · · · )k into components; the component of highest degree is exactly the
morphism σk

1 : Gi,−k → Gi+k,k[2k], and the components of lower degree map Gi,−k into
those summands in the second sum whose first index is ≤ i+ k − 1.

59. For the sake of clarity, let me write µi,−k : Gi,−k → Gi+k,k[2k] for the action by σk
1 on

the i-th summand in the first sum. Suppose by induction that we have already proved the
statement we want for all i ∈ {d+ 1, . . . , n}. Using §56 Lemma, we can delete those terms
from the isomorphism in (58.1), and still get an isomorphism

d−k⊕
i=−d

Gi,−k →
d⊕

i=k−d

Gi,k[2k];

here the morphism is still basically σk, except that we have to remove those components
that go into summands with i < k− d in the second sum. We now apply §56 Lemma again,
taking A = G−d,−k and B the rest of the first sum, C = Gk−d,k[2k] and D the rest of the
second sum. The conclusion is that we have (for every k = 0, . . . , n)

Gk−d,k[2k] ∼= G−d,−k ⊕ Cone(µ−d,−k). (59.1)

By a similar argument, applied to the term with i = d− k, we also get

Gd−k,−k
∼= Gd,k[2k]⊕ Cone(µd−k,−k). (59.2)

Here is a schematic picture of the relevant morphisms:

i = −d

i = 0

i = d

k

60. Using the relative Hard Lefschetz isomorphism, we can rewrite (59.1) as

Gd−k,d[d− k] ∼= Gd,d−k[d− k]⊕ Cone(µ−d,−k)[−d− k].
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Now we take the sum over all 0 ≤ k ≤ n to produce an isomorphism

d⊕
k=d−n

Gk,d[k] ∼=
d⊕

k=d−n

Gd,k[k]⊕
n⊕

k=0

Cone(µ−d,−k)[−d− k]. (60.1)

Before we can apply the statement in (b), we have to find a way to add the missing terms.
When k < d−n, both complexes Gk,d and Gd,k are exact (by §44 Lemma). When k > d, the
inductive hypothesis, the relative Hard Lefschetz theorem, and the isomorphism in (59.2)
combine to give us a chain of isomorphisms

Gk,d
∼= Gk−d,−d[−2d] ∼= Gd−k,−k[−2k] ∼= Gd,k ⊕ Cone(µd−k,−k)[−2k].

If we add these terms to the sum in (60.1), and shift both sides by d, we finally arrive at an
isomorphism (in the derived category)

n⊕
k=−n

Gk,d[k + d] ∼=
n⊕

k=−n

Gd,k[k + d]⊕
n⊕

k=0

Cone(µ−d,−k)[−k]⊕
n⊕

k=d+1

Cone(µd−k,−k)[d− k].

Since the first and second term are isomorphic by hypothesis, this is only possible if
Cone(µ−d,−k) = 0 for every 0 ≤ k ≤ n, which means exactly that

σk
1 : G−d,−k → Gk−d,k[2k]

is an isomorphism for every k = 0, . . . , n. By duality, this shows that Gd−k,−k
∼= Gd,k[2k];

but then (59.2) gives Cone(µd−k,−k) ∼= 0, and consequently,

σk
1 : Gd−k,−k → Gd,k[2k]

is an isomorphism as well. This completes the induction, and hence the proof that the
statement in part (b) of §57 Theorem implies the one in (c).

6 Lagrangian fibrations and differential forms

61. This chapter contains some general considerations about 1-forms and vector fields on
Lagrangian fibrations, related to Matsushita’s isomorphism R1π∗OM

∼= Ω1
B . The idea is

that the symplectic form and the Kähler form together allow us to transform holomorphic 1-
forms on the base B of the Lagrangian fibration into ∂̄-closed (0, 1)-forms on the holomorphic
symplectic manifold M . This construction is needed for the proof of §22 Theorem.

62. The symplectic form σ ∈ H0(M,Ω2
M ) gives

n⊕
k=−n

Ωn+k
M

the structure of a module over the Lie algebra sl2(C). Following one of several competing
conventions, we denote the three standard generators of sl2(C) by the letters

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.
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The relations are [H,X] = 2X, [H,Y] = −2Y, and [X,Y] = H. In our specific representation,
the semisimple element H acts as multiplication by the integer k on the summand Ωn+k

M , and
the nilpotent element X acts as wedge product with the holomorphic 2-form σ. By general
theory, this can be lifted to a representation of the Lie group SL2(C), and the symmetry
between Ωn+k

M and Ωn−k
M is best expressed with the help of the Weil element

w = eXe−YeX =

(
0 1
−1 0

)
∈ SL2(C).

The Weil element functions as a sort of linear algebra version of the Hodge ∗-operator (from
the Hodge theory of compact Kähler manifolds). It has the property, easily checked by a
small computation with 2× 2-matrices, that

wHw−1 = −H, wXw−1 = −Y, wYw−1 = −X.

The resulting isomorphism between Ωn−k
M and Ωn+k

M works as follows. Suppose that α ∈
Ωn−k

M is primitive, meaning that σk+1 ∧ α = 0. Then for every 0 ≤ j ≤ k, one has

w

(
1

j!
σj ∧ α

)
=

(−1)j

(k − j)!
σk−j ∧ α.

In particular, w acts on the primitive summand of Ωn−k
M as multiplication by 1

k!σ
k; on the

other summands in the Lefschetz decomposition, it still acts basically as σk, but with certain
rational coefficients that make the whole operator behave better than just σk by itself. We
will see right away why this is useful.

63. Let β ∈ H0(U,Ω1
B) be a holomorphic 1-form, defined on some open subset U ⊆ B. In

order to keep the notation from getting complicated, let us agree (for the purposes of this
chapter) to replace the Lagrangian fibration π : M → B by its restriction π : π−1(U) → U , so
that we can work with β ∈ H0(B,Ω1

B) and do not have to say “restricted to U” all the time.
We may also consider the pullback π∗β as a smooth (1, 0)-form that satisfies ∂̄(π∗β) = 0.
Because the symplectic form σ is nondegenerate, we get an associated holomorphic vector
field ξ ∈ H0(M,TM ), defined by the formula π∗β = ξ ⌟σ = σ(ξ,−), where the symbol ⌟
means contraction by a vector field.

64. The Weil element induces an isomorphism

wσ : A
n−k,q(M) → An+k,q(M)

between the two spaces of smooth forms, and the action by wσ exchanges wedge product
with π∗β and contraction with the associated vector field ξ.

Lemma. For every k, q ∈ Z, the following diagram commutes:

An−k,q(M) An+k,q(M)

An−k+1,q(M) An+k−1,q(M)

π∗β∧

wσ

ξ ⌟

wσ

Proof. Suppose first that α ∈ An−k,q(M) is primitive, so that σk+1 ∧ α = 0. Then

ξ ⌟wσ(α) =
1

k!
ξ ⌟(σk ∧ α) =

1

(k − 1)!
σk−1 ∧ π∗β ∧ α+

1

k!
σk ∧ (ξ ⌟α).
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We still have σk+1 ∧ π∗β ∧ α = 0, and therefore

π∗β ∧ α = γ0 + σ ∧ γ1,

where γ0 ∈ An−k+1,q(M) and γ1 ∈ An−k−1,q(M) are both primitive. In particular, we have
σk ∧ π∗β ∧ α = σk+1 ∧ γ1. If we contract the identity σk+1 ∧ α = 0 with the holomorphic
vector field ξ, we obtain

(k + 1)σk ∧ π∗β ∧ α+ σk+1 ∧ (ξ ⌟α) = 0,

and since σk+1 : An−k−1,q(M) → An+k+1,q(M) is an isomorphism, it follows that ξ ⌟α =
−(k + 1)γ1. We can now substitute into the identity from above and get

ξ ⌟wσ(α) =
1

(k − 1)!
σk−1 ∧ γ0 +

1

(k − 1)!
σk ∧ γ1 −

k + 1

k!
σk ∧ γ1

1

(k − 1)!
σk−1 ∧ γ0 −

1

k!
σk ∧ γ1 = wσ(π

∗β ∧ α).

This calculation explains why we need the Weil element (instead of just σk).
The general case is almost the same. Because of the Lefschetz decomposition, it is enough

to consider forms of the shape 1
j!σ

j ∧ α where α ∈ An−k,q(M) is primitive and 0 ≤ j ≤ k.

As before, π∗β ∧ α = γ0 + σ ∧ γ1 and ξ ⌟α = −(k + 1)γ1. This gives us

ξ ⌟wσ

(
1

j!
σj ∧ α

)
=

(−1)j

(k − j − 1)!
σk−j−1 ∧ π∗β ∧ α+

(−1)j

(k − j)!
σk−j ∧ (ξ ⌟α)

=
(−1)j

(k − j − 1)!
σk−j−1 ∧ γ0 +

(−1)j+1(j + 1)

(k − j)!
σk−j ∧ γ1.

On the other hand, the relation π∗β ∧ α = γ0 + σ ∧ γ1 implies that

wσ

(
π∗β ∧ 1

j!
σj ∧ α

)
= wσ

(
1

j!
σj ∧ γ0 + (j + 1)

1

(j + 1)!
σj+1 ∧ γ1

)
=

(−1)j

(k − 1− j)!
σk−1−j ∧ γ0 + (j + 1)

(−1)j

(k − j)!
σk−j ∧ γ1.

The two expressions match, and so the diagram commutes.

65. Since β comes from B, the holomorphic vector field ξ is tangent to the fibers of π. To
see why, let x ∈ M be a point, and assume that the fiber Mb = π−1(b) is smooth at x, where
b = π(x). Since π is a Lagrangian fibration, the tangent space TxMb is a maximal isotropic
subspace of TxM . For any holomorphic tangent vector η ∈ TxMb, we have

σ(ξ, η) = (π∗β)(η) = 0,

because π∗β vanishes along the fibers of π. By maximality, we must have ξ ∈ TxMb, and so
ξ is indeed tangent to the fiber at the point x.
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66. From the holomorphic vector field ξ, we can further construct a (0, 1)-form on M with
the help of the Kähler form ω. We define θ = −ξ ⌟ω = −ω(ξ,−); the minus sign is justified
by §67 Lemma below. As one would expect, the (0, 1)-form θ is ∂̄-closed, and therefore
defines a class in H1(M,OM ).

Lemma. We have ∂̄θ = 0.

Proof. This is easiest if we use the explicit formula for the exterior derivative. According to
this formula, for any two smooth (0, 1)-vector fields λ and µ, one has(

∂̄θ
)
(λ, µ) = λ · θ(µ)− µ · θ(λ)− θ

(
[λ, µ]

)
= µ · ω(ξ, λ)− λ · ω(ξ, µ) + ω

(
ξ, [λ, µ]

)
.

Because dω = 0, we have

ξ · ω(λ, µ) + λ · ω(µ, ξ) + µ · ω(ξ, λ) + ω
(
ξ, [λ, µ]

)
+ ω

(
λ, [µ, ξ]

)
+ ω

(
µ, [ξ, λ]

)
= 0,

and so we can rewrite the right-hand side in the form

ω
(
λ, [ξ, µ]

)
− ω

(
µ, [ξ, λ]

)
− ξ · ω(λ, µ).

The third term vanishes because ω has type (1, 1), and the other two terms vanish because
ξ is holomorphic. Therefore ∂̄θ = 0.

67. The Kähler form ω determines another representation of the Lie algebra sl2(C), and
the resulting Weil element induces an isomorphism

wω : A
n−p,n−q(M) → An+q,n+p(M)

between the two spaces of smooth forms. This time, it exchanges contraction with the vector
field ξ and wedge product with the (0, 1)-form θ = −ξ ⌟ω.

Lemma. For every p, q ∈ Z, the following diagram commutes:

An−p,n−q(M) An+q,n+p(M)

An−p−1,n−q(M) An+q,n+p+1(M)

ξ ⌟

wω

θ∧

wω

Proof. Suppose first that α ∈ An−p,n−q(M) is primitive, meaning that ωk+1 ∧α = 0, where
k = p+ q ≥ 0. Contraction with ξ gives

0 = ξ ⌟(ωk+1 ∧ α) = −(k + 1)ωk ∧ θ ∧ α+ ωk+1 ∧ (ξ ⌟α). (67.1)

It follows that ωk+2 ∧ (ξ ⌟α) = 0, and therefore ξ ⌟α ∈ An−p−1,n−q(M) is also primitive.
Since we know how the Weil element acts on primitive forms, we then compute that

wω(ξ ⌟α) =
1

(k + 1)!
ωk+1 ∧ (ξ ⌟α) =

1

k!
ωk ∧ θ ∧ α = θ ∧ wω(α).

The general case is only marginally harder. Because of the Lefschetz decomposition, it is
enough to consider forms of the shape 1

j!ω
j ∧ α where α ∈ An−p,n−q(M) is primitive and
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0 ≤ j ≤ k. We already know that ξ ∧ α ∈ An−p−1,n−q(M) is primitive. At the same time,
θ ∧ α ∈ An−p,n−q+1(M) is annihilated by ωk+1, and so it has a Lefschetz decomposition

θ ∧ α = γ0 + ω ∧ γ1,

where γ0 ∈ An−p,n−q+1(M) and γ1 ∈ An−p−1,n−q(M) are primitive. From (67.1), we get

ωk+1 ∧ (ξ ⌟α) = (k + 1)ωk ∧ θ ∧ α = (k + 1)ωk+1 ∧ γ1,

which implies that ξ ⌟α = (k + 1)γ1. Consequently,

ξ ⌟
1

j!
ωj ∧ α = − 1

(j − 1)!
ωj−1 ∧ θ ∧ α+

1

j!
ωj ∧ (ξ ⌟α)

= − 1

(j − 1)!
ωj−1 ∧ γ0 + (k + 1− j)

1

j!
ωj ∧ γ1.

If we now apply the Weil element wω, we obtain

wω

(
ξ ⌟

1

j!
ωj ∧ α

)
=

(−1)j

(k − j)!
ωk−j ∧ γ0 +

(−1)j

(k − j)!
ωk+1−j ∧ γ1

=
(−1)j

(k − j)!
ωk−j ∧ θ ∧ α = θ ∧ wω

(
1

j!
ωj ∧ α

)
.

This proves that the diagram is commutative.

68. We are really interested in the operation of taking wedge product with θ. Since

θ ∧ α = −(ξ ⌟ω) ∧ α = ω ∧ (ξ ⌟α)− ξ ⌟(ω ∧ α), (68.1)

we can realize this as the commutator of the Lefschetz operator ω∧ and the contraction
operator ξ ⌟. (This formula shows one more time why we need the minus sign in θ = −ξ ⌟ω.)

69. Let us now relate this construction to the decomposition theorem and to the complexes
Gi,k. Let S•

B = Sym•(TB). Recall from §34 that we have an isomorphism

grF• Cπ ∼=
n⊕

i=−n

grF• Pi[−i]

in the derived category of graded SB-modules, where the decomposition is induced by the
one in the decomposition theorem. Here grF• Cπ is the complex of graded SB-modules with

grF• Ci
π =

⊕
p+q=i

π∗A2n+p,q
M ⊗OM

S•+n+p
B ;

the differential in the complex is given by the formula

dπ(α⊗ P ) = ∂̄α⊗D +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jD,

where t1, . . . , tn are local holomorphic coordinates on B, and ∂j = ∂/∂tj . Since ∂̄β = 0,
wedge product with the holomorphic 1-form π∗β defines a morphism of complexes

π∗β : grF• Cπ → grF•−1 Cπ[1]
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that increases the cohomological degree by 1 and decreases the degree with respect to the
grading by 1. This gives us a morphism (in the derived category)

π∗β :

n⊕
i=−n

grF• Pi[−i],→
n⊕

i=−n

grF•−1 Pi[1− i].

As usual, we break this up into components π∗β = (π∗β)1 + (π∗β)0 + · · · , where each

(π∗β)k : grF• Pi → grF•−1 Pi+k[1− k]

is a morphism in the derived category of graded SB-modules. Not surprisingly, the topmost
component is zero, due to the fact that π∗β vanishes on the fibers of π.

Lemma. We have (π∗β)1 = 0.

Proof. Let us first treat the case when dβ = 0. Wedge product with π∗β defines a morphism

π∗β : Cπ → Cπ[1]

that increases the cohomological degree by 1 and decreases the degree with respect to the
filtration by 1. This follows from the fact that

Ci
π =

⊕
p+q=i

π∗An+p,n+q
M ⊗OM

(DB , F•+pDB),

and that the differential in the complex is

dπ : Ci
π → Ci+1

π , dπ
(
α⊗D

)
= dα⊗D +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jD.

The topmost component is now a morphism (π∗β)1 : (Pi, F•Pi) → (Pi+1, F•−1Pi+1). Since
π∗β vanishes on the fibers of π, we can then show by exactly the same argument as in §37
Lemma that (π∗β)1 = 0.

To deal with the general case, we note that the problem is local on B, due to the fact
that (π∗β)1 is a morphism between two graded SB-modules. Working locally, we can choose
holomorphic coordinates t1, . . . , tn, and write β =

∑n
j=1 fjdtj . Since the entire construction

is OB-linear, we have (π
∗β)1 =

∑n
j=1 fj(π

∗dtj)1; but (π
∗dtj)1 = 0 because dtj is closed.

70. We can use the properties of Deligne’s decomposition to get a much better result. (For
a more direct proof, see §127.)

Lemma. For any holomorphic form β ∈ H0(B,Ω1
B), one has (π∗β)k = 0 for all k ̸= 0,

and (π∗β)0 commutes with ω2.

Proof. We already know that π∗β = (π∗β)0+(π∗β)−1+ · · · . Recall from §35 that Deligne’s
decomposition has the property that ω = ω2+ω0+ω−1+ · · · , and that the individual com-
ponents ωk with k ≤ 0 are primitive (with respect to the sl2(C)-representation determined
by ω2.) Since π∗β and ω commute (as forms on M), the corresponding operators satisfy the
relation [ω, π∗β] = 0. If we expand this, we get[

ω2, (π
∗β)0

]
= 0,

[
ω2, (π

∗β)−1

]
= 0,

[
ω2, (π

∗β)−2

]
+
[
ω0, (π

∗β)0
]
= 0,
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and so on. The first relation shows that (π∗β)0 ∈ ker(adω2); since (π∗β)0 has weight 0
(with respect to the sl2(C)-representation), it must be primitive. The second relation gives
(π∗β)−1 ∈ ker(adω2), and because (π∗β)−1 has weight −1, it follows that (π∗β)−1 = 0.

By induction, we can assume that we already have (π∗β)−1 = · · · = (π∗β)−k+1 = 0 for
some k ≥ 2. Let us prove that (π∗β)−k = 0. From the relation [ω, π∗β] = 0, we get[

ω2, (π
∗β)−k

]
+
[
ω2−k, (π

∗β)0
]
= 0.

Since ω2−k is primitive of weight −k + 2, it satisfies (adω2)
k−1ω2−k = 0. This gives

(adω2)
k(π∗β)−k = −(adω2)

k−1
[
ω2−k, (π

∗β)0
]
= −

[
(adω2)

k−1ω2−k, (π
∗β)0

]
= 0,

as (π∗β)0 ∈ ker(adω2). Since (π∗β)−k has weight −k, it follows that (π∗β)−k = 0.

71. This result means concretely that the action by π∗β on

grF• Cπ ∼=
n⊕

i=−n

grF• Pi[−i]

is diagonal (provided that we use Deligne’s decomposition). The individual morphisms

(π∗β)0 : grF• DR(Pi) → grF•−1 DR(Pi)[1]

are of course just given by the action of β ∈ H0(B,Ω1
B) on the graded pieces of the de Rham

complex. Indeed, for any filtered D-module (P, F•P), we have a morphism of complexes

Ω1
B ⊗ grFk DR(P) → grFk−1 DR(P)[1],

which is defined (in local coordinates) by the formula

Ω1
B ⊗ grFk+i P ⊗

∧−i TB → grFk+i P ⊗
∧−i−1 TB , dtj ⊗ s⊗ ∂J 7→ sgn(J, j)s⊗ ∂J\{j}.

We will prove this claim in §71 below.

72. We can analyze the action of the holomorphic vector field ξ in much the same way.
First, we observe that contraction with ξ induces a morphism

ξ : grF• Cπ → grF•+1 Cπ[−1].

To see why this is the case, let t1, . . . , tn be local holomorphic coordinates on B, and let ηj
denote the holomorphic vector field associated to the form π∗(dtj), so that π∗(dtj) = ηj ⌟σ.
Then the compatibility with the differential in the complex comes down to the identity

ξ ⌟π∗(dtj) = σ(ηj , ξ) = 0,

which holds because both ηj and ξ are tangent to the fibers of π. We therefore get another
morphism (in the derived category) that we denote by the symbol

ξ :

n⊕
i=−n

grF• Pi[−i],→
n⊕

i=−n

grF•+1 Pi[−i− 1].

As before, we decompose this into components ξ = ξ−1 + ξ0 + · · · , where each component
is a morphism ξk : grF• Pi → grF•+1 Pi+k[−1− k]. This time, it is much less obvious that all
the components with k ≤ 0 have to vanish.
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Lemma. We have ξk = 0 for every k ̸= −1, and (adω2)
2(ξ−1) = 0.

Proof. By (68.1), the commutator of the Lefschetz operator and contraction with ξ is equal
to wedge product with the (0, 1)-form θ. Since ω and θ commute (as forms on M), it follows
that

[
ω, [ω, ξ]

]
= 0. After decomposing this relation by degree, we first get

(adω2)
2(ξ−1) = 0,

which means that ξ−1 is primitive (with respect to the representation of sl2(C) determined
by ω2). Next, we get (adω2)

2(ξ−2) = 0, and since ξ−2 has weight −2, it follows that ξ−2 = 0.
By induction, we may again assume that ξ−2 = · · · = ξ−k+1 = 0 for some k ≥ 3. Let us

prove that ξ−k = 0. From the relation
[
ω, [ω, ξ]

]
= 0, we obtain

(adω2)
2(ξ−k) + adω2 adω3−k(ξ−1) + adω3−k adω2(ξ−1) = 0.

Recall that ω3−k is primitive of weight 3− k, which means that (adω2)
k−2ω3−k = 0. If we

apply the operator (adω2)
k−2 to the identity above, it becomes

(adω2)
k(ξ−k) = −(adω2)

k−1 adω3−k(ξ−1)− (adω2)
k−2 adω3−k adω2(ξ−1)

= −(adω2)
k−1
[
ω3−k, ξ−1

]
− (adω2)

k−2
[
ω3−k, adω2(ξ−1)

]
= 0.

In the last line, we used the fact that adω2 is a derivation, and that ω3−k ∈ ker(adω2)
k−2 and

ξ−1 ∈ ker(adω2)
2. Because ξ−k has weight −k, this is enough to conclude that ξ−k = 0.

73. Both results illustrate why Deligne’s decomposition is “less bad” than the other possible
choices in the decomposition theorem. In our setting, it has the nice effect of making a
holomorphic 1-form on B act entirely in the “horizontal” direction on the summands in the
decomposition theorem, whereas the associated holomorphic vector field acts entirely in the
“vertical” direction (meaning along the fibers), just as one would expect from the geometry
of a Lagrangian fibration. I doubt that any other choice of decomposition has this property.

74. Let us conclude this chapter by recording the effect of the various operators on the
complexes Gi,k. We are going to make a slight change in the notation and assume from
now on that β ∈ H0(U,Ω1

B) is a holomorphic 1-form, defined on an open subset U ⊆ B.
As pointed out at the beginning of the chapter, this causes no problems, because all the
arguments can be used locally on B. With the help of the symplectic form σ and the Kähler
form ω, the holomorphic 1-form β gives us on the one hand a holomorphic vector field

v(β) ∈ H0
(
π−1(U),TM

)
, π∗β = v(β) ⌟σ,

and on the other hand a ∂̄-closed (0, 1)-form (with a minus sign)

f(β) ∈ A0,1
(
π−1(U)

)
, f(β) = −v(β) ⌟ω.

We use the same symbols for the morphisms

π∗β : grF• Cπ → grF•−1 Cπ[1] and f(β) : grF• Cπ → grF• Cπ[1]

induced by wedge product with the forms π∗β and f(β), and for the morphism

v(β) : grF• Cπ → grF•+1 Cπ[−1]
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induced by contraction with the vector field v(β). All these morphisms are of course defined
only on the open set U ⊆ B. We saw in (68.1) that f(β) = [ω, v(β)]. Because of §72 Lemma,
the only nonzero component of v(β) is v(β)−1, which means that the components of f(β)
can be computed by the simple formula

f(β)k = [ωk+1, v(β)].

In particular, the topmost component is f(β)1 = [ω2, v(β)].

75. From π∗β = (π∗β)0 : grF• Pi → grF•−1 Pi[1], we get a morphism of complexes

π∗β : Gi,k → Gi,k+1[1],

which is given by contracting the holomorphic vector fields in the de Rham complex against
the holomorphic form β. Similarly, from v(β) = v(β)−1 : grF• Pi → grF•+1 Pi−1, we get a
second morphism of complexes

v(β) : Gi,k → Gi−1,k−1[−1].

Lastly, we have the morphism of complexes

f(β)1 = [ω2, v(β)] : Gi,k → Gi+1,k[1].

All three morphisms will play an important role in the proof of §22 Theorem.

76. The relation with Matsushita’s theorem (in §49 Theorem) is the following. The con-
struction above produces a morphism of sheaves

Ω1
B → R1π∗OM ,

by assigning to a holomorphic 1-form β ∈ H0(U,Ω1
B) the image of the cohomology class

of the ∂̄-closed (0, 1)-form f(β) under the morphism H1
(
π−1(U),OM

)
→ H0(U,R1π∗OM ).

Matsushita’s theorem is then saying concretely that this morphism is an isomorphism.

7 The BGG correspondence

77. This chapter contains a brief review of the BGG correspondence [BGG78, EFS03], in
a way that is convenient for our purposes. We will define everything carefully, with the
correct signs, but only sketch the proofs, which mostly amount to checking that the signs in
front of various terms match up correctly; the details can in any case be found in [EFS03].

78. Let B be a complex manifold of dimension n, and denote by TB the holomorphic tangent
sheaf. The BGG correspondence relates, on the level of the derived category, graded modules
over two graded OB-algebras. The first is the symmetric algebra

SB = Sym(TB) =
⊕
j∈N

Symj(TB),

with the obvious multiplication and the natural grading in which Symj(TB) has degree j.
The second is the algebra of holomorphic forms

ΩB =

n⊕
j=0

Ωj
B ,
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with multiplication given by wedge product. Note that, unlike [EFS03], we give the algebra
ΩB the naive grading in which Ωj

B lives in degree j. If M = M• is a graded module over
either of these algebras, we denote by M(d) the same module with the grading shifted
according to the rule M(d)k = Md+k. In the case of ΩB , we only work with left modules.

79. The central object in the BGG correspondence is the Koszul complex

SB(−n)⊗
∧n TB · · · SB(−1)⊗ TB SB(0)⊗ OB ,

δ δ δ (79.1)

which lives in cohomological degrees −n, . . . , 0, and gives a free resolution of the trivial
graded SB-module OB . The differential is defined by the following compact formula:

δ(s⊗ ∂J) =

n∑
j=1

sgn(J, j) · ∂js⊗ ∂J\{j}.

Here the notation is as follows. Let t1, . . . , tn be local holomorphic coordinates on B, and
denote by ∂j = ∂/∂tj the resulting holomorphic vector fields. For any subset J ⊆ {1, . . . , n},
we list the elements in increasing order as j1 < · · · < jℓ, and then define

∂J = ∂j1 ∧ · · · ∧ ∂jℓ and dtJ = dtj1 ∧ · · · ∧ dtjℓ ,

with the convention that both expressions equal 1 when J is empty. We also define

sgn(J, j) =

{
(−1)k−1 if j = jk,

0 if j ̸∈ J .

Note that we are always using Deligne’s Koszul sign rule, according to which swapping two
elements of degrees p and q leads to a sign (−1)pq; this is the reason for the factor sgn(J, j).

80. Let us start by defining a functor LB from complexes of graded ΩB-modules to com-
plexes of graded SB-modules. Let (M,d) be a complex of graded left ΩB-modules. We can
think of this concretely as a bigraded sheaf of OB-modules

M =
⊕
i,k

M i
k,

where i is the cohomological degree and k the degree with respect to the grading; the
differential d maps each M i

k to M i+1
k and is linear over ΩB . The idea is to send this to the

induced SB-module M⊗OB
SB , but where we put the summand M i

k⊗Sj
B into cohomological

degree i + k and in degree j − k with respect to the grading.6 More precisely, we define
LB(M,d) to be the complex whose i-th term is the graded SB-module

LB(M,d)i =
⊕

p+q=i

Mq
p ⊗ SB(p),

and whose differential acts on the summand Mq
p ⊗ SB(p) by the formula

n∑
j=1

dtj ⊗ ∂j + (−1)pd⊗ id .

6The graded SB-modules that we are interested in come from filtered right DB-modules, and so they are
naturally right SB-modules. Since SB is commutative, we do not need to distinguish between left and right
modules, but the signs work out more nicely if we put the factor SB on the right.
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This is the simple complex associated to the double complex with terms Mq
p ⊗ SB(p), with

Deligne’s sign rules for the differential. Since SB is commutative, the differential is SB-linear
and preserves the grading.

Example. For instance, LB(ΩB) is the complex of graded SB-modules

OB ⊗ SB(0) → Ω1
B ⊗ SB(1) → · · · → Ωn

B ⊗ SB(n),

with differential α⊗ s 7→
∑

j dtj ∧ α⊗ ∂js. Up to a factor of (−1)n, this is just the Koszul
resolution of the trivial SB-module ωB , placed in cohomological degree n and with the
grading shifted by n steps; in other words, LB(ΩB) ∼= ωB(n)[−n].

81. We denote byG(SB) the category of graded SB-modules, and byDb
cohG(SB) the derived

category of cohomologically bounded and coherent complexes of graded SB-modules; we use
similar notation for ΩB , with the understanding that modules over the noncommutative
algebra ΩB are always left modules. One checks that LB descends to an exact functor

LB : Db
cohG(ΩB) → Db

cohG(SB)

between the two derived categories. Indeed, a morphism f : (M,d) → (M ′, d′) between two
complexes of graded ΩB-modules clearly induces a morphism of complexes

LB(f) : LB(M,d) → LB(M
′, d′).

The point is that if f is a quasi-isomorphism, then LB(f) is also a quasi-isomorphism: when
(M,d) and (M ′, d′) are cohomologically bounded and coherent, this can easily be checked
by a spectral sequence argument.

82. For later use, let us see how the complex grF• Cπ fits into this framework.

Example. Recall that grF• Cπ is the complex of graded SB-modules with terms

grF• Ci
π =

⊕
p+q=i

π∗An+p,n+q
M ⊗OM

SB(p)

and with differential (written in local coordinates)

dπ
(
α⊗ P

)
= ∂̄α⊗ P +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jP.

If we compare this with the definition above, we see that this is exactly LB(M,d), where
(M,d) is the complex of graded ΩB-modules with

M i
k = π∗An+k,n+i

M

and with differential d = (−1)k∂̄. The ΩB-module structure is the obvious one: a holomor-
phic form β ∈ Ωj

B acts via wedge product with the pullback π∗β. This is compatible with
the differential because of the factor (−1)k.
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83. This is a good place to prove the claim we made in §71 when we looked at holomorphic
forms and the decomposition theorem: for any local section β of Ω1

B , the morphism

(π∗β)0 : grF• DR(Pi) → grF•−1 DR(Pi)[1]

comes from the action of Ω1
B on the de Rham complex. Let us restate the problem using the

BGG correspondence. The morphism (π∗β)0 : grF• Pi → grF•−1 Pi[1] induces a morphism

LB

(
grF• Pi

)
→ LB

(
grF•−1 Pi[1]

)
= LB

(
grF• Pi

)
(1),

and the claim is that this is just multiplication by β ∈ Ω1
B . We know from the previous

paragraph that grF• Cπ corresponds, under the BGG correspondence, to the complex (M,d);
consequently, the decomposition theorem gives us an isomorphism (in the derived category)

(M,d) ∼=
n⊕

i=−n

LB

(
grF• Pi

)
[−i].

As we have just seen, the ΩB-module structure on (M,d) is such that β ∈ Ω1
B acts via wedge

product with π∗β. But this means that wedge product with π∗β also gives the ΩB-module
structure on each summand LB

(
grF• Pi

)
, and this is exactly what we wanted to prove.

84. Next, we define a functor RB from complexes of graded SB-modules to complexes of
graded ΩB-modules. The general idea is to take the tensor product with the Koszul complex
in (79.1), but to adjust both the degree and the grading in order to get ΩB to act correctly.

Example. Suppose we tensor a single graded SB-module N by the Koszul complex. This
produces a collection of complexes Ck, indexed by k ∈ Z, that look like this:

· · · Nk−2 ⊗
∧2 TB Nk−1 ⊗ TB Nk ⊗ OB

δ δ

If we define the action by Ω1
B in the obvious way as

Ω1
B ⊗

(
Nk ⊗

∧i TB

)
→ Nk ⊗

∧i−1 TB , dtj ⊗ (s⊗ ∂J) 7→ sgn(J, j) · s⊗ ∂J\{j},

then a short calculation shows that we get a morphism of complexes Ω1
B⊗Ck → Ck−1[1], but

where the differential in the second complex is −δ. So both the grading and the differentials
are wrong. To fix this problem, we need to work with the complexes C ′

k = C−k[k], with
differential (−1)kδ, because this makes Ω1

B ⊗ C ′
k → C ′

k+1 behave as it should.

85. With this in mind, let (N, d) be a complex of graded SB-modules. We define RB(N, d)
as the complex whose i-th term is the graded OB-module

RB(N, d)ik =
⊕

p+q=i

Np
q ⊗

∧−q−k TB ,

and whose differential acts on the summand Np
q ⊗

∧−q−k TB by the formula

d⊗ id+(−1)p+kδ,
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where δ is the standard Koszul differential. This is again the simple complex associated to
the double complex with terms Np

q ⊗
∧−q−k TB ; the extra (−1)k is justified by the example.

Each term in the complex becomes a graded module over ΩB through the morphism

Ω1
B ⊗

(
Np

q ⊗
∧−q−k TB

)
→ Np

q ⊗
∧−q−k−1 TB ,

dtj ⊗ (s⊗ ∂J) 7→ sgn(J, j) · s⊗ ∂J\{j},

and one checks (by the same calculation as in the example) that the differential is indeed
linear over ΩB . Once again, RB descends to an exact functor

RB : Db
cohG(SB) → Db

cohG(ΩB)

between the two derived categories of graded modules.

Example. Let (P, F•P) be a filtered right DB-module. The associated graded object grF• P
is a graded SB-module. Term by term, we have

RB

(
grF• P

)i
k
= grFi P ⊗

∧−i−k TB ,

and since the differential is exactly (−1)kδ, we obtain

RB

(
grF• P

)
=
⊕
k∈Z

grF−k DR(P)[k],

where the grading is by k, and the ΩB-module structure is defined (as above) by contraction,
viewed as a morphism of complexes

Ωj
B ⊗ grF−k DR(P)[k] → grF−k−j DR(P)[k + j].

So the graded pieces of the de Rham complex of a filtered D-module naturally fit into the
framework of the BGG correspondence.

86. The first result is that LB and RB are adjoint functors.

Theorem. We have a natural isomorphism of bifunctors

HomDb
cohG(SB)

(
LB−,−

) ∼= HomDb
cohG(ΩB)

(
−,RB−),

which means that (LB ,RB) is an adjoint pair of functors.

Proof. Let (M,d) be a complex of graded ΩB-modules and let (N, d) be a complex of graded
SB-modules. A morphism of complexes of graded SB-modules

LB(M,d) → (N, d)

is the same as a collection of morphisms of graded SB-modules

LB(M,d)i =
⊕

p+q=i

Mq
p ⊗ SB(p) → N i

that are compatible with the differentials in the two complexes. This is equivalent to giving
a collection of morphisms of OB-modules f : Mq

p → Np+q
−p , subject to the condition that

df(m) = (−1)pf(dm) +

n∑
j=1

∂jf(dtj ·m) for m ∈ Mq
p .
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From this data, we can define morphisms of OB-modules

g : M i
k → RB(N, d)ik = N i+k

−k ⊗ OB ⊕N i+k+1
−k−1 ⊗ TB ⊕N i+k+2

−k−2 ⊗
∧2 TB ⊕ · · ·

by the explicit formula

g(m) = (−1)ik
∑
J

(−1)i|J|ε
(
|J |
)
· f(dtJ ·m)⊗ ∂J ,

where ε(ℓ) = (−1)ℓ(ℓ−1)/2 and the summation runs over all subsets of {1, . . . , n}. A straight-
forward calculation shows that this is compatible with the differentials and with the action
by ΩB , and therefore defines a morphism of complexes of graded ΩB-modules

(M,d) → RB(N, d).

This construction is reversible, and passes to the derived category.

87. The content of the BGG correspondence is that LB is an equivalence of categories.
We continue to denote by Db

cohG(SB) the derived category of cohomologically bounded and
coherent complexes of graded SB-modules, and similarly for ΩB .

Theorem. The two functors

LB : Db
cohG(ΩB) → Db

cohG(SB) and RB : Db
cohG(SB) → Db

cohG(ΩB)

are equivalences of categories that are inverse to each other.

Proof. Let (M,d) be a complex of graded ΩB-modules. The adjointness of the two functors
gives a morphism (M,d) → RB

(
LB(M,d)

)
. Concretely, we have

RB

(
LB(M,d)

)i
k
=

⊕
p+q+r=i

Mq
p ⊗ Sp+r

B ⊗
∧−r−k TB ,

which looks like the simple complex associated to a triple complex with grading (p, q, r);
and the differential is indeed given by the formula

n∑
j=1

dtj ⊗ ∂j ⊗ id+(−1)pd⊗ id⊗ id+(−1)p+q+k id⊗δ,

where δ is again the standard Koszul differential. According to §86 Theorem, the morphism

M i
k → RB

(
LB(M,d)

)i
k
is described by the formula

m 7→ (−1)ik
∑
J

(−1)i|J|ε
(
|J |
)
· dtJm⊗ 1⊗ ∂J .

The boundedness assumption ensures that the three different spectral sequences of the triple
complex converge. The third spectral sequence starts from the differential δ, and the fact
that the Koszul complex in (79.1) is a resolution of the trivial SB-module OB implies that
the only nonzero cohomology object is M i

k for (p, q, r) = (k, i,−k). The convergence of the
spectral sequence therefore shows that (M,d) → RB

(
LB(M,d)

)
is a quasi-isomorphism.

The proof in the other direction is similar.
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88. We are going to need two other facts about the BGG correspondence. The first is a
simple-minded bound on the amplitude of the complex LB(M,d), in terms of the amplitude
of the individual complexes of OB-modules (Mk, d).

Theorem. Let (M,d) be a bounded complex of graded ΩB-modules. If Hq
(
Mp, d) = 0

whenever p+ q > 0, then HiLB(M,d) = 0 for i > 0.

Proof. We view LB(M,d) as a double complex with terms Mq
p ⊗ SB(p) and with the two

commuting differentials
∑

j dtj ⊗ ∂j and d⊗ id. The spectral sequence that starts from the
differential d ⊗ id converges because Mq

p ⊗ SB(p) = 0 for |q| ≫ 0. On the E1-page, we get
the graded SB-modules Hq(Mp, d)⊗SB(p), which vanish for p+ q > 0 by assumption. The
result now follows from the fact that the spectral sequence converges to the cohomology of
the complex LB(M,d).

89. The second fact we need is that the BGG correspondence interacts nicely with duality.
Let S ′

B denote SB , but with the SB-module structure in which Symk(TB) act with an
additional sign of (−1)k. (Geometrically, this amounts to pulling back by the automorphism
that acts as −1 on the fibers of the contangent bundle of B.)

Theorem. Let (M,d) be a bounded complex of finitely generated graded ΩB-modules. One
has a natural isomorphism

RHomSB

(
LB(M,d),SB ⊗ ωB [n]

)
∼= LB

(
RHomOB

(
(M,d), ωB [n]

))
⊗SB

S ′
B .

Proof. The boundedness assumption implies that there are only finitely many value of i and
k for which M i

k ̸= 0; this is needed in order to avoid infinite direct sums (which do not
commute with Hom). Pick a resolution for ωB [n] by injective OB-modules, say

0 → ωB → I−n → · · · → I−1 → I0 → 0;

we will abbreviate this by (I, d); recall that the injective dimension of ωB is n = dimB
according to [Gol75]. We can then represent RHomOB

(
(M,d), ωB [n]

)
by the complex of

graded OB-modules (M̂, d), where

M̂ i
k =

⊕
p+q=i

HomOB

(
M−p

−k , I
q
)
,

and where the differential is given by the formula df = f ◦d+(−1)pd◦f for any local section
f ∈ HomOB

(
M−p

−k , I
q
)
. Since each M i is a graded left ΩB-module, the terms in the complex

(M̂, d) are naturally right ΩB-modules, but we can convert them back into left ΩB-modules
by letting Ωj

B act with an extra factor of (−1)j , meaning that

(dtjf)(m) = −f
(
dtjm

)
.

With this convention, (M̂, d) is a complex of graded left ΩB-modules, and so LB(M̂, d) is
defined. This describes the complex on the right-hand side of the claimed isomorphism.

Now we turn to the complex RHomSB

(
LB(M,d),SB⊗ωB [n]

)
on the left-hand side. It is

realized by the simple complex associated to the double complexHomSB

(
LB(M,d),SB⊗I•

)
.

After some rearranging, the i-th term of the resulting simple complex comes out to be⊕
p+q=i

HomSB

(
LB(M,d)−p,SB ⊗ Iq

)
=
⊕

p+q=i

M̂q
p ⊗ SB(p),

and the differential matches up with the differential in LB(M̂, d), except for an extra −1 in
front of the term

∑
j dtj⊗∂j . This is corrected by tensoring with S ′

B , whence the result.
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90. Note that S ′
B

∼= SB are isomorphic as graded SB-modules, and so we can remove the
tensor product with S ′

B from the statement if we like.

8 Proof of the main theorem

91. In this chapter, we give the proof of §22 Theorem; along the way, we also establish §15
Theorem (and therefore §12 Conjecture). Even though we are interested in relating grF• Pk

and Ωn+k
M individually, it turns out that the necessary structure is only there if we look at all

of these objects together. The general idea is the following. There are three different ways
to make the direct sum of the complexes Gi,k (with appropriate shifts) into a complex of

graded modules over the algebra ΩB =
⊕

j Ω
j
B . In the first, a local section β of Ω1

B acts via
π∗β; in the second, via the associated vector field v(β); and in the third, via the associated
(0, 1)-form f(β)1 (in the notation of Chapter 6). These three different structures are related
by the action of the symplectic form σ and the Kähler form ω, and together with the BGG
correspondence and basic facts about Hodge modules, this gives us enough information to
prove §22 Theorem.

92. From the Hodge modules P−n, . . . , Pn, we get a collection of graded SB-modules grF• Pi,
for i = −n, . . . , n. The BGG correspondence associates to each of these graded SB-modules
a complex of graded ΩB-modules RB(gr

F
• Pi); recall from §85 Example that

RB(gr
F
• Pi) =

n⊕
k=−n

Gi,k[i+ k],

and that the degree of the summand Gi,k[i+ k] with respect to the grading is k. Adding all
of these objects together, we obtain the first object

G =

n⊕
i,k=−n

Gi,k[k] = RB

(
n⊕

i=−n

grF• Pi[−i]

)
.

In other words, G is a complex of graded ΩB-modules, with the summand Gi,k[k] in graded
degree k; it is the object that corresponds, under the BGG correspondence in §87 Theorem,
to the complex of graded SB-modules

n⊕
i=−n

grF• Pi[−i].

In the notation that we introduced in Chapter 6, a local section β of Ω1
B acts on the complex

G via the collection of graded morphisms

π∗β : Gi,k[k] → Gi,k+1[k + 1];

of course, this uniquely determines the module structure on G, because ΩB is generated by
Ω1

B as an OB-algebra. We will use this idea several times below.

93. We have a concrete model for G in terms of smooth differential forms. Recall from §34
the definition of the complex grF• Cπ. This is the complex of graded SB-modules with terms

grF• Ci
π =

⊕
p+q=i

π∗An+p,n+q
M ⊗OM

Sym•+p(TB),
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and with differential (in local coordinates)

dπ
(
α⊗ P

)
= ∂̄α⊗ P +

n∑
j=1

π∗(dtj) ∧ α⊗ ∂jP.

From Saito’s theory, we get an isomorphism

grF• Cπ ∼=
n⊕

i=−n

grF• Pi[−i]

in the derived category of graded SB-modules; here the decomposition is induced by the
one in the decomposition theorem. The calculation in §82 Example shows that grF• Cπ ∼=
LB(M,d), where (M,d) is the complex of graded ΩB-modules with

M i
k = π∗An+k,n+i

M and d = (−1)k∂̄.

The ΩB-module structure is the obvious one: a holomorphic form β ∈ Ωj
B acts via wedge

product with the pullback π∗β. Since the BGG correspondence is an equivalence of cate-
gories, this means that we have an isomorphism

G ∼= (M,d)

in the derived category of graded ΩB-modules. This says in particular that the complex
(M,d) splits in the derived category (because of the decomposition theorem), which is an
extremely deep fact about proper morphisms between Kähler manifolds.

94. Note that G is also related to the direct sum of all the sheaves of holomorphic forms
on M , because Saito’s formula in (39.1) gives us an isomorphism

G ∼=
n⊕

k=−n

Rπ∗Ω
n+k
M [n]

in the derived category of graded OB-modules.

95. Now we introduce the second object. This is the complex

Gv =
⊕
i,k

Gi,k[k],

in which the summand Gi,k[k] sits in graded degree −k. As a complex of OB-modules, this
is of course isomorphic to G, but the grading and the ΩB-module structure are different.
We turn Gv into a complex of graded ΩB-modules in the following way. Recall that we have
the Weil element wσ, associated to the sl2(C)-representation on

⊕
k Ω

n+k
M . It determines an

automorphism of the complex (M,d) that maps M i
k isomorphically to M i

−k. According to
§64 Lemma, for any local section β of Ω1

B , it also exchanges the action by the holomorphic
form π∗β agains the action by the holomorphic vector field v(β). In other words,

wσ : G → Gv

is an isomorphism between G and Gv, as complexes of graded OB-modules. Note that wσ

respects the grading, but there is no reason why it should preserve the individual summands
Gi,k[k] in the decompositions of G and Gv.
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96. We use this isomorphism to give Gv the structure of a complex of graded ΩB-modules.
§64 Lemma tells us that we have, for every local section β ∈ Ω1

B , a commutative diagram

G Gv

G Gv.

wσ

β v(β)

wσ

The ΩB-module structure on Gv is therefore the unique one for which a locally defined
holomorphic form β ∈ Ω1

B acts via the collection of graded morphisms

v(β) : Gi,k[k] → Gi−1,k−1[k − 1].

Let me stress that this step of the construction works on the level of smooth forms, meaning
on the complex (M,d), because the symplectic form is a holomorphic form of type (2, 0).
Neither Hodge theory nor the decomposition theorem are needed here.

97. Let us now describe the third object. This is the complex of graded OB-modules

Gf =
⊕
i,k

Gi,k[i+ k]

in which the term Gi,k[k] sits in graded degree i−k. The reason for this choice of grading is
the following. The topmost component of the Kähler form gives us a morphism of complexes
ω2 : Gi,k → Gi+2,k+1[2]; from the resulting representation of the Lie algebra sl2(C), we get
a second Weil element wω2

. For every i, k ∈ Z, it induces an isomorphism of complexes

wω2 : Gi,k[k] → G−i,k−i[k − 2i].

The resulting isomorphism of complexes of OB-modules

wω2 : Gv → Gf

therefore respects the grading exactly when we put the summand Gi,k[i+ k] in the complex
Gf in graded degree i− k. Unlike the other isomorphism, this one cannot be defined on the
level of smooth forms, because wω2

does not commute with the operator ∂̄; instead, we have
to rely on difficult results from Hodge theory (such as the relative Hard Lefschetz theorem)
to do the work for us.

98. As in the previous step, we use the isomorphism wω2
: Gv → Gf to turn the object Gf

into a complex of graded ΩB-modules. We can again describe the ΩB-module structure on
Gf very concretely with the help of the results from Chapter 6. Recall from §72 Lemma
that the operator v(β) is primitive of weight −1 with respect to the representation of sl2(C)
determined by ω2. Consequently, we have

Adwω2

(
v(β)

)
= wω2

v(β)w−1
ω2

= [ω2, v(β)] = f(β)1.

For every local section β of Ω1
B , we therefore get another commutative diagram

Gv Gf

Gv Gf .

wω2

v(β) f(β)1

wω2
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It follows that the ΩB-module structure on the complex Gf is the unique one for which a
local section β of Ω1

B acts via the collection of graded morphisms

f(β)1 : Gi,k[i+ k] → Gi+1,k[i+ k + 1].

This is compatible with the grading (because the left-hand side sits in graded degree i− k
and the right-hand side in graded degree i− k + 1.)

99. The rest of the proof consists mostly in applying the BGG correspondence for the two
graded algebras SB = Sym(TB) and ΩB =

⊕
j Ω

j
B . Recall that we have

G = RB

(
n⊕

i=−n

grF• Pi[−i]

)
.

By construction, wω2
wσ : G → Gf is an isomorphism in the derived category of graded ΩB-

modules; the ΩB-module structure on Gf has the property that a local section β of Ω1
B acts

via the operator f(β)1. Since f(β)1 : Gi,k[i] → Gi+1,k[i + 1] only changes the index i, it is
obvious that Gf decomposes, as a complex of graded ΩB-modules, into a direct sum

Gf =

n⊕
k=−n

(
n⊕

i=−n

Gi,k[i]

)
[k].

Let F−k denote the complex of graded SB-modules that the BGG correspondence associates
to the k-th summand in this decomposition; in symbols,

F−k = LB

(
n⊕

i=−n

Gi,k[i]

)
.

Since the BGG correspondence is an equivalence of categories (by §87 Theorem), we conclude
from the isomorphism G ∼= Gf in the derived category of graded ΩB-modules that

n⊕
i=−n

grF• Pi[−i] ∼=
n⊕

k=−n

Fk[−k], (99.1)

in the derived category of graded SB-modules.

100. What we need to do now is to prove that Fk
∼= grF• Pk for all k = −n, . . . , n. Since we

know next to nothing about the complexes Fk, this may seem impossible – but in fact, we
have just enough information to make it work.

101. The left-hand side of (99.1) is a direct sum of graded SB-modules, each of which is an
n-dimensional Cohen-Macaulay module. It follows that each complex Fk also splits into a
direct sum of n-dimensional Cohen-Macaulay modules; consequently, we get a decomposition

Fk
∼=
⊕
ℓ∈Z

Fk,ℓ[−ℓ]

in the derived category of graded SB-modules. Each Fk,ℓ is a graded SB-module that is
n-dimensional and Cohen-Macaulay. Our task now becomes showing that Fk,ℓ = 0 for ℓ ̸= 0.
It turns out that this is a purely formal consequence of what we know about the complexes
Gi,k. On the one hand, the bound on the amplitude of the complex Gi,k (in §44 Lemma)
implies that Fk is concentrated in nonpositive degrees.
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Lemma. We have Fk,ℓ = 0 for ℓ > 0.

Proof. Recall that we defined Fk with the help of the BGG correspondence as

Fk = LB

(
n⊕

i=−n

Gi,−k[i]

)
.

According to §44 Lemma, we have HjGi,k = 0 for j > k, and therefore Hj
(
Gi,−k[i]

)
=

Hi+jGi,−k = 0 for i+ j + k > 0. Since the summand Gi,−k[i] has degree i+ k with respect
to the grading on Gf (and therefore on the object in parentheses), this is exactly what we
need in order to apply §88 Theorem. The conclusion is that HjFk = 0 for j > 0.

102. We can use duality to prove the vanishing of the graded SB-modules Fk,ℓ for ℓ < 0.
For the sake of clarity, let us temporarily write

Gk =

n⊕
i=−n

Gi,−k[i]

for the complex of graded ΩB-modules on the right-hand side; then Fk = LB(Gk). Recall
from (43.1) that G−i,−k

∼= RHomOB

(
Gi,k, ωB [n]

)
. Therefore

Ĝk = RHomOB

(
Gk, ωB [n]

)
∼=

n⊕
i=−n

Gi,k[i],

where the notation Ĝk comes from the proof of §89 Theorem. Note that the summand
Gi,k[i] again ends up having degree i − k with respect to the induced grading on Ĝk.

7 By

the same argument as in §101 Lemma, the complex LB

(
Ĝk

)
is concentrated in degrees ≤ 0.

Now §89 Theorem gives

LB(Ĝk) ∼= RHomSB

(
LB(Gk),SB ⊗ ωB [n]

)
∼= ωB ⊗RHomSB

(
Fk,SB [n]

)
∼=
⊕
ℓ≤0

ωB ⊗RHomSB

(
Fk,ℓ,SB [n]

)
[ℓ].

Since each Fk,ℓ is an n-dimensional Cohen-Macaulay module, the complex on the right-hand
side is concentrated in degrees ≥ 0. But the complex on the left-hand side is concentrated
in degrees ≤ 0, and so it must be that Fk,ℓ = 0 for ℓ < 0.

103. The conclusion is that each complex Fk is actually a single graded SB-module (in
cohomological degree 0). Because of the isomorphism in (99.1), we then get

Fk
∼= grF• Pk.

If we now use the BGG correspondence in the other direction, we find that

n⊕
i=−n

Gi,−k[i] ∼=
n⊕

i=−n

Gk,i[i+ k] (103.1)

are isomorphic in the derived category of graded ΩB-modules. We will now take a short
break from proving §22 Theorem and turn to the symplectic relative Hard Lefschetz theorem
(in §15 Theorem) and the symmetry conjecture of Shen and Yin (in §12 Conjecture).

7In fact, it should be the case that Ĝk
∼= G−k, but this would be tedious to check, and fortunately it

turns out to be irrelevant for the proof.
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104. If we forget the grading and the ΩB-module structure, (103.1) becomes an isomorphism
in the derived category of OB-modules. After replacing k by −k and using the relative Hard
Lefschetz isomorphism in (48.1), we can put it into the form

n⊕
i=−n

Gi,k[i+ k] ∼=
n⊕

i=−n

G−k,i[i] ∼=
n⊕

i=−n

Gk,i+k[i+ 2k] ∼=
n⊕

i=−n

Gk,i[i+ k].

This is true for every k = −n, . . . , n, and so we are in a position where we can apply §57
Theorem. The conclusion is that the morphism

σk
1 : Gi,−k → Gi,k[2k]

is an isomorphism for every k ≥ 1; this establishes the “symplectic relative Hard Lefschetz
theorem”. It also follows that the complexes Gi,k and Gk,i are isomorphic in the derived
category, as predicted by the symmetry conjecture of Shen and Yin.

105. We can now go back and finish the proof of §22 Theorem. The relative Hard Lefschetz
theorem gives us a representation of the Lie algebra sl2(C) on the direct sum of all the Gi,k

(with appropriate shifts). To simplify the notation, let us denote the three operators by the
symbols X1,Y1,H1, and the Weil element by the symbol w1. Concretely,

X1 = ω2 : Gi,k → Gi+2,k+1[2] and Y1 = Yω2 : Gi,k → Gi−2,k−1[−2],

H1 acts on Gi,k as multiplication by the integer i, and the Weil element is the isomorphism

w1 = wω2
: Gi,k → G−i,k−i[−2i].

Likewise, the symplectic relative Hard Lefschetz theorem gives us a second representation
of sl2(C), for which we use the symbols X2,Y2,H2 and w2. Once again,

X2 = σ1 : Gi,k → Gi+1,k+2[2] and Y2 = Yσ1
: Gi,k → Gi−1,k−2[−2],

H2 acts on Gi,k as multiplication by the integer k, and the Weil element is the isomorphism

w2 = wσ1 : Gi,k → Gi−k,−k[−2k].

We know from §38 Lemma that [ω2, σ1] = 0, which translates into the relation [X1, X2] = 0.

106. We can now establish a direct relationship between grF• Pi and Rπ∗Ω
n+i
M [n] with the

help of the two sl2(C)-representations. Recall from §85 Example that

RB(gr
F
• Pi) =

n⊕
k=−n

Gi,k[i+ k].

Consider the following chain of isomorphisms

Gi,k G−i,k−i[−2i] G−k,i−k[−2k] Gk,i
w1 w2 w1

that, very concretely, realizes the symmetry between Gi,k and Gk,i. (In the drawing in §16,
the composition w1w2w1 is exactly reflection in the third diagonal of the hexagon.)
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107. Let β ∈ Ω1
B be a locally defined holomorphic 1-form. From the construction in Chap-

ter 6, we get three operators (that are defined on the same open set as β, of course):

π∗β = (π∗β)0 : Gi,k → Gi,k+1[1]

v(β) = v(β)−1 : Gi,k → Gi−1,k−1[−1]

f(β)1 = [X1, v(β)] : Gi,k → Gi,k+1[1]

Let us see how these three operators interact with the two Weil elements w1 and w2. We
know that adX1(π

∗β) = 0 (from §70 Lemma), which implies that

Adw1

(
π∗β

)
= w1

(
π∗β

)
w−1
1 = π∗β.

We also showed (in §72 Lemma) that (adX1)
2v(β) = 0; because v(β) has weight −1 with

respect to H1, it follows that

Adw1

(
v(β)

)
= [X1, v(β)] = f(β)1.

Lastly, we know from §64 Lemma that [σ, v(β)] = π∗β, and because v(β) and π∗β have
weight −1 and 0 with respect to H1, we get [X2, v(β)] = [σ1, v(β)] = π∗β. At the same
time, π∗β has weight 1 with respect to H2 and commutes with X2, and therefore

Adw2

(
π∗β

)
= −[Y2, π

∗β] = v(β).

108. The conclusion of all these computations is that we get a commutative diagram

Gi,k G−i,k−i[−2i] G−k,i−k[−2k] Gk,i

Gi,k+1[1] G−i,k−i+1[−2i+ 1] G−k−1,i−k−1[−2k − 1] Gk+1,i[1]

w1

π∗β

w2

π∗β

w1

v(β) f(β)1

w1 w2 w1

in which all the horizontal morphisms are isomorphisms. After shifting everything by i+ k
and taking the direct sum over all k ∈ Z, this gives us an isomorphism between

RB(gr
F
• Pi) =

n⊕
k=−n

Gi,k[i+ k]

and the complex of graded ΩB-modules

n⊕
k=−n

Gk,i[i+ k], (108.1)

in the derived category of graded ΩB-modules. Here the ΩB-module structure on the second
complex is the unique one where β ∈ Ω1

B acts through the collection of graded morphisms

f(β)1 : Gk,i[i+ k] → Gk+1,i[i+ k + 1],

and the grading has the summand Gk,i[i+k] in graded degree k. The argument above shows
that this object is isomorphic, via w1w2w1, to the object

RB(gr
F
• Pi) =

n⊕
k=−n

Gi,k[i+ k],

which is the image of grF• Pi under the BGG correspondence.
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109. To conclude the proof, we only need to describe how the object in (108.1) is related
to Rπ∗Ω

n+i
M [n]. In the derived category of OB-modules, we do have an isomorphism

Rπ∗Ω
n+i
M [n] ∼=

n⊕
k=−n

Gk,i[i]. (109.1)

The object on the left-hand side is naturally a module over the algebra

Rπ∗OM
∼=

n⊕
j=0

Ωj
B [−j],

where the isomorphism comes from Matsushita’s theorem (in §49 Theorem). If we take
the associated graded of this action with respect to the perverse filtration, which is just
the filtration by increasing values of k in the above decomposition, (109.1) becomes an
isomorphism of graded modules

grP•

(
Rπ∗Ω

n+i
M [n]

)
∼=

n⊕
k=−n

Gk,i[i].

Moreover, Ω1
B [−1] now acts on the object on the right-hand side exactly through the collec-

tion of morphisms f(β)1 : Gi,k → Gi+1,k[1]. We can turn this into an honest action by ΩB

by adding a shift by k to the k-th term in the sum; in this way, we arrive at the object

n⊕
k=−n

Gk,i[i+ k]

with the ΩB-module structure and the grading that appeared in the proof above.

110. In other words, we need to take the associated graded of Rπ∗Ω
n+i
M [n] with respect to

the perverse filtration, in order to extract from the action by f(β) its topmost component
f(β)1. After adding appropriate shifts (determined by the degree with respect to the grad-
ing), we then obtain a complex of graded ΩB-modules, and under the BGG correspondence,
this goes to the graded SB-module grF• Pi. With this, we have proved all the claims that
were made in the introduction.

111. The interesting point is that the process we have described does relate Rπ∗Ω
n+i
M [n] to

the filtered D-module (Pi, F•Pi), but only after we take the associated graded on both sides:
with respect to the perverse filtration on one side, and with respect to the Hodge filtration
on the other. I do not know whether one can expect to relate the two sides without going
to the associated graded objects.

9 Symmetries and the Lie algebra sl3(C)
112. In this chapter, we explain why the Lie algebra sl3(C) acts on the direct sum of the
complexes Gi,k (with suitable shifts). As in Chapter 6, this relies on computations with
differential forms on M ; the main point is to understand how the Weil element wσ for the
holomorphic symplectic form σ interacts with the Kähler form ω.
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113. Recall that the holomorphic symplectic form σ determines an isomorphism TM
∼= Ω1

M .
If we think of the Kähler form ω as a ∂̄-closed (0, 1)-form with coefficients in Ω1

M , hence as
an element ω ∈ A0,1(M,Ω1

M ), the isomorphism provides us with another element

i(ω) ∈ A0,1(M,TM ),

which is again ∂̄-closed. We can also express the relation between ω and i(ω) as

i(ω) ⌟σ = ω.

More generally, contraction with i(ω) is an operator

i(ω) ⌟ : Ap,q(M) → Ap−1,q+1(M),

that acts as follows. Let z1, . . . , z2n be local holomorphic coordinates on M . Then

i(ω) =
∑
j,k

fj,k
∂

∂zj
⊗ dz̄k,

and we define the contraction against (p, q)-forms as

i(ω) ⌟ dzJ ∧ dz̄K = (−1)p
∑
j,k

fj,k sgn(J, j)dzJ\{j} ⊗ dz̄k ∧ dz̄K ,

where |J | = p and |K| = q. The sign (−1)p is caused by swapping the order of dz̄k and dzJ .

114. The following lemma is proved in exactly the same way as §64 Lemma.

Lemma. For every k, q ∈ Z, the following diagram commutes:

An−k,q(M) An+k,q(M)

An−k+1,q+1(M) An+k−1,q+1(M)

ω∧

wσ

i(ω) ⌟

wσ

115. Now let us try to understand the commutator of the two operators α 7→ ω ∧ α and
α 7→ i(ω) ⌟α. We notice that the contraction

Θ = −i(ω) ⌟ω ∈ A0,2(M)

is a ∂̄-closed (0, 2)-form. The following lemma shows that the commutator in question is
nothing but wedge product with Θ.

Lemma. We have
[
ω∧, i(ω) ⌟

]
= Θ∧.

Proof. This is due to the identity

i(ω) ⌟
(
ω ∧ α

)
=
(
i(ω) ⌟ω

)
∧ α+ ω ∧

(
i(ω) ⌟α

)
= −Θ ∧ α+ ω ∧

(
i(ω) ⌟α

)
,

which is easily proved by a computation in local coordinates.
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116. Because Θ = −i(ω) ⌟ω is a ∂̄-closed (0, 2)-form, it acts on the complex grF• Cπ. Using
the decomposition theorem, it therefore determines a morphism (in the derived category)

Θ:

n⊕
i=−n

grF• Pi[−i] →
n⊕

i=−n

grF• Pi[2− i].

As in earlier chapters, this morphism breaks up into a finite sum Θ = Θ2 +Θ1 +Θ0 + · · · ;
each component Θj is a morphism

Θj : grF• Pi → grF• Pi+j [2− j]

in the derived category of graded SymTB-modules. We get induced morphisms

Θj : Gi,k → Gi+j,k[2].

What matters for our computation is that Θj = 0 for j ≥ 3. This holds because Θ is a
∂̄-closed (0, 2)-form and therefore commutes with the differential in the complex grF• Cπ.

117. We now consider how i(ω) and Θ act on the complex (M,d), where M i
k = π∗An+k,n+i

M

and d = (−1)k∂̄. Recall that this complex is isomorphic (in the derived category) to

G =

n⊕
i,k=−n

Gi,k[k] ∼=
n⊕

k=−n

Rπ∗Ω
n+k
M [n],

but now we purposely forget the action by ΩB , because contraction with i(ω) does not
preserve it. Contraction against i(ω) and wedge product with Θ define two morphisms

i(ω) : G → G(−1)[1] and Θ: G → G[2]

in the derived category; the first morphism changes the grading, but the second one preserves
it. The analysis in the previous two paragraphs shows that

Θ = −
[
i(ω), ω

]
= −

[
wσ · ω · w−1

σ , ω
]
,

where wσ is the Weil element for the representation of sl2(C) on
n⊕

k=−n

Ωn+k
M

coming from the action of the symplectic form σ. For the sake of clarity, let us denote the
third generator of this representation by the symbol Yσ.

118. As [σ, ω] = 0, the operator ω is primitive with respect to this representation, and so

wσ · ω · w−1
σ = −[Yσ, ω].

After combining this with the formula for Θ, we get

Θ = −
[
wσ · ω · w−1

σ , ω
]
=
[
[Yσ, ω], ω

]
=
[
ω, [ω,Yσ]

]
.

Now we look at the topmost component on each side, with respect to the filtration by the
first index i. On the right-hand side, by §122 Lemma, this is the iterated commutator[

ω2,
[
ω2,Yσ1

]]
,

which is a morphism Gi,k → Gi+3,k[2]. The corresponding term on the left-hand side is Θ3,
and we already know that Θ3 = 0. This observation proves the following lemma.
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Lemma. We have
[
ω2, [ω2,Yσ1 ]

]
= 0, and therefore [Yω2 ,Yσ1 ] = 0.

Proof. The first assertion is clear. Since Yσ1
: Gi,k → Gi−1,k−2[−2], this is saying that Yσ1

is
primitive of weight −1 (with respect to the sl2(C)-representation determined by ω2), which
gives the second assertion.

119. We can now show that the two sl2(C)-representations determined by ω2 and σ1 can be
combined into a single representation of the larger Lie algebra sl3(C). Let us briefly review
its structure. The Lie algebra sl3(C) is associated to the Dynkin diagram of type A2, and
so it has two simple roots, and the resulting Cartan matrix is(

a1,1 a1,2
a2,1 a2,2

)
=

(
2 −1
−1 2

)
.

According to a theorem by Serre, sl3(C) is therefore generated as a Lie algebra by six
elements e1, f1, h1, e2, f2, h2, subject to the following relations:

1. [hi, hj ] = 0, [hi, ej ] = ai,jej , and [hi, fj ] = −ai,jfj

2. [ei, fj ] = δi,jhj , where δi,j = 1 if i = j, and 0 otherwise

3. (ad ei)
1−ai,jej = 0 and (ad fi)

1−ai,j fj = 0.

120. The point is that the operators ω2 and σ1 satisfy the Serre relations for sl3(C).

Proposition. If we define e1 = ω2, f1 = Yω2
, e2 = Yσ1

, and f2 = σ1, and let h1 and h2 act
on the complex Gi,k as multiplication by i respectively −k, then these six operators satisfy
the Serre relations for the Lie algebra sl3(C).

Proof. The relations on the first line hold because ω2 and σ1 each determine a representation
of the Lie algebra sl2(C), and because ω2 : Gi,k → Gi+2,k+1[2] and σ1 : Gi,k → Gi+1,k+2[2].
The relations on the second line hold because [e1, f2] = [ω2, σ1] = 0, and because [f1, e2] =
[Yω2

,Yσ1
] = 0 by §118 Lemma. The relations on the third line now follow from the finite-

dimensional representation theory of sl2(C): for example, [h1, e2] = −e2 and [f1, e2] = 0 are
saying that e2 is primitive of weight −1 with respect to the sl2(C)-representation e1, f1, h1,
and consequently (ad e1)

2e2 = 0.

121. Because the operators ω2 and σ1 each act with a shift, we need to be a little bit careful
if we want to say exactly which object in the derived category the Lie algebra sl3(C) acts
on. There are two possible answers. One possibility is to take the direct sum⊕

i,k,ℓ∈Z
Gi,k[ℓ].

All six operators e1, f1, h1 and e2, f2, h2 clearly act on this object; the disadvantage is that
there are infinitely many nonzero terms. The other possibility is to look at the direct sum

n⊕
i,k=−n

Gi,k

[
⌊ 2
3 (i+ k)⌋

]
.

This only has finitely many nonzero terms, and all six operators act on it; the only disad-
vantage is that the extra shift – by the integer part of 2

3 (i+ k) – seems somewhat artificial.
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122. The proof above depends on knowing the topmost component of the operator Yσ. The
following lemma, whose proof uses the symplectic relative Hard Lefschetz theorem (in §15
Theorem), shows that this is exactly Yσ1

.

Lemma. The difference Yσ−Yσ1
maps Gi,k into the sum of the Gi+j,k−2[−2] with j ≤ −2.

Proof. To simplify the notation, let us again denote the operators in the sl2(C)-representation
determined by σ1 by the letters X2 = σ1, Y2, and H2. Let us also set τ = Yσ, and expand
this according to its degree in i as τ =

∑
j τj ; the individual components are operators

τj : Gi,k → Gi+j,k−2[−2].

In these terms, the lemma is asserting that τj = 0 for j ≥ 0, and that τ−1 = Y2. Let j be
the largest integer such that τj ̸= 0. If j ≥ 0, then after expanding the relation

H2 = [σ, τ ] = [X2 + σ0 + · · · , τj + τj−1 + · · · ]

by degree, we would get [X2, τj ] = 0. But this is impossible because τj has weight −2 with
respect to adH2. The same reasoning shows that H2 = [X2, τ−1], and as Y2 is uniquely
determined by H2 and X2, it follows that τ−1 = Y2. Consequently, τ = Y2 + τ−2 + · · · .

123. The relations for the Lie algebra sl3(C) can also be interpreted nicely in terms of the
reflections given by the two Weil elements w1 and w2.

Lemma. We have (Adw1 ◦Adw2 ◦Adw1)(ω2) = σ1.

Proof. Recall from §105 that X1 = ω2 and that X2 = σ1. The definition of the Weil element
shows that Adw1(X1) = w1X1w

−1
1 = −Y1. The relations [Y2,Y1] = 0 and [H2,Y1] = −Y1 are

saying that Y1 is primitive of weight −1 with respect to the sl2(C)-representation X2,Y2,H2,
and therefore Adw2(−Y1) = [X2,−Y1] = [Y1,X2]. Because (adY1)

2X2 = 0, this is now
primitive of weight −1 with respect to the sl2(C)-representation X1,Y1,H1, and so finally

(Adw1 ◦Adw2 ◦Adw1)(X1) = Adw1

(
[Y1,X2]

)
=
[
X1, [Y1,X2]

]
= X2.

This proves the assertion.

10 The compact case

124. We end this paper with a short analysis of the compact case. Most notably, we prove
that the action by the Lie algebra sl3(C) can be upgraded, in the case where M and B
are compact, to an action by the Lie algebra sl4(C). Since sl4(C) ∼= so6(C), this gives
an alternative proof (not relying on the existence of a hyperkähler metric) for a result by
Looijenga-Lunts [LL97, §4] and Verbitsky [Ver96]: the cohomology of an irreducible compact
hyperkähler manifold with a Lagrangian fibration carries an action by so6(C).

125. We assume from now on that M and B are both compact; in other words, M is a
holomorphic symplectic compact Kähler manifold of dimension 2n, and the base B of our
Lagrangian fibration π : M → B is a compact Kähler manifold of dimension n. In this
case, the holomorphic symplectic form σ ∈ H0(M,Ω2

M ) is automatically closed. If M is
simply connected, then it has a hyperkähler metric (by Yau’s theorem) and B is a product
of projective spaces (by Hwang’s theorem), but we are not assuming that this is the case.
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126. Let λ ∈ A1,1(B) be a Kähler class on B. Recall that we have

Rπ∗QM (n)[2n] ∼=
n⊕

i=−n

Pi[−i],

and that each Pi is a polarizable Hodge module of weight i on B. Since B is a compact Kähler
manifold, the cohomology groups Hj(B,Pi) therefore have Hodge structures of weight i+ j,
and we have an isomorphism of Hodge structures

H2n+j(M,Q)(n) ∼=
n⊕

i=−n

Hj−i(B,Pi).

By the Hard Lefschetz theorem (for polarizable Hodge modules on compact Kähler mani-
folds), cup product with λ determines, for each j ≥ 1, an isomorphism

λj : H−j(B,Pi) → Hj(B,Pi)(j)

of Hodge structures of weight i− j.

127. Since λ is closed, its pullback π∗λ ∈ A1,1(M) acts on the complex Cπ from §34. Let
us check that, with respect to the isomorphism

Cπ ∼=
n⊕

i=−n

(Pi, F•Pi)[−i]

from (34.1), the action by π∗λ is diagonal. With our usual notation, this amounts to saying
that π∗λ = (π∗λ)0, and that the morphism

(π∗λ)0 : (Pi, F•Pi) → (Pi, F•−1Pi)[2]

is the one induced by the Kähler form λ ∈ A1,1(B). This is a consequence of the projection
formula: if we view λ as a morphism λ : CB → CB [2] in the derived category of constructible
sheaves, then the claim is that

Rπ∗

(
CM

π∗λ−−→ CM [2]
)
∼=
(
CB

λ−→ CB [2]
)
⊗Rπ∗CM .

Using the de Rham resolutions of CM and CB by differential forms, the projection formula
in this case amounts to the following statement.

Lemma. The morphism of complexes

(A•
B , d)⊗ (π∗A•

M , d) → (π∗A•
M , d), α⊗ β 7→ π∗α ∧ β,

is a quasi-isomorphism.

Proof. Since we are using Deligne’s sign conventions, the tensor product has terms⊕
i+j=k

Ai
B ⊗ π∗Aj

M
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and differential d(α⊗ β) = dα⊗ β + (−1)iα⊗ dβ. The morphism of complexes is⊕
i+j=k

Ai
B ⊗ π∗Aj

M → π∗Ak
M ,

∑
i+j=k

αi ⊗ βj 7→
∑

i+j=k

π∗αi ∧ βj .

This is clearly surjective: if U ⊆ B is open, then the element 1⊗ β ∈ A0(U)⊗Ak
(
π−1(U)

)
is a preimage for β ∈ Ak

(
π−1(U)

)
. To show that the morphism is a quasi-isomorphism, one

then argues locally with the help of the Poincaré lemma, which says that A•
B is a resolution

of the constant sheaf CB .

128. The Hard Lefschetz theorem for the Kähler form λ gives us a third action by the Lie
algebra sl2(C). In the rest of this chapter, we shall argue that all three actions can be
combined into an action of the Lie algebra sl4(C). Consider the vector spaces

Hi,j,k = Hi+j(B,Gi,k) = Hj
(
B, grF−k DR(Pi)

)
(128.1)

for i, j, k ∈ Z. These vector spaces refine the Hodge decomposition on M , taking into
account the decomposition theorem for π : M → B. Indeed, according to the direct image
theorem for the cohomology of the polarizable Hodge module Pi on the compact Kähler
manifold B, the Q-vector space Hj(B,Pi) carries a Hodge structure of weight i+ j, and

grF−k

(
Hj(B,Pi)⊗Q C

) ∼= grF−k H
j
(
B,DR(Pi)

) ∼= Hj
(
B, grF−k DR(Pi)

)
.

This leads to the following isomorphism with the Hodge decomposition on Hj(B,Pi):

Hi,j,k ∼=
(
Hj(B,Pi)⊗Q C

)k,i+j−k
(128.2)

In order to relate this to the Hodge decomposition on M , we use the isomorphism

Rπ∗Ω
n+k
M [n− k] ∼=

n⊕
i=−n

Gi,k

from (39.1). Substituting in the definition of Hi,j,k, we see immediately that

Hn+k,n+j(M) ∼= Hn+j(M,Ωn+k
M ) ∼=

n⊕
i=−n

Hj+k(B,Gi,k) =

n⊕
i=−n

Hi,j+k−i,k. (128.3)

The vector spaces Hi,j,k also interact with duality in the expected way. Indeed, because of
(43.1), the Grothendieck dual of Gi,k is isomorphic to G−i,−k, and so

HomC
(
Hi,j,k,C

) ∼= H−i,−j,−k. (128.4)

129. The discussion in the preceding paragraph leads to the following concrete interpreta-
tion for the three indices i, j, k, similar to what happens for the complexes Gi,k:

1. The first index i records the cohomological degree along the fibers of π, in the sense
that Hi,j,k is associated with the (n+ i)-th cohomology groups of the fibers.

2. The second index j records the cohomological degree along the base B, in the sense
that Hi,j,k is associated with the (n+ j)-th cohomology groups on B.

3. The third index k records the holomorphic degree, in the sense that Hi,j,k is associated
with the sheaf Ωn+k

M of holomorphic forms of degree (n+ k).
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130. The Kähler form ω ∈ A1,1(M) induces a morphism

ω2 : H
i,j,k = Hi+j(B,Gi,k) → Hi+j+2(B,Gi+2,k+1) = Hi+2,j,k+1,

and the relative Hard Lefschetz theorem for ω becomes an isomorphism

ωi
2 : H

−i,j,k → Hi,j,k+i for i ≥ 1. (130.1)

Similarly, the holomorphic symplectic form σ ∈ H0(M,Ω2
M ) induces a morphism

σ1 : H
i,j,k = Hi+j(B,Gi,k) → Hi+j+2(B,Gi+1,k+2) = Hi+1,j+1,k+2,

and the symplectic relative Hard Lefschetz theorem (§15 Theorem) becomes an isomorphism

σk
1 : H

i,j,−k → Hi+k,j+k,k for k ≥ 1. (130.2)

Finally, by (128.2), the Kähler form λ ∈ A1,1(B) induces a morphism

λ : Hi,j,k ∼=
(
Hj(B,Pi)⊗Q C

)k,i+j−k →
(
Hj+2(B,Pi)⊗Q C

)k+1,i+j−k+1 ∼= Hi,j+2,k+1,

and the Hard Lefschetz theorem for λ becomes an isomorphism

λj : Hi,−j,k → Hi,j,k+j for j ≥ 1. (130.3)

131. From these isomorphisms and §44 Lemma, one can deduce the following result.

Lemma. We have Hi,j,k = 0 unless max
(
|i|, |j|, |k|, |i− k|, |j − k|, |i+ j − k|

)
≤ n.

We may arrange the Hi,j,k on a three-dimensional grid, by putting the vector space for
the multi-index (i, j, k) at the point with coordinates 1

2

(
2k − i− j, i

√
3, j

√
3
)
. In geometric

terms, the conditions in the lemma are describing a rhombic dodecahedron:

The lemma is asserting that all the points corresponding to nonzero Hi,j,k lie inside this
rhombic dodecahedron. The example of a projection π : A×B → B from the product of two
n-dimensional abelian varieties shows that this is the best one can expect in general. For
irreducible compact hyperkähler manifolds, Nagai’s conjecture would imply that the convex
hull of the points corresponding to nonzero Hi,j,k is actually an octahedron [HM22, §3.8].

132. The three isomorphisms in (130.1), (130.2), and (130.3) give us three reflections

(i, j, k) → (−i, j, k − i), (i, j, k) → (i,−j, k − j), (i, j, k) → (i− k, j − k,−k),

and a little bit of calculation shows that these three reflections together generate a total of
24 symmetries, with a group structure isomorphic to the symmetric group S4. This is not
surprising, because S4 is the Weyl group of sl4(C). One of the symmetries is

(i, j, k) → (j, i, i+ j − k),

and because of (128.3), it induces an isomorphism Hp,q(M) ∼= Hq,p(M). It would be
interesting if one could explain this particular symmetry in a geometric way.
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133. As in the previous chapter, we need to establish one additional identity in order to
have an action by the Lie algebra sl4(C). Once again, the isomorphism TM

∼= Ω1
M associates

to the cohomology class of π∗λ ∈ H1(M,Ω1
M ) a new element

i(π∗λ) ∈ A0,1(M,TM ),

that is ∂̄-closed and satisfies i(π∗λ) ⌟σ = π∗λ. The following lemma is also proved in the
same way as §64 Lemma.

Lemma. For every k, q ∈ Z, the following diagram commutes:

An−k,q(M) An+k,q(M)

An−k+1,q+1(M) An+k−1,q+1(M)

(π∗λ)∧

wσ

i(π∗λ) ⌟

wσ

134. The crucial observation is that the commutator of the two operators α 7→ (π∗λ) ∧ α
and α 7→ i(ω) ⌟α vanishes.

Lemma. We have
[
(π∗λ)∧, i(π∗λ) ⌟

]
= 0.

Proof. As before, the commutator is the wedge product with the ∂̄-closed (0, 2)-form

−i(π∗λ) ⌟(π∗λ) ∈ A0,2(M).

In a nutshell, this vanishes because the vector fields in i(π∗λ) are tangent to the fibers of π.
It is enough to prove this locally, and so we may assume without loss of generality that

λ =

n∑
j=1

dtj ∧ θj ,

where t1, . . . , tn are local coordinates on B and θ1, . . . , θn are ∂̄-closed (0, 1)-forms. Let ηj
be the unique holomorphic vector field such that π∗(dtj) = ηj ⌟σ. Then

i(π∗λ) =

n∑
j=1

ηj ⊗ π∗θj ,

and consequently

−i(π∗λ) ⌟(π∗λ) =

n∑
j,k=1

(
ηj ⌟(π

∗dtk)
)
· π∗(θj ∧ θk) = 0,

due to the fact that the vector fields ηj are tangent to the fibers of π.

135. We now consider how i(π∗ω) acts on the complex (M,d), where M i
k = π∗An+k,n+i

M

and d = (−1)k∂̄. Contraction against i(π∗λ) defines a morphism.

i(π∗λ) : G → G(−1)[1]

in the derived category; note that this morphism changes the grading. Since π∗λ and σ
commute (as 2-forms on M), we have i(π∗λ) = wσ · (π∗λ) ·w−1

σ = −[Yσ, π
∗λ], and therefore[

π∗λ, [π∗λ,Yσ]
]
= −[i(π∗λ), π∗λ] = 0.

If we now take the topmost component, and remember that the action by (π∗λ)0 is diagonal
and equal to λ, we arrive at the following result.

Lemma. We have
[
λ, [λ,Yσ1

]
]
= 0, and therefore [Yλ,Yσ1

] = 0.
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136. We can finally prove that the three sl2(C)-representations determined by ω2, σ1, and
λ can be combined into a single representation of sl4(C). Recall that the Lie algebra sl4(C)
is associated to the Dynkin diagram of type A3, and so it has three simple roots, and the
resulting Cartan matrix isa1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 =

 2 −1 0
−1 2 −1
0 −1 2

 .

By Serre’s theorem, sl4(C) is generated as a Lie algebra by nine elements e1, f1, h1, e2, f2, h2,
e3, f3, h3, subject to the following relations (which have the same shape as before):

1. [hi, hj ] = 0, [hi, ej ] = ai,jej , and [hi, fj ] = −ai,jfj

2. [ei, fj ] = δi,jhj , where δi,j = 1 if i = j, and 0 otherwise

3. (ad ei)
1−ai,jej = 0 and (ad fi)

1−ai,j fj = 0.

137. The proof of the Serre relations is very similar to what we did for sl3(C), and so we
will only sketch the argument.

Proposition. If we define e1 = ω2, f1 = Yω2 , e2 = Yσ1 , f2 = σ1, e3 = λ, and f3 = Yλ, and
let h1, h2 and h3 act on the vector space Hi,j,k respectively as multiplication by i, −k and
j, then these nine operators satisfy the Serre relations for the Lie algebra sl4(C).

Proof. Since ω, σ, and π∗λ commute (as 2-forms on M), it is easy to see that [e1, e3] =
[ω2, λ] = 0 and [f2, e3] = [σ1, λ] = 0. Because [h1, e3] = 0, it follows that [f1, e3] = 0, and so
the two Lie algebras generated by e1, f1, h1 and e3, f3, h3 commute; this gives about half of
the necessary relations. Among the remaining new relations, the only nontrivial ones are
(ad e3)

2e2 = 0 and [f3, e2] = 0, and these are of course contained in §135 Lemma.
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