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A Introduction

The term “generic vanishing” refers to a collection of theorems about the cohomology
of line bundles with trivial first Chern class. The first results of this type were obtained
by Green and Lazarsfeld in the late 1980s [13, 14]; they were proved using classical
Hodge theory and are therefore valid on arbitrary compact Kähler manifolds. About ten
years ago, Hacon [15] found a more algebraic approach, using vanishing theorems and
the Fourier-Mukai transform, that has led to many additional results in the projective
case; see also [23, 9, 26]. The purpose of this paper is to show that the newer results
are in fact also valid on arbitrary compact Kähler manifolds.

Besides [15], our motivation also comes from a 2013 paper by Chen and Jiang [9]
in which they prove, roughly speaking, that the direct image of the canonical bundle
under a generically finite morphism to an abelian variety is semi-ample. Before we can
state more precise results, recall the following definitions (see §13 for more details).

Definition Given a coherent OT -module F on a compact complex torus T , define

Si(T,F ) = {L ∈ Pic0(T) | Hi(T,F ⊗ L) 6= 0 }.

We say that F is a GV-sheaf if codim Si(T,F ) ≥ i for every i ≥ 0; we say that F

is M-regular if codim Si(T,F ) ≥ i + 1 for every i ≥ 1.

http://www.ams.org/mathscinet/search/mscdoc.html?code=14C30,(14F17)
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Hacon [15, §4] showed that if f : X → A is a morphism from a smooth projective
variety to an abelian variety, then the higher direct image sheaves Rjf∗ωX are GV-
sheaves on A; in the special case where f is generically finite over its image, Chen and
Jiang [9, Theorem 1.2] proved the much stronger result that f∗ωX is, up to tensoring
by line bundles in Pic0(A), the direct sum of pullbacks of M-regular sheaves from
quotients of A. Since GV-sheaves are nef, whereas M-regular sheaves are ample, one
should think of this as saying that f∗ωX is not only nef but actually semi-ample. One
of our main results is the following generalization of this fact.

Theorem A Let f : X → T be a holomorphic mapping from a compact Kähler
manifold to a compact complex torus. Then for j ≥ 0, one has a decomposition

Rjf∗ωX '
n⊕

k=1

(
q∗kFk ⊗ Lk

)
,

where each Fk is an M-regular (hence ample) coherent sheaf with projective support
on the compact complex torus Tk , each qk : T → Tk is a surjective morphism with
connected fibers, and each Lk ∈ Pic0(T) has finite order. In particular, Rjf∗ωX is a
GV-sheaf on T .

This leads to quite strong positivity properties for higher direct images of canonical
bundles under maps to tori. For instance, if f is a surjective map which is a submersion
away from a divisor with simple normal crossings, then Rjf∗ωX is a semi-positive vector
bundle on T . See §20 for more on this circle of ideas.

One application of Theorem A is the following effective criterion for a compact Kähler
manifold to be bimeromorphically equivalent to a torus; this generalizes a well-known
theorem by Chen and Hacon in the projective case [6].

Theorem B A compact Kähler manifold X is bimeromorphic to a compact complex
torus if and only if dim H1(X,C) = 2 dim X and P1(X) = P2(X) = 1.

The proof is inspired by the approach to the Chen-Hacon theorem given in [20]; even in
the projective case, however, the result in Corollary 16.2 greatly simplifies the existing
proof. In Theorem 19.1, we deduce that the Albanese map of a compact Kähler
manifold with P1(X) = P2(X) = 1 is surjective with connected fibers; in the projective
case, this was first proved by Jiang [16], as an effective version of Kawamata’s theorem
about projective varieties of Kodaira dimension zero. It is likely that the present
methods can also be applied to the classification of compact Kähler manifolds with
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dim H1(X,C) = 2 dim X and small plurigenera; for the projective case, see for instance
[8] and the references therein.

In a different direction, Theorem A combined with results in [18] leads to a concrete
description of the Leray filtration on the cohomology of ωX , associated with a holo-
morphic mapping f : X → T as above. Recall that, for each k ≥ 0, the Leray filtration
is a decreasing filtration L•Hk(X, ωX) with the property that

gri
L Hk(X, ωX) = Hi(T,Rk−if∗ωX

)
.

One can also define a natural decreasing filtration F•Hk(X, ωX) induced by the cup-
product action of H1(T,OT ), namely

FiHk(X, ωX) = Im

(
i∧

H1(T,OT )⊗ Hk−i(X, ωX)→ Hk(X, ωX)

)
.

Theorem C The filtrations L•Hk(X, ωX) and F•Hk(X, ωX) coincide.

A dual description of the filtration on global holomorphic forms is given in Corol-
lary 21.3. Despite the elementary nature of the statement, we do not know how to
prove Theorem C using only methods from classical Hodge theory; finding a more
elementary proof is an interesting problem.

Our approach to Theorem A is to address generic vanishing for a larger class of
objects of Hodge-theoretic origin, namely polarizable real Hodge modules on compact
complex tori. This is not just a matter of higher generality; we do not know how to
prove Theorem A using methods of classical Hodge theory in the spirit of [13]. This is
precisely due to the lack of an a priori description of the Leray filtration on Hk(X, ωX)
as in Theorem C.

The starting point for our proof of Theorem A is a result by Saito [28], which says
that the coherent OT -module Rjf∗ωX is part of a polarizable real Hodge module M =

(M,F•M,MR) ∈ HMR(T, dim X + j) on the torus T ; more precisely,

Rjf∗ωX ' ωT ⊗ Fp(M)M

is the first nontrivial piece in the Hodge filtration F•M of the underlying regular
holonomic D -module M. (Please see §1 for some background on Hodge modules.)
Note that M is supported on the image f (X), and that its restriction to the smooth locus
of f is the polarizable variation of Hodge structure on the (dim f + j)-th cohomology
of the fibers. The reason for working with real coefficients is that the polarization is
induced by a choice of Kähler form in H2(X,R) ∩ H1,1(X); the variation of Hodge
structure itself is of course defined over Z.
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In light of the above identity, Theorem A is a consequence of the following general
statement about polarizable real Hodge modules on compact complex tori.

Theorem D Let M = (M,F•M,MR) ∈ HMR(T,w) be a polarizable real Hodge
module on a compact complex torus T . Then for each k ∈ Z, the coherent OT -module
grF

k M decomposes as

grF
k M'

n⊕
j=1

(
q∗j Fj ⊗OT Lj

)
,

where qj : T → Tj is a surjective map with connected fibers to a complex torus, Fj

is an M-regular coherent sheaf on Tj with projective support, and Lj ∈ Pic0(T). If M
admits an integral structure, then each Lj has finite order.

Let us briefly describe the most important elements in the proof. In [26], we already
exploited the relationship between generic vanishing and Hodge modules on abelian
varieties, but the proofs relied on vanishing theorems. What allows us to go further is a
beautiful new idea by Botong Wang [40], also dating to 2013, namely that up to taking
direct summands and tensoring by unitary local systems, every polarizable real Hodge
module on a complex torus actually comes from an abelian variety. (Wang showed this
for Hodge modules of geometric origin.) This is a version with coefficients of Ueno’s
result [38] that every irreducible subvariety of T is a torus bundle over a projective
variety, and is proved by combining this geometric fact with some arguments about
variations of Hodge structure.

The existence of the decomposition in Theorem D is due to the fact that the regular
holonomic D -module M is semi-simple, hence isomorphic to a direct sum of simple
regular holonomic D -modules. This follows from a theorem by Deligne and Nori
[11], which says that the local system underlying a polarizable real variation of Hodge
structure on a Zariski-open subset of a compact Kähler manifold is semi-simple. It
turns out that the decomposition of M into simple summands is compatible with the
Hodge filtration F•M; in order to prove this, we introduce the category of “polarizable
complex Hodge modules” (which are polarizable real Hodge modules together with
an endomorphism whose square is minus the identity), and show that every simple
summand of M underlies a polarizable complex Hodge module in this sense.

Note Our ad-hoc definition of complex Hodge modules is good enough for the pur-
poses of this paper, but is certainly not the final word. A more satisfactory treatment,
in terms of D -modules and distribution-valued pairings, is currently being developed
by Claude Sabbah and the third author. The reader is advised to consult the website
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www.cmls.polytechnique.fr/perso/sabbah.claude/MHMProject/mhm.html

for more information.

The M-regularity of the individual summands in Theorem D turns out to be closely
related to the Euler characteristic of the corresponding D -modules. The results in
[26] show that when (M,F•M) underlies a polarizable complex Hodge module on an
abelian variety A, the Euler characteristic satisfies χ(A,M) ≥ 0, and each coherent
OA -module grF

k M is a GV-sheaf. The new result (in Lemma 15.1) is that each grF
k M

is actually M-regular, provided that χ(A,M) > 0. That we can always get into the
situation where the Euler characteristic is positive follows from some general results
about simple holonomic D -modules from [34].

Theorem D implies that each graded quotient grF
k M with respect to the Hodge filtration

is a GV-sheaf, the Kähler analogue of a result in [26]. However, the stronger formulation
above is new even in the case of smooth projective varieties, and has further useful
consequences. One such is the following: for a holomorphic mapping f : X → T that
is generically finite onto its image, the locus

S0(T, f∗ωX) = {L ∈ Pic0(T) | Hi(T, f∗ωX ⊗OT L) 6= 0 }

is preserved by the involution L 7→ L−1 on Pic0(T); see Corollary 16.2. This is a
crucial ingredient in the proof of Theorem B.

Going back to Wang’s paper [40], its main purpose was to prove Beauville’s conjecture,
namely that on a compact Kähler manifold X , every irreducible component of every
Σk(X) = { ρ ∈ Char(X) | Hk(X,Cρ) 6= 0 } contains characters of finite order. In the
projective case, this is of course a famous theorem by Simpson [36]. Combining the
structural Theorem 7.1 with known results about Hodge modules on abelian varieties
[35] allows us to prove the following generalization of Wang’s theorem (which dealt
with Hodge modules of geometric origin).

Theorem E If a polarizable real Hodge module M ∈ HMR(T,w) on a compact
complex torus admits an integral structure, then the sets

Si
m(T,M) = { ρ ∈ Char(T) | dim Hi(T,MR ⊗R Cρ) ≥ m }

are finite unions of translates of linear subvarieties by points of finite order.

The idea is to use Kronecker’s theorem (about algebraic integers all of whose conjugates
have absolute value one) to prove that certain characters have finite order. Roughly
speaking, the characters in question are unitary because of the existence of a polarization
on M , and they take values in the group of algebraic integers because of the existence
of an integral structure on M .

www.cmls.polytechnique.fr/perso/sabbah.claude/MHMProject/mhm.html
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Projectivity questions

We conclude by noting that many of the results in this paper can be placed in the broader
context of the following problem: how far are natural geometric or sheaf theoretic
constructions on compact Kähler manifolds in general, and on compact complex tori
in particular, from being determined by similar constructions on projective manifolds?
Theorem A and Theorem D provide the answer on tori in the case of Hodge-theoretic
constructions. We thank János Kollár for suggesting this point of view, and also the
statements of the problems in the paragraph below.

Further structural results could provide a general machine for reducing certain questions
about Kähler manifolds to the algebraic setting. For instance, by analogy with positivity
conjectures in the algebraic case, one hopes for the following result in the case of
varying families: if X and Y are compact Kähler manifolds and f : X → Y is a fiber
space of maximal variation, i.e. such that the general fiber is bimeromorphic to at most
countably many other fibers, then Y is projective. More generally, for an arbitrary
such f , is there a mapping g : Y → Z with Z projective, such that the fibers of f are
bimeromorphically isotrivial over those of Y ?

A slightly more refined version in the case when Y = T is a torus, which is essentially
a combination of Iitaka fibrations and Ueno’s conjecture, is this: there should exist
a morphism h : X → Z , where Z is a variety of general type generating an abelian
quotient g : T → A, such that the fibers of h have Kodaira dimension 0 and are
bimeromorphically isotrivial over the fibers of g.

B Real and complex Hodge modules

1 Real Hodge modules

In this paper, we work with polarizable real Hodge modules on complex manifolds. This
is the natural setting for studying compact Kähler manifolds, because the polarizations
induced by Kähler forms are defined over R (but usually not over Q, as in the
projective case). Saito originally developed the theory of Hodge modules with rational
coefficients, but as explained in [28], everything works just as well with real coefficients,
provided one relaxes the assumptions about local monodromy: the eigenvalues of the
monodromy operator on the nearby cycles are allowed to be arbitrary complex numbers
of absolute value one, rather than just roots of unity. This has already been observed
several times in the literature [32]; the point is that Saito’s theory rests on certain
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results about polarizable variations of Hodge structure [31, 42, 5], which hold in this
generality.

Let X be a complex manifold. We first recall some terminology.

Definition 1.1 We denote by HMR(X,w) the category of polarizable real Hodge
modules of weight w; this is a semi-simple R-linear abelian category, endowed with a
faithful functor to the category of real perverse sheaves.

Saito constructs HMR(X,w) as a full subcategory of the category of all filtered regular
holonomic D -modules with real structure, in several stages. To begin with, recall
that a filtered regular holonomic D -module with real structure on X consists of the
following four pieces of data: (1) a regular holonomic left DX -moduleM; (2) a good
filtration F•M by coherent OX -modules; (3) a perverse sheaf MR with coefficients in
R; (4) an isomorphism MR⊗RC ' DR(M). Although the isomorphism is part of the
data, we usually suppress it from the notation and simply write M = (M,F•M,MR).
The support Supp M is defined to be the support of the underlying perverse sheaf MR ;
one says that M has strict support if Supp M is irreducible and if M has no nontrivial
subobjects or quotient objects that are supported on a proper subset of Supp M .

Now M is called a real Hodge module of weight w if it satisfies several additional
conditions that are imposed by recursion on the dimension of Supp M . Although they
are not quite stated in this way in [27], the essence of these conditions is that (1) every
Hodge module decomposes into a sum of Hodge modules with strict support, and (2)
every Hodge module with strict support is generically a variation of Hodge structure,
which uniquely determines the Hodge module. Given k ∈ Z, set R(k) = (2πi)kR ⊆ C;
then one has the Tate twist

M(k) =
(
M,F•−kM,MR ⊗R R(k)

)
∈ HMR(X,w− 2k).

Every real Hodge module of weight w has a well-defined dual DM , which is a real
Hodge module of weight −w whose underlying perverse sheaf is the Verdier dual
DMR . A polarization is an isomorphism of real Hodge modules DM ' M(w), subject
to certain conditions that are again imposed recursively; one says that M is polarizable
if it admits at least one polarization.

Example 1.2 Every polarizable real variation of Hodge structure of weight w on X
gives rise to an object of HMR(X,w + dim X). If H is such a variation, we denote
the underlying real local system by HR , its complexification by HC = HR ⊗R C, and
the corresponding flat bundle by (H,∇); then H ' HC ⊗C OX . The flat connection
makes H into a regular holonomic left D -module, filtered by F•H = F−•H; the real
structure is given by the real perverse sheaf HR[dim X].
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We list a few useful properties of polarizable real Hodge modules. By definition, every
object M ∈ HMR(X,w) admits a locally finite decomposition by strict support; when
X is compact, this is a finite decomposition

M '
n⊕

j=1

Mj,

where each Mj ∈ HMR(X,w) has strict support equal to an irreducible analytic sub-
variety Zj ⊆ X . There are no nontrivial morphisms between Hodge modules with
different strict support; if we assume that Z1, . . . ,Zn are distinct, the decomposition
by strict support is therefore unique. Since the category HMR(X,w) is semi-simple, it
follows that every polarizable real Hodge module of weight w is isomorphic to a direct
sum of simple objects with strict support.

One of Saito’s most important results is the following structure theorem relating polar-
izable real Hodge modules and polarizable real variations of Hodge structure.

Theorem 1.3 (Saito) The category of polarizable real Hodge modules of weight w
with strict support Z ⊆ X is equivalent to the category of generically defined polarizable
real variations of Hodge structure of weight w− dim Z on Z .

In other words, for any M ∈ HMR(X,w) with strict support Z , there is a dense Zariski-
open subset of the smooth locus of Z over which it restricts to a polarizable real
variation of Hodge structure; conversely, every such variation extends uniquely to a
Hodge module with strict support Z . The proof in [29, Theorem 3.21] carries over to
the case of real coefficients; see [28] for further discussion.

Lemma 1.4 The support of M ∈ HMR(X,w) lies in a submanifold i : Y ↪→ X if and
only if M belongs to the image of the functor i∗ : HMR(Y,w)→ HMR(X,w).

This result is often called Kashiwara’s equivalence, because Kashiwara proved the
same thing for arbitrary coherent D -modules. In the case of Hodge modules, the point
is that the coherent OX -modules FkM/Fk−1M are in fact OY -modules.

2 Compact Kähler manifolds and semi-simplicity

In this section, we prove some results about the underlying regular holonomic D -
modules of polarizable real Hodge modules on compact Kähler manifolds. Our starting
point is the following semi-simplicity theorem, due to Deligne and Nori.
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Theorem 2.1 (Deligne, Nori) Let X be a compact Kähler manifold. If

M = (M,F•M,MR) ∈ HMR(X,w),

then the perverse sheaf MR and the D -module M are semi-simple.

Proof Since the category HMR(X,w) is semi-simple, we may assume without loss
of generality that M is simple, with strict support an irreducible analytic subvariety
Z ⊆ X . By Saito’s Theorem 1.3, M restricts to a polarizable real variation of Hodge
structureH of weight w−dim Z on a Zariski-open subset of the smooth locus of Z ; note
that H is a simple object in the category of real variations of Hodge structure. Now MR
is the intersection complex of HR , and so it suffices to prove that HR is semi-simple.
After resolving singularities, we can assume that H is defined on a Zariski-open subset
of a compact Kähler manifold; in that case, Deligne and Nori have shown that HR is
semi-simple [11, §1.12]. It follows that the complexification MR⊗RC of the perverse
sheaf is semi-simple as well; by the Riemann-Hilbert correspondence, the same is true
for the underlying regular holonomic D -module M.

A priori, there is no reason why the decomposition of the regular holonomic D -module
M into simple factors should lift to a decomposition in the category HMR(X,w).
Nevertheless, it turns out that we can always chose the decomposition in such a way
that it is compatible with the filtration F•M.

Proposition 2.2 Let M ∈ HMR(X,w) be a simple polarizable real Hodge module on
a compact Kähler manifold. Then one of the following two statements is true:

(1) The underlying perverse sheaf MR ⊗R C is simple.

(2) There is an endomorphism J ∈ End(M) with J2 = − id such that(
M,F•M,MR ⊗R C

)
= ker(J − i · id)⊕ ker(J + i · id),

and the perverse sheaves underlying ker(J ± i · id) are simple.

We begin by proving the following key lemma.

Lemma 2.3 LetH be a polarizable real variation of Hodge structure on a Zariski-open
subset of a compact Kähler manifold. If H is simple, then

(a) either the underlying complex local system HC is also simple,

(b) or there is an endomorphism J ∈ End(H) with J2 = − id, such that

HC = ker(JC − i · id)⊕ ker(JC + i · id)

is the sum of two (possibly isomorphic) simple local systems.
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Proof Since X is a Zariski-open subset of a compact Kähler manifold, the theorem of
the fixed part holds on X , and the local system HC is semi-simple [11, §1.12]. Choose
a base point x0 ∈ X , and write HR for the fiber of the local system HR at the point x0 ;
it carries a polarizable Hodge structure

HC = HR ⊗R C =
⊕

p+q=w

Hp,q,

say of weight w. The fundamental group Γ = π1(X, x0) acts on HR , and as we
remarked above, HC decomposes into a sum of simple Γ-modules. The proof of [11,
Proposition 1.13] shows that there is a nontrivial simple Γ-module V ⊆ HC compatible
with the Hodge decomposition, meaning that

V =
⊕

p+q=w

V ∩ Hp,q.

Let V̄ ⊆ HC denote the conjugate of V with respect to the real structure HR ; it is
another nontrivial simple Γ-module with

V̄ =
⊕

p+q=w

V̄ ∩ Hp,q.

The intersection (V + V̄) ∩ HR is therefore a Γ-invariant real sub-Hodge structure of
HR . By the theorem of the fixed part, it extends to a real sub-variation of H; since H
is simple, this means that HC = V + V̄ . Now there are two possibilities. (1) If V = V̄ ,
then HC = V , and HC is a simple local system. (2) If V 6= V̄ , then HC = V ⊕ V̄ , and
HC is the sum of two (possibly isomorphic) simple local systems. The endomorphism
algebra End(HR) coincides with the subalgebra of Γ-invariants in End(HR); by the
theorem of the fixed part, it is also a real sub-Hodge structure. Let p ∈ End(HC) and
p̄ ∈ End(HC) denote the projections to the two subspaces V and V̄ ; both preserve the
Hodge decomposition, and are therefore of type (0, 0). This shows that the element
J = i(p − p̄) ∈ End(HC) is a real Hodge class of type (0, 0) with J2 = − id; by the
theorem of the fixed part, J is the restriction to x0 of an endomorphism of the variation
of Hodge structure H . This completes the proof because V and V̄ are exactly the
±i-eigenspaces of J .

Proof of Proposition 2.2 Since M is simple, it has strict support equal to an irre-
ducible analytic subvariety Z ⊆ X ; by Theorem 1.3, M is obtained from a polarizable
real variation of Hodge structure H of weight w − dim Z on a dense Zariski-open
subset of the smooth locus of Z . Let HR denote the underlying real local system;
then MR is isomorphic to the intersection complex of HR . Since we can resolve the
singularities of Z by blowing up along submanifolds of X , Lemma 2.3 applies to this
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situation; it shows that HC = HR ⊗R C has at most two simple factors. The same is
true for MR ⊗R C and, by the Riemann-Hilbert correspondence, for M.

Now we have to consider two cases. If HC is simple, then M is also simple, and
we are done. If HC is not simple, then by Lemma 2.3, there is an endomorphism
J ∈ End(H) with J2 = − id such that the two simple factors are the ±i-eigenspaces
of J . By Theorem 1.3, it extends uniquely to an endomorphism of J ∈ End(M) in the
category HMR(X,w); in particular, we obtain an induced endomorphism

J : M→M

that is strictly compatible with the filtration F•M by [27, Proposition 5.1.14]. Now
the ±i-eigenspaces of J give us the desired decomposition

(M,F•M) = (M′,F•M′)⊕ (M′′,F•M′′);

note that the two regular holonomic D -modules M′ and M′′ are simple because the
corresponding perverse sheaves are the intersection complexes of the simple complex
local systems ker(JC ± i · id), where JC stands for the induced endomorphism of the
complexification MR ⊗R C.

3 Complex Hodge modules

In Saito’s recursive definition of the category of polarizable Hodge modules, the exis-
tence of a real structure is crucial: to say that a given filtration on a complex vector
space is a Hodge structure of a certain weight, or that a given bilinear form is a po-
larization, one needs to have complex conjugation. This explains why there is as yet
no general theory of “polarizable complex Hodge modules” – although it seems likely
that such a theory can be constructed within the framework of twistor D -modules
developed by Sabbah and Mochizuki. We now explain a workaround for this problem,
suggested by Proposition 2.2.

Definition 3.1 A polarizable complex Hodge module on a complex manifold X is a
pair (M, J), consisting of a polarizable real Hodge module M ∈ HMR(X,w) and an
endomorphism J ∈ End(M) with J2 = − id.

The space of morphisms between two polarizable complex Hodge modules (M1, J1)
and (M2, J2) is defined in the obvious way:

Hom
(
(M1, J1), (M2, J2)

)
= { f ∈ Hom(M1,M2) | f ◦ J1 = J2 ◦ f }

Note that composition with J1 (or equivalently, J2 ) puts a natural complex structure
on this real vector space.
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Definition 3.2 We denote by HMC(X,w) the category of polarizable complex Hodge
modules of weight w; it is C-linear and abelian.

From a polarizable complex Hodge module (M, J), we obtain a filtered regular holo-
nomic D -module as well as a complex perverse sheaf, as follows. Denote by

M =M′ ⊕M′′ = ker(J − i · id)⊕ ker(J + i · id)

the induced decomposition of the regular holonomic D -module underlying M , and
observe that J ∈ End(M) is strictly compatible with the Hodge filtration F•M. This
means that we have a decomposition

(M,F•M) = (M′,F•M′)⊕ (M′′,F•M′′)

in the category of filtered D -modules. Similarly, let JC ∈ End(MC) denote the induced
endomorphism of the complex perverse sheaf underlying M ; then

MC = MR ⊗R C = ker(JC − i · id)⊕ ker(JC + i · id),

and the two summands correspond to M′ and M′′ under the Riemann-Hilbert corre-
spondence. Note that they are isomorphic as real perverse sheaves; the only difference
is in the C-action. We obtain a functor

(M, J) 7→ ker(JC − i · id)

from HMC(X,w) to the category of complex perverse sheaves on X ; it is faithful, but
depends on the choice of i.

Definition 3.3 Given (M, J) ∈ HMC(X,w), we call

ker(JC − i · id) ⊆ MC

the underlying complex perverse sheaf, and

(M′,F•M′) = ker(J − i · id) ⊆ (M,F•M)

the underlying filtered regular holonomic D -module.

There is also an obvious functor from polarizable real Hodge modules to polarizable
complex Hodge modules: it takes M ∈ HMR(X,w) to the pair(

M ⊕M, JM
)
, JM(m1,m2) = (−m2,m1).

Not surprisingly, the underlying complex perverse sheaf is isomorphic to MR ⊗R C,
and the underlying filtered regular holonomic D -module to (M,F•M). The proof of
the following lemma is left as an easy exercise.
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Lemma 3.4 A polarized complex Hodge module (M, J) ∈ HMC(X,w) belongs to the
image of HMR(X,w) if and only if there exists r ∈ End(M) with

r ◦ J = −J ◦ r and r2 = id .

In particular, (M, J) should be isomorphic to its complex conjugate (M,−J), but this
in itself does not guarantee the existence of a real structure – for example when M is
simple and End(M) is isomorphic to the quaternions H.

Proposition 3.5 The category HMC(X,w) is semi-simple, and the simple objects are
of the following two types:

(i) (M ⊕M, JM), where M ∈ HMR(X,w) is simple and End(M) = R.

(ii) (M, J), where M ∈ HMR(X,w) is simple and End(M) ∈ {C,H}.

Proof Since HMR(X,w) is semi-simple, every object of HMC(X,w) is isomorphic to
a direct sum of polarizable complex Hodge modules of the form

(3.6)
(
M⊕n, J

)
,

where M ∈ HMR(X,w) is simple, and J is an n × n-matrix with entries in End(M)
such that J2 = − id. By Schur’s lemma and the classification of real division algebras,
the endomorphism algebra of a simple polarizable real Hodge module is one of R,
C, or H. If End(M) = R, elementary linear algebra shows that n must be even and
that (3.6) is isomorphic to the direct sum of n/2 copies of (i). If End(M) = C, one
can diagonalize the matrix J ; this means that (3.6) is isomorphic to a direct sum of
n objects of type (ii). If End(M) = H, it is still possible to diagonalize J , but this
needs some nontrivial results about matrices with entries in the quaternions [41]. Write
J ∈ Mn(H) in the form J = J1 + J2j, with J1, J2 ∈ Mn(C), and consider the “adjoint
matrix”

χJ =

(
J1 J2

−J2 J1

)
∈ M2n(C).

Since J2 = − id, one also has χ2
J = − id, and so the matrix J is normal by [41,

Theorem 4.2]. According to [41, Corollary 6.2], this implies the existence of a unitary
matrix U ∈ Mn(H) such that U−1AU = i · id; here unitary means that U−1 = U∗

is equal to the conjugate transpose of U . The consequence is that (3.6) is again
isomorphic to a direct sum of n objects of type (ii). Since it is straightforward to prove
that both types of objects are indeed simple, this concludes the proof.
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Note The three possible values for the endomorphism algebra of a simple object
M ∈ HMR(X,w) reflect the splitting behavior of its complexification (M ⊕M, JM) ∈
HMC(X,w): if End(M) = R, it remains irreducible; if End(M) = C, it splits into two
non-isomorphic simple factors; if End(M) = H, it splits into two isomorphic simple
factors. Note that the endomorphism ring of a simple polarizable complex Hodge
module is always isomorphic to C, in accordance with Schur’s lemma.

Our ad-hoc definition of the category HMC(X,w) has the advantage that every result
about polarizable real Hodge modules that does not explicitly mention the real struc-
ture extends to polarizable complex Hodge modules. For example, each (M, J) ∈
HMC(X,w) admits a unique decomposition by strict support: M admits such a decom-
position, and since there are no nontrivial morphisms between objects with different
strict support, J is automatically compatible with the decomposition. For much the
same reason, Kashiwara’s equivalence (in Lemma 1.4) holds also for polarizable com-
plex Hodge modules.

Another result that immediately carries over is Saito’s direct image theorem. The
strictness of the direct image complex is one of the crucial properties of polarizable
Hodge modules; in the special case of the morphism from a projective variety X to a
point, it is equivalent to the E1 -degeneration of the spectral sequence

Ep,q
1 = Hp+q(X, grF

p DR(M′)
)

=⇒ Hp+q(X,DR(M′)
)
,

a familiar result in classical Hodge theory when M′ = OX .

Theorem 3.7 Let f : X → Y be a projective morphism between complex manifolds.

(a) If (M, J) ∈ HMC(X,w), then for each k ∈ Z, the pair

Hkf∗(M, J) =
(
Hkf∗M,Hkf∗J

)
∈ HMC(Y,w + k)

is again a polarizable complex Hodge module.

(b) The direct image complex f+(M′,F•M′) is strict, and Hkf+(M′,F•M′) is the
filtered regular holonomic D -module underlying Hkf∗(M, J).

Proof Since M ∈ HMR(X,w) is a polarizable real Hodge module, we have Hkf∗M ∈
HMR(Y,w + k) by Saito’s direct image theorem [27, Théorème 5.3.1]. Now it suffices
to note that J ∈ End(M) induces an endomorphism Hkf∗J ∈ End

(
Hkf∗M

)
whose

square is equal to minus the identity. Since

(M,F•M) = (M′,F•M′)⊕ (M′′,F•M′′),

the strictness of the complex f+(M′,F•M′) follows from that of f+(M,F•M), which
is part of the above-cited theorem by Saito.
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On compact Kähler manifolds, the semi-simplicity results from the previous section
can be summarized as follows.

Proposition 3.8 Let X be a compact Kähler manifold.

(a) A polarizable complex Hodge module (M, J) ∈ HMC(X,w) is simple if and
only if the underlying complex perverse sheaf

ker
(

JC − i · id : MR ⊗R C→ MR ⊗R C
)

is simple.

(b) If M ∈ HMR(X,w), then every simple factor of the complex perverse sheaf
MR ⊗R C underlies a polarizable complex Hodge module.

Proof This is a restatement of Proposition 2.2.

4 Complex variations of Hodge structure

In this section, we discuss the relation between polarizable complex Hodge modules
and polarizable complex variations of Hodge structure.

Definition 4.1 A polarizable complex variation of Hodge structure is a pair (H, J),
where H is a polarizable real variation of Hodge structure, and J ∈ End(H) is an
endomorphism with J2 = − id.

As before, the complexification of a real variation H is defined as(
H⊕H, JH

)
, JH(h1, h2) = (−h2, h1),

and a complex variation (H, J) is real if and only if there is an endomorphism r ∈
End(H) with r ◦ J = −J ◦ r and r2 = id. Note that the direct sum of (H, J) with its
complex conjugate (H,−J) has an obvious real structure.

The definition above is convenient for our purposes; it is also not hard to show that it is
equivalent to the one in [11, §1], up to the choice of weight. (Deligne only considers
complex variations of weight zero.)

Example 4.2 Let ρ ∈ Char(X) be a unitary character of the fundamental group, and
denote by Cρ the resulting unitary local system. It determines a polarizable complex
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variation of Hodge structure in the following manner. The underlying real local system
is R2 , with monodromy acting by(

Re ρ − Im ρ

Im ρ Re ρ

)
;

the standard inner product on R2 makes this into a polarizable real variation of Hodge
structure Hρ of weight zero, with Jρ ∈ End(Hρ) acting as Jρ(x, y) = (−y, x); for
simplicity, we continue to denote the pair

(
Hρ, Jρ

)
by the symbol Cρ .

We have the following criterion for deciding whether a polarizable complex Hodge
module is smooth, meaning induced by a complex variation of Hodge structure.

Lemma 4.3 Given (M, J) ∈ HMC(X,w), let us denote by

M =M′ ⊕M′′ = ker(J − i · id)⊕ ker(J + i · id)

the induced decomposition of the regular holonomic D -module underlying M . IfM′
is coherent as an OX -module, then M is smooth.

Proof Let MC = ker(JC− i · id)⊕ ker(JC + i · id) be the analogous decomposition of
the underlying perverse sheaf. SinceM′ is OX -coherent, it is a vector bundle with flat
connection; by the Riemann-Hilbert correspondence, the first factor is therefore (up to
a shift in degree by dim X ) a complex local system. Since it is isomorphic to MR as a
real perverse sheaf, it follows that MR is also a local system; but then M is smooth by
[27, Lemme 5.1.10].

In general, the relationship between complex Hodge modules and complex variations
of Hodge structure is governed by the following theorem; it is of course an immediate
consequence of Saito’s results (see Theorem 1.3).

Theorem 4.4 The category of polarizable complex Hodge modules of weight w with
strict support Z ⊆ X is equivalent to the category of generically defined polarizable
complex variations of Hodge structure of weight w− dim Z on Z .

5 Integral structures on Hodge modules

By working with polarizable real (or complex) Hodge modules, we lose certain arith-
metic information about the monodromy of the underlying perverse sheaves, such as
the fact that the monodromy eigenvalues are roots of unity. One can recover some
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of this information by asking for the existence of an “integral structure” [35, Defini-
tion 1.9], which is just a constructible complex of sheaves of Z-modules that becomes
isomorphic to the perverse sheaf underlying the Hodge module after tensoring by R.

Definition 5.1 An integral structure on a polarizable real Hodge module M ∈
HMR(X,w) is a constructible complex E ∈ Db

c(ZX) such that MR ' E ⊗Z R.

As explained in [35, §1.2.2], the existence of an integral structure is preserved by
many of the standard operations on (mixed) Hodge modules, such as direct and inverse
images or duality. Note that even though it makes sense to ask whether a given (mixed)
Hodge module admits an integral structure, there appears to be no good functorial
theory of “polarizable integral Hodge modules”.

Lemma 5.2 If M ∈ HMR(X,w) admits an integral structure, then the same is true for
every summand in the decomposition of M by strict support.

Proof Consider the decomposition

M =

n⊕
j=1

Mj

by strict support, with Z1, . . . ,Zn ⊆ X distinct irreducible analytic subvarieties. Each
Mj is a polarizable real Hodge module with strict support Zj , and therefore comes
from a polarizable real variation of Hodge structure Hj on a dense Zariski-open subset
of Zj . What we have to prove is that each Hj can be defined over Z. Let MR
denote the underlying real perverse sheaf, and set dj = dim Zj . According to [2,
Proposition 2.1.17], Zj is an irreducible component in the support of the (−dj)-th
cohomology sheaf of MR , and Hj,R is the restriction of that constructible sheaf to a
Zariski-open subset of Zj . Since MR ' E ⊗Z R, it follows that Hj is defined over the
integers.

6 Operations on Hodge modules

In this section, we recall three useful operations for polarizable real (and complex)
Hodge modules. If Supp M is compact, we define the Euler characteristic of M =

(M,F•M,MR) ∈ HMR(X,w) by the formula

χ(X,M) =
∑
i∈Z

(−1)i dimR Hi(X,MR) =
∑
i∈Z

(−1)i dimC Hi(X,DR(M)
)
.
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For (M, J) ∈ HMC(X,w), we letM =M′⊕M′′ = ker(J− i · id)⊕ ker(J + i · id) be
the decomposition into eigenspaces, and define

χ(X,M, J) =
∑
i∈Z

(−1)i dimC Hi(X,DR(M′)
)
.

With this definition, one has χ(X,M) = χ(X,M, J) + χ(X,M,−J).

Given a smooth morphism f : Y → X of relative dimension dim f = dim Y − dim X ,
we define the naive inverse image

f−1M =
(
f ∗M, f ∗F•M, f−1MR

)
.

One can show that f−1M ∈ HMR(Y,w + dim f ); see [33, §9] for more details. The
same is true for polarizable complex Hodge modules: if (M, J) ∈ HMC(X,w), then
one obviously has

f−1(M, J) =
(
f−1M, f−1J

)
∈ HMC(Y,w + dim f ).

One can also twist a polarizable complex Hodge module by a unitary character.

Lemma 6.1 For any unitary character ρ ∈ Char(X), there is an object

(M, J)⊗C Cρ ∈ HMC(X,w)

whose associated complex perverse sheaf is ker(JC − i · id)⊗C Cρ .

Proof In the notation of Example 4.2, consider the tensor product

M ⊗R Hρ ∈ HMR(X,w);

it is again a polarizable real Hodge module of weight w because Hρ is a polarizable
real variation of Hodge structure of weight zero. The square of the endomorphism
J ⊗ Jρ is the identity, and so

N = ker
(
J ⊗ Jρ + id

)
⊆ M ⊗R Hρ

is again a polarizable real Hodge module of weight w. Now K = J ⊗ id ∈ End(N)
satisfies K2 = − id, which means that the pair (N,K) is a polarizable complex Hodge
module of weight w. On the associated complex perverse sheaf

ker
(
KC − i · id

)
⊆ MC ⊗C Hρ,C,

both JC ⊗ id and id⊗Jρ,C act as multiplication by i, which means that

ker
(
KC − i · id

)
= ker(JC − i · id)⊗C Cρ.

The corresponding regular holonomic D -module is obviously

N ′ =M′ ⊗OX (L,∇),

with the filtration induced by F•M′ ; here (L,∇) denotes the flat bundle corresponding
to the complex local system Cρ , and M =M′ ⊕M′′ as above.
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Note The proof shows that

NC =
(
ker(JC − i · id)⊗C Cρ

)
⊕
(
ker(JC + i · id)⊗C Cρ̄

)
N =

(
M′ ⊗OX (L,∇)

)
⊕
(
M′′ ⊗OX (L,∇)−1),

where ρ̄ is the complex conjugate of the character ρ ∈ Char(X).

C Hodge modules on complex tori

7 Main result

The paper [26] contains several results about Hodge modules of geometric origin on
abelian varieties. In this chapter, we generalize these results to arbitrary polarizable
complex Hodge modules on compact complex tori. To do so, we develop a beautiful
idea due to Wang [40], namely that up to direct sums and character twists, every such
object actually comes from an abelian variety.

Theorem 7.1 Let (M, J) ∈ HMC(T,w) be a polarizable complex Hodge module on a
compact complex torus T . Then there is a decomposition

(7.2) (M, J) '
n⊕

j=1

q−1
j (Nj, Jj)⊗C Cρj

where qj : T → Tj is a surjective morphism with connected fibers, ρj ∈ Char(T) is a
unitary character, and (Nj, Jj) ∈ HMC(Tj,w− dim qj) is a simple polarizable complex
Hodge module with Supp Nj projective and χ(Tj,Nj, Jj) > 0.

For Hodge modules of geometric origin, a less precise result was proved by Wang [40].
His proof makes use of the decomposition theorem, which in the setting of arbitrary
compact Kähler manifolds, is only known for Hodge modules of geometric origin [28].
This technical issue can be circumvented by putting everything in terms of generically
defined variations of Hodge structure.

To get a result for a polarizable real Hodge module M ∈ HMR(T,w), we simply apply
Theorem 7.1 to its complexification (M ⊕M, JM) ∈ HMC(T,w). One could say more
about the terms in the decomposition below, but the following version is enough for
our purposes.
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Corollary 7.3 Let M ∈ HMR(T,w) be a polarizable real Hodge module on a compact
complex torus T . Then in the notation of Theorem 7.1, one has

(M ⊕M, JM) '
n⊕

j=1

q−1
j (Nj, Jj)⊗C Cρj .

If M admits an integral structure, then each ρj ∈ Char(T) has finite order.

The proof of these results takes up the rest of the chapter.

8 Subvarieties of complex tori

This section contains a structure theorem for subvarieties of compact complex tori.
The statement is contained in [40, Propositions 2.3 and 2.4], but we give a simpler
argument below.

Proposition 8.1 Let X be an irreducible analytic subvariety of a compact complex
torus T . Then there is a subtorus S ⊆ T with the following two properties:

(a) S + X = X and the quotient Y = X/S is projective.

(b) If D ⊆ X is an irreducible analytic subvariety with dim D = dim X − 1, then
S + D = D.

In particular, every divisor on X is the preimage of a divisor on Y .

Proof It is well-known that the algebraic reduction of T is an abelian variety. More
precisely, there is a subtorus S ⊆ T such that A = T/S is an abelian variety, and every
other subtorus with this property contains S; see e.g. [4, Ch.2 §6].

Now let X ⊆ T be an irreducible analytic subvariety of T ; without loss of generality,
we may assume that 0 ∈ X and that X is not contained in any proper subtorus of T .
By a theorem of Ueno [38, Theorem 10.9], there is a subtorus S′ ⊆ T with S′+ X ⊆ X
and such that X/S′ ⊆ T/S′ is of general type. In particular, X/S′ is projective; but
then T/S′ must also be projective, which means that S ⊆ S′ . Setting Y = X/S , we get
a cartesian diagram

X T

Y A

with Y projective. Now it remains to show that every divisor on X is the pullback of a
divisor from Y .
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Let D ⊆ X be an irreducible analytic subvariety with dim D = dim X − 1; as before,
we may assume that 0 ∈ D. For dimension reasons, either S + D = D or S + D = X ;
let us suppose that S+D = X and see how this leads to a contradiction. Define TD ⊆ T
to be the smallest subtorus of T containing D; then S + TD = T . If TD = T , then
the same reasoning as above would show that S + D = D; therefore TD 6= T , and
dim(TD ∩ S) ≤ dim S− 1. Now

D ∩ S ⊆ TD ∩ S ⊆ S,

and because dim(D ∩ S) = dim S − 1, it follows that D ∩ S = TD ∩ S consists of
a subtorus S′′ and finitely many of its translates. After dividing out by S′′ , we may
assume that dim S = 1 and that D∩ S = TD ∩ S is a finite set; in particular, D is finite
over Y , and therefore also projective. Now consider the addition morphism

S× D→ T.

Since S + D = X , its image is equal to X ; because S and D are both projective, it
follows that X is projective, and hence that T is projective. But this contradicts our
choice of S . The conclusion is that S + D = D, as asserted.

Note It is possible for S to be itself an abelian variety; this is why the proof that
S + D 6= X requires some care.

9 Simple Hodge modules and abelian varieties

We begin by proving a structure theorem for simple polarizable complex Hodge mod-
ules on a compact complex torus T ; this is evidently the most important case, because
every polarizable complex Hodge module is isomorphic to a direct sum of simple
ones. Fix a simple polarizable complex Hodge module (M, J) ∈ HMC(T,w). By
Proposition 3.5, the polarizable real Hodge module M ∈ HMR(X,w) has strict support
equal to an irreducible analytic subvariety; we assume in addition that Supp M is not
contained in any proper subtorus of T .

Theorem 9.1 There is an abelian variety A, a surjective morphism q : T → A with
connected fibers, a simple (N,K) ∈ HMC(A,w − dim q) with χ(A,N,K) > 0, and a
unitary character ρ ∈ Char(T), such that

(9.2) (M, J) ' q−1(N,K)⊗C Cρ.

In particular, Supp M = q−1(Supp N) is covered by translates of ker q.
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Let X = Supp M . By Proposition 8.1, there is a subtorus S ⊆ T such that S + X = X
and such that Y = X/S is projective. Since Y is not contained in any proper subtorus,
it follows that A = T/S is an abelian variety. Let q : T → A be the quotient mapping,
which is proper and smooth of relative dimension dim q = dim S . This will not be our
final choice for Theorem 9.1, but it does have almost all the properties that we want
(except for the lower bound on the Euler characteristic).

Proposition 9.3 There is a simple (N,K) ∈ HMC(A,w − dim q) with strict support
Y and a unitary character ρ ∈ Char(T) for which (9.2) holds.

By Theorem 4.4, (M, J) corresponds to a polarizable complex variation of Hodge
structure of weight w − dim X on a dense Zariski-open subset of X . The crucial
observation, due to Wang, is that we can choose this set to be of the form q−1(U),
where U is a dense Zariski-open subset of the smooth locus of Y .

Lemma 9.4 There is a dense Zariski-open subset U ⊆ Y , contained in the smooth
locus of Y , and a polarizable complex variation of Hodge structure (H, J) of weight
w − dim X on q−1(U), such that (M, J) is the polarizable complex Hodge module
corresponding to (H, J) in Theorem 4.4.

Proof Let Z ⊆ X be the union of the singular locus of X and the singular locus of
M . Then Z is an analytic subset of X , and according to Theorem 1.3, the restriction
of M to X \ Z is a polarizable real variation of Hodge structure of weight w− dim X .
By Proposition 8.1, no irreducible component of Z of dimension dim X− 1 dominates
Y ; we can therefore find a Zariski-open subset U ⊆ Y , contained in the smooth locus
of Y , such that the intersection q−1(U) ∩ Z has codimension ≥ 2 in q−1(U). Now
H extends uniquely to a polarizable real variation of Hodge structure on the entire
complex manifold q−1(U), see [31, Proposition 4.1]. The assertion about J follows
easily.

For any y ∈ U , the restriction of (H, J) to the fiber q−1(y) is a polarizable complex
variation of Hodge structure on a translate of the compact complex torus ker q. By
Lemma 11.1, the restriction to q−1(y) of the underlying local system

ker
(

JC − i · id : HC → HC

)
is the direct sum of local systems of the form Cρ , for ρ ∈ Char(T) unitary; when M
admits an integral structure, ρ has finite order in the group Char(T).
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Proof of Proposition 9.3 Let ρ ∈ Char(T) be one of the unitary characters in ques-
tion, and let ρ̄ ∈ Char(T) denote its complex conjugate. The tensor product (H, J)⊗C
Cρ̄ is a polarizable complex variation of Hodge structure of weight w − dim X on
the open subset q−1(U). Since all fibers of q : q−1(U) → U are translates of the
compact complex torus ker q, classical Hodge theory for compact Kähler manifolds
[42, Theorem 2.9] implies that

(9.5) q∗
(
(H, J)⊗C Cρ̄

)
is a polarizable complex variation of Hodge structure of weight w − dim X on U ; in
particular, it is again semi-simple. By our choice of ρ, the adjunction morphism

q−1q∗
(
(H, J)⊗C Cρ̄

)
→ (H, J)⊗C Cρ̄

is nontrivial. Consequently, (9.5) must have at least one simple summand (HU,K) in
the category of polarizable complex variations of Hodge structure of weight w−dim X
for which the induced morphism q−1(HU,K) → (H, J) ⊗C Cρ̄ is nontrivial. Both
sides being simple, the morphism is an isomorphism; consequently,

(9.6) q−1(HU,K)⊗C Cρ ' (H, J).

Now let (N,K) ∈ HMC(A,w − dim q) be the polarizable complex Hodge module on
A corresponding to (HU,K); by construction, (N,K) is simple with strict support Y .
Arguing as in [34, Lemma 20.2], one proves that the naive pullback q−1(N,K) ∈
HMC(T,w) is simple with strict support X . Because of (9.6), this means that (M, J) is
isomorphic to q−1(N,K)⊗C Cρ in the category HMC(T,w).

We have thus proved Theorem 9.1, except for the inequality χ(A,N,K) > 0. Let N
denote the regular holonomic D -module underlying N ; then

N = N ′ ⊕N ′′ = ker(K − i · id)⊕ ker(K + i · id),

where K ∈ End(N ) refers to the induced endomorphism. By Proposition 3.8, both N ′
and N ′′ are simple with strict support Y . Since A is an abelian variety, one has for
example by [34, §5] that

χ(A,N,K) =
∑
i∈Z

(−1)i dim Hi(A,DR(N ′)
)
≥ 0.

Now the point is that a simple holonomic D -module with vanishing Euler characteristic
is always (up to a twist by a line bundle with flat connection) the pullback from a lower-
dimensional abelian variety [34, §20].
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Proof of Theorem 9.1 Keeping the notation from Proposition 9.3, we have a surjec-
tive morphism q : T → A with connected fibers, a simple polarizable complex Hodge
module (N,K) ∈ HMC(Y,w − dim q) with strict support Y = q(X), and a unitary
character ρ ∈ Char(T) such that

(M, J) ' q−1(N,K)⊗C Cρ.

If (N,K) has positive Euler characteristic, we are done, so let us assume from now on
that χ(A,N,K) = 0. This means that N ′ is a simple regular holonomic D -module
with strict support Y and Euler characteristic zero.

By [34, Corollary 5.2], there is a surjective morphism f : A→ B with connected fibers
from A to a lower-dimensional abelian variety B, such that N ′ is (up to a twist by a
line bundle with flat connection) the pullback of a simple regular holonomic D -module
with positive Euler characteristic. Setting

M =M′ ⊕M′′ = ker(J − i · id)⊕ ker(J + i · id),

it follows that M′ is (again up to a twist by a line bundle with flat connection) the
pullback by f ◦ q of a simple regular holonomic D -module on B. Consequently, there
is a dense Zariski-open subset U ⊆ f (Y) such that the restriction ofM′ to (f ◦q)−1(U)
is coherent as an O -module. By Lemma 4.3, the restriction of (M, J) to this open set
is therefore a polarizable complex variation of Hodge structure of weight w− dim X .
After replacing our original morphism q : T → A by the composition f ◦ q : T → B,
we can argue as in the proof of Proposition 9.3 to show that (9.2) is still satisfied (for a
different choice of ρ ∈ Char(T), perhaps).

With some additional work, one can prove that now χ(A,N,K) > 0. Alternatively,
the same result can be obtained by the following more indirect method: as long as
χ(A,N,K) = 0, we can repeat the argument above; since the dimension of A goes
down each time, we must eventually get to the point where χ(A,N,K) > 0. This
completes the proof of Theorem 9.1.

10 Proof of the main result

As in Theorem 7.1, let (M, J) ∈ HMC(T,w) be a polarizable complex Hodge module
on a compact complex torus T . Using the decomposition by strict support, we can
assume without loss of generality that (M, J) has strict support equal to an irreducible
analytic subvariety X ⊆ T . After translation, we may assume moreover that 0 ∈ X .
Let T ′ ⊆ T be the smallest subtorus of T containing X ; by Kashiwara’s equivalence,
we have (M, J) = i∗(M′, J′) for some (M′, J′) ∈ HMC(T ′,w), where i : T ′ ↪→ T is
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the inclusion. Now Theorem 9.1 gives us a morphism q′ : T ′ → A′ such that (M′, J′)
is isomorphic to the direct sum of pullbacks of polarizable complex Hodge modules
twisted by unitary local systems. Since i−1 : Char(T) → Char(T ′) is surjective, the
same is then true for (M, J) with respect to the quotient mapping q : T → T/ ker q′ .
This proves Theorem 7.1.

Proof of Corollary 7.3 By considering the complexification

(M ⊕M, JM) ∈ HMC(T,w),

we reduce the problem to the situation considered in Theorem 7.1. It remains to show
that all the characters in (7.2) have finite order in Char(T) if M admits an integral
structure. By Lemma 5.2, every summand in the decomposition of M by strict support
still admits an integral structure, and so we may assume without loss of generality
that M has strict support equal to X ⊆ T and that 0 ∈ X . As before, we have
(M, J) = i∗(M′, J′), where i : T ′ ↪→ T is the smallest subtorus of T containing X ; it is
easy to see that M′ again admits an integral structure. Now we apply the same argument
as in the proof of Theorem 7.1 to the finitely many simple factors of (M, J), noting
that the characters ρ ∈ Char(T) that come up always have finite order by Lemma 11.1
below.

Note As in the proof of Lemma 6.1, it follows that M⊕M is isomorphic to the direct
sum of the polarizable real Hodge modules

(10.1) ker
(

q−1
j Jj ⊗ Jρj + id

)
⊆ q−1

j Nj ⊗R Hρj .

Furthermore, one can show that for each j = 1, . . . , n, exactly one of two things
happens. (1) Either the object in (10.1) is simple, and therefore occurs among the
simple factors of M ; in this case, the underlying regular holonomic D -moduleM will
contain the two simple factors(

q∗jN ′j ⊗OT (Lj,∇j)
)
⊕
(

q∗jN ′′j ⊗OT (Lj,∇j)−1
)
.

(2) Or the object in (10.1) splits into two copies of a simple polarizable real Hodge
module, which also has to occur among the simple factors of M . In this case, one
can actually arrange that (Nj, Jj) is real and that the character ρj takes values in
{−1,+1}. The simple object in question is the twist of (Nj, Jj) by the polarizable real
variation of Hodge structure of rank one determined by ρj ; moreover, M will contain
q∗jN ′j ⊗OT (Lj,∇j) ' q∗jN ′′j ⊗OT (Lj,∇j)−1 as a simple factor.
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11 A lemma about variations of Hodge structure

The fundamental group of a compact complex torus is abelian, and so every polarizable
complex variation of Hodge structure is a direct sum of unitary local systems of rank
one; this is the content of the following elementary lemma [35, Lemma 1.8].

Lemma 11.1 Let (H, J) be a polarizable complex variation of Hodge structure on a
compact complex torus T . Then the local system HC = HR ⊗R C is isomorphic to a
direct sum of unitary local systems of rank one. If H admits an integral structure, then
each of these local systems of rank one has finite order.

Proof According to [11, §1.12], the underlying local system of a polarizable complex
variation of Hodge structure on a compact Kähler manifold is semi-simple; in the case
of a compact complex torus, it is therefore a direct sum of rank-one local systems.
The existence of a polarization implies that the individual local systems are unitary
[11, Proposition 1.13]. Now suppose that H admits an integral structure, and let
µ : π1(A, 0) → GLn(Z) be the monodromy representation. We already know that the
complexification of µ is a direct sum of unitary characters. Since µ is defined over Z,
the values of each character are algebraic integers of absolute value one; by Kronecker’s
theorem, they must be roots of unity.

12 Integral structure and points of finite order

One can combine the decomposition in Corollary 7.3 with known results about Hodge
modules on abelian varieties [35] to prove the following generalization of Wang’s
theorem.

Corollary 12.1 If M ∈ HMR(T,w) admits an integral structure, then the sets

Si
m(T,M) = { ρ ∈ Char(T) | dim Hi(T,MR ⊗R Cρ) ≥ m }

are finite unions of translates of linear subvarieties by points of finite order.

Proof The result in question is known for abelian varieties: if M ∈ HMR(A,w) is a
polarizable real Hodge module on an abelian variety, and if M admits an integral struc-
ture, then the sets Si

m(A,M) are finite unions of “arithmetic subvarieties” (= translates
of linear subvarieties by points of finite order). This is proved in [35, Theorem 1.4] for
polarizable rational Hodge modules, but the proof carries over unchanged to the case
of real coefficients. The same argument shows more generally that if the underlying
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perverse sheaf MC of a polarizable real Hodge module M ∈ HMR(A,w) is isomorphic
to a direct factor in the complexification of some E ∈ Db

c(ZA), then each Si
m(A,M) is

a finite union of arithmetic subvarieties.

Now let us see how to extend this result to compact complex tori. Passing to the
underlying complex perverse sheaves in Corollary 7.3, we get

MC '
n⊕

j=1

(
q−1

j Nj,C ⊗C Cρj

)
;

recall that Supp Nj is a projective subvariety of the complex torus Tj , and that ρj ∈
Char(T) has finite order. In light of this decomposition and the comments above,
it is therefore enough to prove that each Nj,C is isomorphic to a direct factor in the
complexification of some object of Db

c(ZTj).

Let E ∈ Db
c(ZT ) be some choice of integral structure on the real Hodge module M ;

obviously MC ' E ⊗Z C. Let r ≥ 1 be the order of the point ρj ∈ Char(T), and
denote by [r] : T → T the finite morphism given by multiplication by r . We define

E′ = R[r]∗
(
[r]−1E

)
∈ Db

c(ZT )

and observe that the complexification of E′ is isomorphic to the direct sum of E⊗ZCρ ,
where ρ ∈ Char(T) runs over the finite set of characters whose order divides r . This
set includes ρ−1

j , and so q−1
j Nj,C is isomorphic to a direct factor of E′ ⊗Z C. Because

qj : T → Tj has connected fibers, this implies that

Nj,C ' H− dim qjqj∗
(
q−1

j Nj,C
)

is isomorphic to a direct factor of

H− dim qjqj∗
(
E′ ⊗Z C

)
.

As explained in [35, §1.2.2], this is again the complexification of a constructible
complex in Db

c(ZTj), and so the proof is complete.

D Generic vanishing theory

Let X be a compact Kähler manifold, and let f : X → T be a holomorphic mapping
to a compact complex torus. The main purpose of this chapter is to show that the
higher direct image sheaves Rjf∗ωX have the same properties as in the projective case
(such as being GV-sheaves). As explained in the introduction, we do not know how to
obtain this using classical Hodge theory; this forces us to prove a more general result
for arbitrary polarizable complex Hodge modules.
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13 GV-sheaves and M-regular sheaves

We begin by reviewing a few basic definitions. Let T be a compact complex torus,
T̂ = Pic0(T) its dual, and P the normalized Poincaré bundle on the product T × T̂ . It
induces an integral transform

RΦP : Db
coh (OT )→ Db

coh (OT̂ ), RΦP(F ) = Rp2∗(p
∗
1F ⊗ P),

where Db
coh (OT ) is the derived category of cohomologically bounded and coherent

complexes of OT -modules. Likewise, we have RΨP : Db
coh (OT̂ )→ Db

coh (OT ) going in
the opposite direction. An argument analogous to Mukai’s for abelian varieties shows
that the Fourier-Mukai equivalence holds in this case as well [3, Theorem 2.1].

Theorem 13.1 With the notations above, RΦP and RΨP are equivalences of derived
categories. More precisely, one has

RΨP ◦ RΦP ' (−1)∗T [− dim T] and RΦP ◦ RΨP ' (−1)∗T̂ [− dim T].

Given a coherent OT -module F and an integer m ≥ 1, we define

Si
m(T,F ) = {L ∈ Pic0(T) | dim Hi(T,F ⊗OT L) ≥ m }.

It is customary to denote

Si(T,F ) = Si
1(T,F ) = {L ∈ Pic0(T) | Hi(T,F ⊗OT L) 6= 0 }.

Recall the following definitions from [23] and [21] respectively.

Definition 13.2 A coherent OT -module F is called a GV-sheaf if the inequality

codimPic0(T) Si(T,F ) ≥ i

is satisfied for every integer i ≥ 0. It is called M-regular if the inequality

codimPic0(T) Si(T,F ) ≥ i + 1

is satisfied for every integer i ≥ 1.

A number of local properties of integral transforms for complex manifolds, based only
on commutative algebra results, were proved in [22, 25]. For instance, the following
is a special case of [22, Theorem 2.2].

Theorem 13.3 Let F be a coherent sheaf on a compact complex torus T . Then the
following statements are equivalent:
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(i) F is a GV-sheaf.

(ii) RiΦP(R∆F ) = 0 for i 6= dim T , where R∆F := RHom(F ,OT ).

Note that this statement was inspired by work of Hacon [15] in the projective setting.
In the course of the proof of Theorem 13.3, and also for some of the results below,
the following consequence of Grothendieck duality for compact complex manifolds is
needed; see the proof of [22, Theorem 2.2], and especially the references there.

(13.4) RΦP(F ) ' R∆
(
RΦP−1(R∆F )[dim T]

)
.

In particular, if F is a GV-sheaf, then if we denote F̂ := Rdim TΦP−1(R∆F ),
Theorem 13.3 and (13.4) imply that

(13.5) RΦP(F ) ' RHom(F̂ ,OÂ).

As in [24, Proposition 2.8], F is M -regular if and only if F̂ is torsion-free.

The fact that Theorem 13.1, Theorem 13.3 and (13.5) hold for arbitrary compact
complex tori allows us to deduce important properties of GV-sheaves in this setting.
Besides these statements, the proofs only rely on local commutative algebra and base
change, and so are completely analogous to those for abelian varieties; we will thus
only indicate references for that case.

Proposition 13.6 Let F be a GV-sheaf on T .

(a) One has Sdim T (T,F ) ⊆ · · · ⊆ S1(T,F ) ⊆ S0(T,F ) ⊆ T̂ .

(b) If S0(T,F ) is empty, then F = 0.

(c) If an irreducible component Z ⊆ S0(T,F ) has codimension k in Pic0(X), then
Z ⊆ Sk(T,F ), and hence dim Supp F ≥ k .

Proof For (a), see [23, Proposition 3.14]; for (b), see [20, Lemma 1.12]; for (c), see
[20, Lemma 1.8].

14 Higher direct images of dualizing sheaves

Saito [28] and Takegoshi [37] have extended to Kähler manifolds many of the funda-
mental theorems on higher direct images of canonical bundles proved by Kollár for
smooth projective varieties. The following theorem summarizes some of the results in
[37, p.390–391] in the special case that is needed for our purposes.
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Theorem 14.1 (Takegoshi) Let f : X → Y be a proper holomorphic mapping from
a compact Kähler manifold to a reduced and irreducible analytic space, and let L ∈
Pic0(X) be a holomorphic line bundle with trivial first Chern class.

(a) The Leray spectral sequence

Ep,q
2 = Hp(Y,Rqf∗(ωX ⊗ L)

)
=⇒ Hp+q(X, ωX ⊗ L)

degenerates at E2 .

(b) If f is surjective, then Rqf∗(ωX⊗L) is torsion free for every q ≥ 0; in particular,
it vanishes for q > dim X − dim Y .

Saito [28] obtained the same results in much greater generality, using the theory of
Hodge modules. In fact, his method also gives the splitting of the complex Rf∗ωX

in the derived category, thus extending the main result of [17] to all compact Kähler
manifolds.

Theorem 14.2 (Saito) Keeping the assumptions of the previous theorem, one has

Rf∗ωX '
⊕

j

(
Rjf∗ωX

)
[−j]

in the derived category Db
coh (OY ).

Proof Given [28], the proof in [30] goes through under the assumption that X is a
compact Kähler manifold.

15 Euler characteristic and M-regularity

In this section, we relate the Euler characteristic of a simple polarizable complex Hodge
module on a compact complex torus T to the M-regularity of the associated graded
object.

Lemma 15.1 Let (M, J) ∈ HMC(T,w) be a simple polarizable complex Hodge mod-
ule on a compact complex torus. If Supp M is projective and χ(T,M, J) > 0, then the
coherent OT -module grF

k M′ is M-regular for every k ∈ Z.

Proof Supp M is projective, hence contained in a translate of an abelian subvariety
A ⊆ T ; because Lemma 1.4 holds for polarizable complex Hodge modules, we may
therefore assume without loss of generality that T = A is an abelian variety.
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As usual, let M =M′ ⊕M′′ = ker(J − i · id)⊕ ker(J + i · id) be the decomposition
into eigenspaces. The summand M′ is a simple holonomic D -module with positive
Euler characteristic on an abelian variety, and so [34, Theorem 2.2 and Corollary 20.5]
show that

(15.2) { ρ ∈ Char(A) | Hi(A,DR(M′)⊗C Cρ
)
6= 0 }

is equal to Char(A) when i = 0, and is equal to a finite union of translates of linear
subvarieties of codimension ≥ 2i + 2 when i ≥ 1.

We have a one-to-one correspondence between Pic0(A) and the subgroup of unitary
characters in Char(A); it takes a unitary character ρ ∈ Char(A) to the holomorphic line
bundle Lρ = Cρ ⊗C OA . If ρ ∈ Char(A) is unitary, the twist (M, J) ⊗C Cρ is still a
polarizable complex Hodge module by Lemma 6.1, and so the complex computing its
hypercohomology is strict. It follows that

Hi(A, grF
k DR(M′)⊗OA Lρ

)
is a subquotient of Hi(A,DR(M′)⊗C Cρ

)
.

If we identify Pic0(A) with the subgroup of unitary characters, this means that

{L ∈ Pic0(A) | Hi(A, grF
k DR(M′)⊗OA L

)
6= 0 }

is contained in the intersection of (15.2) and the subgroup of unitary characters. When
i ≥ 1, this intersection is a finite union of translates of subtori of codimension ≥ i + 1;
it follows that

codimPic0(A){L ∈ Pic0(A) | Hi(A, grF
k DR(M′)⊗OA L

)
6= 0 } ≥ i + 1.

Since the cotangent bundle of A is trivial, a simple induction on k as in the proof of
[26, Lemma 1] gives

codimPic0(A){L ∈ Pic0(A) | Hi(A, grF
k M′ ⊗OA L

)
6= 0 } ≥ i + 1,

and so each grF
k M′ is indeed M-regular.

Note In fact, the result still holds without the assumption that Supp M is projective;
this is an easy consequence of the decomposition in (7.2).

16 Chen-Jiang decomposition and generic vanishing

Using the decomposition in Theorem 7.1 and the result of the previous section, we
can now prove the most general version of the generic vanishing theorem, namely
Theorem D in the introduction.
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Proof of Theorem D We apply Theorem 7.1 to the complexification (M ⊕M, JM) ∈
HMC(T,w). Passing to the associated graded in (7.2), we obtain a decomposition of
the desired type with Fj = grF

k N ′j and Lj = Cρj ⊗C OT , where

Nj = N ′j ⊕N ′′j = ker(Jj − i · id)⊕ ker(Jj + i · id)

is as usual the decomposition into eigenspaces of Jj ∈ End(Nj). Since Supp Nj is
projective and χ(Tj,Nj, Jj) > 0, we conclude from Lemma 15.1 that each coherent
OTj -module Fj is M-regular.

Corollary 16.1 If M = (M,F•M,MR) ∈ HMR(T,w), then for every k ∈ Z, the
coherent OT -module grF

k M is a GV-sheaf.

Proof This follows immediately from Theorem D and the fact that if p : T → T0 is a
surjective homomorphism of complex tori and G is a GV-sheaf on T0 , then F = f ∗G
is a GV-sheaf on T . For this last statement and more refined facts (for instance when
G is M -regular), see e.g. [9, §2], especially Proposition 2.6. The arguments in [9] are
for abelian varieties, but given the remarks in §13, they work equally well on compact
complex tori.

By specializing to the direct image of the canonical Hodge module RX[dim X] along a
morphism f : X → T , we are finally able to conclude that each Rjf∗ωX is a GV-sheaf.
In fact, we have the more refined Theorem A; it was first proved for smooth projective
varieties of maximal Albanese dimension by Chen and Jiang [9, Theorem 1.2], which
was a source of inspiration for us.

Proof of Theorem A Denote by RX[dim X] ∈ HMR(X, dim X) the polarizable real
Hodge module corresponding to the constant real variation of Hodge structure of rank
one and weight zero on X . According to [28, Theorem 3.1], each Hjf∗RX[dim X] is
a polarizable real Hodge module of weight dim X + j on T ; it also admits an integral
structure [35, §1.2.2]. In the decomposition by strict support, let M be the summand
with strict support f (X); note that M still admits an integral structure by Lemma 5.2.
Now Rjf∗ωX is the first nontrivial piece of the Hodge filtration on the underlying
regular holonomic D -module [30], and so the result follows directly from Theorem D
and Corollary 16.1. For the ampleness part in the statement, see Corollary 20.1.

Note Except for the assertion about finite order, Theorem A still holds for arbitrary
coherent OT -modules of the form

Rjf∗(ωX ⊗ L)
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with L ∈ Pic0(X). The point is that every such L is the holomorphic line bundle
associated with a unitary character ρ ∈ Char(X); we can therefore apply the same
argument as above to the polarizable complex Hodge module Cρ[dim X].

If the given morphism is generically finite over its image, we can say more.

Corollary 16.2 If f : X → T is generically finite over its image, then S0(T, f∗ωX) is
preserved by the involution L 7→ L−1 of Pic0(T).

Proof As before, we define M = H0f∗RX[dim X] ∈ HMR(T, dim X). Recall from
Corollary 7.3 that we have a decomposition

(M ⊕M, JM) '
n⊕

j=1

(
q−1

j (Nj, Jj)⊗C Cρj

)
.

Since f is generically finite over its image, there is a dense Zariski-open subset of f (X)
where M is a variation of Hodge structure of type (0, 0); the above decomposition
shows that the same is true for Nj on (qj ◦ f )(X). If we pass to the underlying regular
holonomic D -modules and remember Lemma 6.1, we see that

M⊕M'
n⊕

j=1

(
q∗jN ′j ⊗OT (Lj,∇j)

)
⊕

n⊕
j=1

(
q∗jN ′′j ⊗OT (Lj,∇j)−1

)
,

where (Lj,∇j) is the flat bundle corresponding to the character ρj . By looking at the
first nontrivial step in the Hodge filtration on M, we then get

f∗ωX ⊕ f∗ωX '
n⊕

j=1

(
q∗j F

′
j ⊗OT Lj

)
⊕

n⊕
j=1

(
q∗j F

′′
j ⊗OT L−1

j

)
,

where F ′j = Fp(M)N ′j and F ′′j = Fp(M)N ′′j , and p(M) is the smallest integer with the
property that FpM 6= 0. Both sheaves are torsion-free on (qj ◦ f )(X), and can therefore
be nonzero only when Supp Nj = (qj ◦ f )(X); after re-indexing, we may assume that
this holds exactly in the range 1 ≤ j ≤ m.

Now we reach the crucial point of the argument: the fact that Nj is generically a
polarizable real variation of Hodge structure of type (0, 0) implies that F ′j and F ′′j
have the same rank at the generic point of (qj ◦ f )(X). Indeed, on a dense Zariski-open
subset of (qj ◦ f )(X), we have F ′j = N ′j and F ′′j = N ′′j , and complex conjugation
with respect to the real structure on Nj interchanges the two factors.

Since F ′j and F ′′j are M-regular by Lemma 15.1, we have (for 1 ≤ j ≤ m)

S0(T, q∗j F
′
j ⊗OT Lj) = L−1

j ⊗ S0(Tj,F
′
j ) = L−1

j ⊗ Pic0(Tj),
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and similarly for q∗j F
′′
j ⊗OT L−1

j ; to simplify the notation, we identify Pic0(Tj) with
its image in Pic0(T). The decomposition from above now gives

S0(T, f∗ωX) =
m⋃

j=1

(
L−1

j ⊗ Pic0(Tj)
)
∪

m⋃
j=1

(
Lj ⊗ Pic0(Tj)

)
,

and the right-hand side is clearly preserved by the involution L 7→ L−1 .

17 Points of finite order on cohomology support loci

Let f : X → T be a holomorphic mapping from a compact Kähler manifold to a compact
complex torus. Our goal in this section is to prove that the cohomology support loci of
the coherent OT -modules Rjf∗ωX are finite unions of translates of subtori by points of
finite order. We consider the refined cohomology support loci

Si
m(T,Rjf∗ωX) = {L ∈ Pic0(T) | dim Hi(T,Rjf∗ωX ⊗ L) ≥ m } ⊆ Pic0(T).

The following result is well-known in the projective case.

Corollary 17.1 Every irreducible component of Si
m(T,Rjf∗ωX) is a translate of a

subtorus of Pic0(T) by a point of finite order.

Proof As in the proof of Theorem A (in §16), we let M ∈ HMR(T, dim X + j)
be the summand with strict support f (X) in the decomposition by strict support of
Hjf∗RX[dim X]; then M admits an integral structure, and

Rjf∗ωX ' Fp(M)M,

where p(M) again means the smallest integer such that FpM 6= 0. Since M still
admits an integral structure by Lemma 5.2, the result in Corollary 12.1 shows that the
sets

Si
m(T,M) = { ρ ∈ Char(T) | dim Hi(T,MR ⊗R Cρ) ≥ m }

are finite unions of translates of linear subvarieties by points of finite order. As in the
proof of Lemma 15.1, the strictness of the complex computing the hypercohomology
of (M ⊕M, JM)⊗C Cρ implies that

dim Hi(T,MR ⊗R Cρ) =
∑
p∈Z

dim Hi(T, grF
p DR(M)⊗OT Lρ

)
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for every unitary character ρ ∈ Char(T); here Lρ = Cρ⊗C OT . Note that grF
p DR(M)

is acyclic for p� 0, and so the sum on the right-hand side is actually finite. Intersecting
Si

m(T,M) with the subgroup of unitary characters, we see that each set{
L ∈ Pic0(T)

∣∣∣ ∑
p∈Z

dim Hi(T, grF
p DR(M)⊗OT L

)
≥ m

}
is a finite union of translates of subtori by points of finite order. By a standard argument
[1, p. 312], it follows that the same is true for each of the summands; in other words,
for each p ∈ Z, the set

Si
m
(
T, grF

p DR(M)
)
⊆ Pic0(T)

is itself a finite union of translates of subtori by points of finite order. Since

grF
p(M) DR(M) = ωT ⊗ Fp(M)M' Rjf∗ωX,

we now obtain the assertion by specializing to p = p(M).

Note Alternatively, one can deduce Corollary 17.1 from Wang’s theorem [40] about
cohomology jump loci on compact Kähler manifolds, as follows. Wang shows that
the sets Sp,q

m (X) = {L ∈ Pic0(X) | dim Hq(X,Ωp
X ⊗ L) ≥ m } are finite unions of

translates of subtori by points of finite order; in particular, this is true for ωX = Ωdim X
X .

Takegoshi’s results about higher direct images of ωX in Theorem 14.1 imply the E2 -
degeneration of the spectral sequence

Ei,j
2 = Hi(T,Rjf∗ωX ⊗ L

)
=⇒ Hi+j(X, ωX ⊗ f ∗L)

for every L ∈ Pic0(T), which means that

dim Hq(X, ωX ⊗ f ∗L) =
∑

k+j=q

dim Hk(T,Rjf∗ωX ⊗ L
)
.

The assertion now follows from Wang’s theorem by the same argument as above.

E Applications

18 Bimeromorphic characterization of tori

Our main application of generic vanishing for higher direct images of dualizing sheaves
is an extension of the Chen-Hacon birational characterization of abelian varieties [6]
to the Kähler case.
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Theorem 18.1 Let X be a compact Kähler manifold with P1(X) = P2(X) = 1 and
h1,0(X) = dim X . Then X is bimeromorphic to a compact complex torus.

Throughout this section, we take X to be a compact Kähler manifold, and denote by
f : X → T its Albanese mapping; by assumption, we have

dim T = h1,0(X) = dim X.

We use the following standard notation, analogous to that in §13:

Si(X, ωX) = {L ∈ Pic0(X) | Hi(X, ωX ⊗ L) 6= 0 }

To simplify things, we shall identify Pic0(X) and Pic0(T) in what follows. We begin
by recalling a few well-known results.

Lemma 18.2 If P1(X) = P2(X) = 1, then there cannot be any positive-dimensional
analytic subvariety Z ⊆ Pic0(X) such that both Z and Z−1 are contained in S0(X, ωX).
In particular, the origin must be an isolated point in S0(X, ωX).

Proof This result is due to Ein and Lazarsfeld [12, Proposition 2.1]; they state it only
in the projective case, but their proof actually works without any changes on arbitrary
compact Kähler manifolds.

Lemma 18.3 Assume that S0(X, ωX) contains isolated points. Then the Albanese
map of X is surjective.

Proof By Theorem A (for j = 0), f∗ωX is a GV-sheaf. Proposition 13.6 shows that
any isolated point in S0(T, f∗ωX) = S0(X, ωX) also belongs to Sdim T (T, f∗ωX); but this
is only possible if the support of f∗ωX has dimension at least dim T .

To prove Theorem 18.1, we follow the general strategy introduced in [20, §4], which in
turn is inspired by [12, 7]. The crucial new ingredient is of course Theorem A, which
had only been known in the projective case. Even in the projective case however,
the argument below is substantially cleaner than the existing proofs; this is due to
Corollary 16.2.

Proof of Theorem 18.1 The Albanese map f : X → T is surjective by Lemma 18.2
and Lemma 18.3; since h1,0(X) = dim X , this means that f is generically finite. To
conclude the proof, we just have to argue that f has degree one; more precisely, we
shall use Theorem A to show that f∗ωX ' OT .
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As a first step in this direction, let us prove that dim S0(T, f∗ωX) = 0. If

S0(T, f∗ωX) = S0(X, ωX)

had an irreducible component Z of positive dimension, Corollary 16.2 would imply
that Z−1 is contained in S0(X, ωX) as well. As this would contradict Lemma 18.2, we
conclude that S0(T, f∗ωX) is zero-dimensional.

Now f∗ωX is a GV-sheaf by Theorem A, and so Proposition 13.6 shows that

S0(T, f∗ωX) = Sdim T (T, f∗ωX).

Since f is generically finite, Theorem 14.1 implies that Rjf∗ωX = 0 for j > 0, which
gives

Sdim T (T, f∗ωX) = Sdim T (X, ωX) = Sdim X(X, ωX) = {OT}.

Putting everything together, we see that S0(T, f∗ωX) = {OT}.

We can now use the Chen-Jiang decomposition for f∗ωX to get more information. The
decomposition in Theorem A (for j = 0) implies that

{OT} = S0(T, f∗ωX) =
n⋃

k=1

L−1
k ⊗ Pic0(Tk),

where we identify Pic0(Tk) with its image in Pic0(T). This equality forces f∗ωX to be
a trivial bundle of rank n; but then

n = dim Hdim T (T, f∗ωX) = dim Hdim X(X, ωX) = 1,

and so f∗ωX ' OT . The conclusion is that f is generically finite of degree one, and
hence birational, as asserted by the theorem.

19 Connectedness of the fibers of the Albanese map

As another application, one obtains the following analogue of an effective version of
Kawamata’s theorem on the connectedness of the fibers of the Albanese map, proved
by Jiang [16, Theorem 3.1] in the projective setting. Note that the statement is more
general than Theorem 18.1, but uses it in its proof.

Theorem 19.1 Let X be a compact Kähler manifold with P1(X) = P2(X) = 1. Then
the Albanese map of X is surjective, with connected fibers.
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Proof The proof goes entirely along the lines of [16]. We only indicate the necessary
modifications in the Kähler case. We have already seen that the Albanese map f : X →
T is surjective. Consider its Stein factorization

X

Y T.

g
f

h

Up to passing to a resolution of singularities and allowing h to be generically finite,
we can assume that Y is a compact complex manifold. Moreover, by [39, Théorème
3], after performing a further bimeromorphic modification, we can assume that Y is in
fact compact Kähler. This does not change the hypothesis P1(X) = P2(X) = 1.

The goal is to show that Y is bimeromorphic to a torus, which is enough to conclude.
If one could prove that P1(Y) = P2(Y) = 1, then Theorem 18.1 would do the job.
In fact, one can show precisely as in [16, Theorem 3.1] that H0(X, ωX/Y ) 6= 0, and
consequently that

Pm(Y) ≤ Pm(X) for all m ≥ 1.

The proof of this statement needs the degeneration of the Leray spectral sequence for
g∗ωX , which follows from Theorem 14.1, and the fact that f∗ωX is a GV-sheaf, which
follows from Theorem A. Besides this, the proof is purely Hodge-theoretic, and hence
works equally well in the Kähler case.

20 Semi-positivity of higher direct images

In the projective case, GV-sheaves automatically come with positivity properties; more
precisely, on abelian varieties it was proved in [10, Corollary 3.2] that M -regular
sheaves are ample, and in [24, Theorem 4.1] that GV-sheaves are nef. Due to
Theorem D a stronger result in fact holds true, for arbitrary graded quotients of Hodge
modules on compact complex tori.

Recall that to a coherent sheaf F on a compact complex manifold one can associate
the analytic space P(F ) = P (Sym•F ), with a natural mapping to X and a line bundle
OP(F )(1). If X is projective, the sheaf F is called ample if the line bundle OP(F )(1)
is ample on P(F ).

Corollary 20.1 Let M = (M,F•M,MR) be a polarizable real Hodge module on a
compact complex torus T . Then, for each k ∈ Z, the coherent OT -module grF

k M
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admits a decomposition

grF
k M'

n⊕
j=1

(
q∗j Fj ⊗OT Lj

)
,

where qj : T → Tj is a quotient torus, Fj is an ample coherent OTj -module whose
support Supp Fj is projective, and Lj ∈ Pic0(T).

Proof By Theorem D we have a decomposition as in the statement, where each Fj

is an M -regular sheaf on the abelian variety generated by its support. But then [10,
Corollary 3.2] implies that each Fj is ample.

The ampleness part in Theorem A is then a consequence of the proof in §16 and the
statement above. It implies that higher direct images of canonical bundles have a strong
semi-positivity property (corresponding to semi-ampleness in the projective setting).
Even the following very special consequence seems to go beyond what can be said for
arbitrary holomorphic mappings of compact Kähler manifolds (see e.g. [19] and the
references therein).

Corollary 20.2 Let f : X → T be a surjective holomorphic mapping from a compact
Kähler manifold to a complex torus. If f is a submersion outside of a simple normal
crossings divisor on T , then each Rif∗ωX is locally free and admits a smooth hermitian
metric with semi-positive curvature (in the sense of Griffiths).

Proof Note that if f is surjective, then Theorem 14.1 implies that Rif∗ωX are all torsion
free. If one assumes in addition that f is a submersion outside of a simple normal
crossings divisor on T , then they are locally free; see [37, Theorem V]. Because of the
decomposition in Theorem A, it is therefore enough to show that an M-regular locally
free sheaf on an abelian variety always admits a smooth hermitian metric with semi-
positive curvature. But this is an immediate consequence of the fact that M-regular
sheaves are continuously globally generated [22, Proposition 2.19].

The existence of a metric with semi-positive curvature on a vector bundle E implies
that the line bundle OP(E)(1) is nef, but is in general known to be a strictly stronger
condition. Corollary 20.2 suggests the following question.

Problem Let T be a compact complex torus. Suppose that a locally free sheaf E

on T admits a smooth hermitian metric with semi-positive curvature (in the sense of
Griffiths or Nakano). Does this imply the existence of a decomposition

E '
n⊕

k=1

(
q∗kEk ⊗ Lk

)
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as in Theorem A, in which each locally free sheaf Ek has a smooth hermitian metric
with strictly positive curvature?

21 Leray filtration

Let f : X → T be a holomorphic mapping from a compact Kähler manifold X to a
compact complex torus T . We use Theorem A to describe the Leray filtration on the
cohomology of ωX , induced by the Leray spectral sequence associated to f . Recall
that, for each k , the Leray filtration on Hk(X, ωX) is a decreasing filtration L•Hk(X, ωX)
with the property that

gri
L Hk(X, ωX) = Hi(T,Rk−if∗ωX

)
.

On the other hand, one can define a natural decreasing filtration F•Hk(X, ωX) induced
by the action of H1(T,OT ), namely

FiHk(X, ωX) = Im

(
i∧

H1(T,OT )⊗ Hk−i(X, ωX)→ Hk(X, ωX)

)
.

It is obvious that the image of the cup product mapping

(21.1) H1(T,OT )⊗ LiHk(X, ωX)→ Hk+1(X, ωX)

is contained in the subspace Li+1Hk+1(X, ωX). This implies that

FiHk(X, ωX) ⊆ LiHk(X, ωX) for all i ∈ Z.

This inclusion is actually an equality, as shown by the following result.

Theorem 21.2 The image of the mapping in (21.1) is equal to Li+1Hk+1(X, ωX).
Consequently, the two filtrations L•Hk(X, ωX) and F•Hk(X, ωX) coincide.

Proof By [18, Theorem A], the graded module

Qj
X =

dim T⊕
i=0

Hi(T,Rjf∗ωX
)

over the exterior algebra on H1(T,OT ) is 0-regular, hence generated in degree 0.
(Since each Rjf∗ωX is a GV-sheaf by Theorem A, the proof in [18] carries over to
the case where X is a compact Kähler manifold.) This means that the cup product
mappings

i∧
H1(T,OT )⊗ H0(T,Rjf∗ωX

)
→ Hi(T,Rjf∗ωX

)
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are surjective for all i and j, which in turn implies that the mappings

H1(T,OT )⊗ gri
L Hk(X, ωX)→ gri+1

L Hk+1(X, ωX)

are surjective for all i and k . This implies the assertion by ascending induction.

If we represent cohomology classes by smooth forms, Hodge conjugation and Serre
duality provide for each k ≥ 0 a hermitian pairing

H0(X,Ωn−k
X )× Hk(X, ωX)→ C, (α, β) 7→

∫
X
α ∧ β,

where n = dim X . The Leray filtration on Hk(X, ωX) therefore induces a filtration
on H0(X,Ωn−k

X ); concretely, with a numerical convention which again gives us a
decreasing filtration with support in the range 0, . . . , k , we have

LiH0(X,Ωn−k
X ) = {α ∈ H0(X,Ωn−k

X ) | α ⊥ Lk+1−iHk(X, ωX) }.

Using the description of the Leray filtration in Theorem 21.2, and the elementary fact
that ∫

X
α ∧ θ ∧ β =

∫
X
α ∧ θ ∧ β

for all θ ∈ H1(X,OX), we can easily deduce that LiH0(X,Ωn−k
X ) consists of those

holomorphic (n− k)-forms whose wedge product with

k+1−i∧
H0(X,Ω1

X)

vanishes. In other words, for all j we have:

Corollary 21.3 The induced Leray filtration on H0(X,Ωj
X) is given by

LiH0(X,Ωj
X) =

{
α ∈ H0(X,Ωj

X)
∣∣∣ α ∧ n+1−i−j∧

H0(X,Ω1
X) = 0

}
.

Remark It is precisely the fact that we do not know how to obtain this basic description
of the Leray filtration using standard Hodge theory that prevents us from giving a proof
of Theorem A in the spirit of [13], and forces us to appeal to the theory of Hodge
modules for the main results.
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