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HODGE MODULES AND SINGULAR HERMITIAN METRICS

CHRISTIAN SCHNELL AND RUIJIE YANG

Abstract. The purpose of this paper is to study certain notions of metric positivity
for the lowest nonzero piece in the Hodge filtration of a Hodge module. We show that
the Hodge metric satisfies the minimal extension property. In particular, this singular
Hermitian metric has semi-positive curvature.

1. Introduction

Motivated by the Iitaka conjecture, there has been a lot of interest in studying the pos-
itivity of direct images of relative pluri-canonical bundles using Hodge theory. Among
results about algebraic positivity, it is known that they are weakly positive [V+83]. Re-
cently, the authors in [CP17, HPS18] emphasize a different aspect of positivity from the
metric point of view. Let f : Y → X be a projective and surjective holomorphic map be-
tween two complex manifolds. Given a holomorphic line bundle (L, h) on Y where h is a
singular hermitian metric with semi-positive curvature, the authors in [HPS18] construct
a singular hermitian metric on f∗(ωY/X ⊗ L ⊗ I(h)). Furthermore, they show that this
new metric satisfies the “minimal extension property” (see Section 2.6). In particular, it
has semi-positive curvature, which generalizes the work of [PT18]. This metric positivity
then implies Viehweg’s results on weak positivity by [PT18, Theorem 2.5.2].

Let k be the dimension of a general fiber of f and let (L, h) be OY equipped with
the trivial metric. The construction in [HPS18] gives a singular Hermitian metric on
f∗(ωY/X), which is the lowest piece in the Hodge filtration of Rkf∗(C). This singular
Hermitian metric on f∗(ωY/X) actually comes from the Hodge metric on the smooth part
of the fibration. It is natural to ask whether or not the Hodge metric on the lowest
pieces in the Hodge filtration of any variation of Hodge structures satisfies the “minimal
extension property”. In this paper, we would like to give an affirmative answer using the
language of Hodge modules.

Let X be a complex manifold and let D be an arbitrary divisor on X . Let V be a
polarized variation of rational Hodge structures (VHS) on X \ D. Saito shows that V
uniquely corresponds to a polarizable Hodge module M on X with strict support. Let E
be the lowest nonzero piece in the Hodge filtration of V and let (M, F•M) be the filtered
DX-module underlying M. Saito also shows that E extends to the lowest nonzero piece
of F•M, which is a torsion-free sheaf on X (see Section 2.4). The Hodge metric h on E
extends to a singular Hermitian metric. Our main result is

Theorem A. Let p be the smallest integer such that FpM 6= 0. Then the Hodge metric

h on FpM satisfies the “minimal extension property”. In particular, it has semi-positive

curvature.

The advantage of using Hodge modules is that we do not need to assume the singular
locus of the VHS is simple normal crossing. If one indeed assumes D is simple normal
crossing, the curvature property of the Hodge metric for a C-VHS is proven by Brunebarbe
[Bru17, Theorem 1.4].

http://arxiv.org/abs/2003.09064v1
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The notion of “minimal extension property” arises from the work of Ohsawa-Takegoshi
with sharp estimates by [B lo13, GZ15] and it is a slight strengthening of Griffiths semi-
positivity for singular Hermitian metrics (i.e. with semi-positive curvature). The key
point of this notion is about the ability to extend sections over the singular locus of
torsion-free sheaves while controlling L2 norms in a precise way. This notion plays an
important role in the proof of the Iitaka conjecture for algebraic fiber spaces over abelian
varieties [CP17, HPS18]. One reason to investigate the “minimal extension property” of
Hodge metrics is that we hope one can apply it to other related situations.

Let us briefly sketch the idea of the proof. Since it is a local statement, it suffices to
assume X is a unit ball in Cn. Because E is the lowest piece in the Hodge filtration of
a VHS, Schmid’s curvature calculation [Sch73] implies that E is Nakano semi-positive.
Starting with any vector in a fiber of E, by Ohsawa-Takegoshi with sharp estimates
[B lo13, GZ15], we can extend it to a holomorphic section of E with optimal L2 bounds.
The key step is to show that L2 sections of E can be identified with sections of FpM. To
prove this statement, first we use the direct image theorem of Hodge modules [Sai88] to
reduce to the case where the VHS is supported on the complement of a simple normal
crossing divisor. After a finite base change, it suffices to treat the case with unipotent
monodromy. To conclude the proof, we use results by Cattani-Kaplan-Schmid [CKS86]
on asymptotics of Hodge metrics to analyze the coefficient functions of L2 sections.

As a corollary of Theorem A, we prove an interesting fact about coherence of sheaves
of sections which are locally L2 near a divisor. Recall that V is a VHS on X \D and E
is the lowest nonzero piece in the Hodge filtration of V. Let j : X \D →֒ X be the open
embedding.

Corollary B. Let F be the subsheaf of j∗E consisting of sections of E which are locally

L2 near D with respect to the Hodge metric on E and the standard Lebesgue measure.

Then F is coherent.

The general philosophy is that the theory of Hodge modules is closely related to L2

methods. For one thing, by Saito’s inductive construction, cohomology of Hodge modules
on arbitrary manifolds can be reduced to Hodge modules on curves which are studied by
Zucker [Zuc79] using L2 cohomology. On the other hand, there are lots of work around
close relations between D-modules and multiplier ideal sheaves (see [BS03, MP16] for
example).

In §2 we will review some background. In §3 we will give the proof of Theorem A and
Corollary B.

We will use left D-modules throughout the paper, as they are more natural from the
metric point of view.

Acknowledgements. We would like to thank Nathan Chen, Robert Lazarsfeld and Lei
Wu for reading a draft of the paper.

2. Preliminaries

In this section, we will set up notation and recall some background.

2.1. Variation of Hodge Structures. Let X be a complex manifold. A polarized

variation of rational Hodge structures (VHS) on X consists of the following data:

(1) A local system VQ of finite dimensional Q-vector spaces;
(2) A holomorphic vector bundle V with a flat connection ∇ : V → Ω1

X ⊗ V;
(3) A finite decreasing filtration F •V by holomorphic subbundles satisfying the Grif-

fiths transversality
∇F pV ⊂ Ω1

X ⊗ F p−1V;
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(4) A flat non-degenerate bilinear form S : VQ ⊗Q VQ → Q.

They are related in the following way:

• The local system of ∇-flat holomorphic sections of V is isomorphic to VQ ⊗Q C.
In particular,

V ∼= VQ ⊗Q OX

and S extends to V in a C∞ way.

• V admits the Hodge decomposition V = F p ⊕ F
k−p+1

, where F is the conjugate
of F relative to VR = VQ ⊗Q R and k is the weight of the variation.

• Sh(·, ·) := i−kS(·, ·̄) is a Hermitian form such that the Hodge decomposition is
Sh-orthogonal and (−1)pSh is positive definite on Vp,k−p. In particular, such a
polarization determines a smooth Hermitian metric h on V:

h :=
∑

p

(−1)pSh|Vp,k−p.(2.1)

We will call h the Hodge metric on V. For v ∈ Vx, |v|h,x means the length of this
vectors.

• For every x ∈ X , (Vx, VQ,x, F
•Vx) defines a rational Hodge structure of weight k

which is polarized by the bilinear form Sx.

Remark 2.1. In the rest of the paper, when we say V is a VHS, we actually mean a
polarized variation of rational Hodge structures with data (VQ,V,∇, F •V, S).

2.2. Deligne’s canonical lattice. In this section, we will assume X is ∆n and U is
(∆∗)n. Let s1, . . . , sn be the coordinates on X . Then D := X \ U is a simple normal
crossing divisor so that D = ∪Dj , where Dj = {sj = 0} for 1 ≤ j ≤ n.

Let V be a holomorphic vector bundle over U with a flat connection ∇ : V → Ω1
U ⊗V.

The fundamental group of U is isomorphic to Zn and it acts on the fiber of V by parallel
translation. Let Tj be the operator corresponding to the j-th standard generator of Zn.
We say (V,∇) has quasi-unipotent monodromy if each Tj is quasi-unipotent. An interval
I contained in R is said to be of length one if under the map R → R/Z, the interval I
maps isomorphically to R/Z. Deligne [Del70] proves the following fact:

Theorem 2.2. Let V be a holomorphic vector bundle over U with a flat connection ∇
so that (V,∇) has quasi-unipotent monodromy. For any interval I of length one, there

exists a holomorphic bundle VI on X which extends V such that ∇ extends to

∇ : VI → Ω1
X(logD) ⊗ VI ,

with only logarithmic poles and the eigenvalues of the residue operator

ResDj
∇ := sj∇ ∂

∂sj

: VI |o → VI |o

are contained in I for each j.

Definition 2.3. We define Deligne’s canonical lattice to be the associated holomorphic
vector bundle VI for any interval I of length one. For any β ∈ R, we write Vβ := V[β,β+1)

and V>β := V(β,β+1].

For our purposes, the following explicit construction of V>−1 will be useful. First, we
need to define the logarithm of a quasi-unipotent operator.

Construction 2.4. Let V be a C-vector space and let T be a quasi-unipotent operator
on V . Consider the Jordan decomposition

T = Ts · Tu
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where Ts is semisimple and Tu is unipotent. We define the quasi-unipotency index m to
be the smallest positive integer such that Tm

s = Id.

(1) Since Ts is semisimple over C, there is a decomposition

V = ⊕αVα with Ts|Vα
= λα · Id|Vα

,

where λα are the eigenvalues of Ts. Because λm
α = 1, we can choose integers kα

satisfying 0 ≤ kα ≤ m− 1 such that

λα = e−2π
√
−1kα/m.

We define log Ts by its action on eigenspaces:

log Ts|Vα
:= −(2π

√
−1kα/m) · Id|Vα

.

(2) Since Tu is unipotent, we can define its logarithm as a convergent series

log Tu = −
∞
∑

k≥1

1

k
(Id − Tu)k.

Then we define the logarithm of T to be

log T := log Ts + log Tu,

where log Ts is semisimple and log Tu is nilpotent.

Now we begin the construction of V>−1. Let us consider the universal covering map of
U = (∆∗)n:

p : Hn → (∆∗)n, (z1, . . . , zn) 7→ (e2π
√
−1z1 , . . . , e2π

√
−1zn).

The fundamental group Zn acts on Hn by the rule

(a1, . . . , an) · (z1, . . . , zn) = (z1 + a1, . . . , zn + an).

Let V := H0(Hn, p∗V)p
∗∇ to be the space of p∗∇-flat sections of p∗V on Hn, which

trivializes p∗V:
p∗V ∼= V ⊗OHn .

Therefore the sections of V over (∆∗)n correspond to holomorphic maps σ : Hn → V with
the property that σ(z + ej) = Tj · σ(z) for all z ∈ Hn and all j = 1, . . . , n.

We set Rj := log Tj by Construction 2.4. For each v ∈ V , the holomorphic map

σ : Hn → V, σ(z) = e
∑

zjRjv,

has the required property because σ(z+ej) = eRj ·σ(z) = Tj ·σ(z). Then V>−1 is defined
to be the vector bundle over X = ∆n generated by all sections of this form, i.e.

V>−1 ∼= (e
∑

zjRjV ) ⊗C OX .

Note that by the construction,

ResDj
∇ =

Rj

2π
√
−1

.

Since the eigenvalues of Rj are of the form −(2π
√
−1k/m), where 0 ≤ k ≤ m − 1,

the eigenvalues of ResDj
∇ all lies in (−1, 0]. Therefore V>−1 satisfies the conditions in

Deligne’s theorem.

Remark 2.5. If all Tj’s are unipotent, we say that (V,∇) has unipotent monodromy. In
this case, the eigenvalues of ResDj

∇ are all zero. Therefore

V>−1 = V0.
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2.3. Asymptotics of Hodge metrics. In this section, we will review the results on
asymptotics of Hodge metrics [CK89] (a variation of rational Hodge structure is in par-
ticular a variation of real Hodge structures.)

Let V be a VHS over (∆∗)n with unipotent monodromy operators Tj . To keep the
conventions of [CK89], log Tj is denoted by Nj . Consider the universal covering map

p : Hn → (∆∗)n, (z1, . . . , zn) 7→ (e2π
√
−1z1 , . . . , e2π

√
−1zn).

Let V := H0(Hn, p∗V)p
∗∇ be the space of flat sections which trivialize p∗V. Let Φ : Hn →

D be the corresponding period mapping, where D is the classifying space of polarized
Hodge structures of V. Each point F ∈ D determines a hermitian inner product HF on
V as in (2.1). Therefore one can represent the pullback of the Hodge metric p∗h on V by
HΦ(z).

Let (s1, . . . , sn) be the coordinates of (∆∗)n. Let W (1) = W (N1), . . . ,W
(n) = W (N1 +

. . . + Nn) be the sequence of monodromy weight filtrations on V associated to this or-
dering of variables. Note that each W (j) only depends on the positive cone generated by
N1, . . . , Nj . Cattani, Kaplan and Schmid proved the following theorem [CK89, Theorem
5.1]:

Theorem 2.6. There is an hermitian inner product Q on V such that over any region

of the form

{z = (z1, . . . , zn) ∈ Hn : |Re zi| < a < 1;
Im zj

Im zj+1

≥ ǫ, 1 ≤ j ≤ n− 1, Im zn ≥ ǫ},

|v|2HΦ(z)
is mutually bounded up to a constant with

⊕

l∈Zn

(

log|s1|
log|s2|

)l1

· · · (− log|sn|)ln |v|2Ql
,

where v ∈ V and Q = ⊕Ql corresponds to the multigrading V ∼= ⊕l∈ZnGrW
(n)

ln · · ·GrW
(1)

l1 V .

Remark 2.7. By [CK89, Theorem 4.8], up to some explicit factors, the period map
converges to F√

−1 in the period domain. Then Q is the inner product induced by HF√
−1

.

Also the multigrading V of W (1), . . . ,W (n) is Q-orthogonal.

For the proof of the main theorem, we will use the following version: Let V be a VHS
over ∆∗ × ∆n−1 with unipotent monodromy operator T1. Let N := log T1. Let

p : H× ∆n−1 → ∆∗ × ∆n−1

be the universal covering map and let Φ : H × ∆n−1 → D be the corresponding period
map. Let V := H0(H× ∆n−1, p∗V)p

∗∇ and let W be the weight filtration on V .

Corollary 2.8. There is an hermitian inner product Q on V such that over any region

of the form

Hǫ × ∆n−1

where Hǫ := {z1 ∈ H : Im z1 > ǫ}, |v|2HΦ(z)
is mutually bounded with

⊕

l∈Z
(− log|s1|)l |v|2Ql

.

where v ∈ V and Q = ⊕Ql corresponds to the grading V ∼= ⊕l∈ZGrWl V .
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2.4. Hodge modules. Let X be a complex manifold of dimension n. Let HMp(X,w)
be the category of polarizable Hodge modules of weight w on X with strict support. One
of the main results in Saito’s theory of Hodge modules [Sai90a, Theorem 3.21] is

Theorem 2.9 (Structure Theorem). Let X be a complex manifold of dimension

n.
(1) If V is a polarizable variation of rational Hodge structures of weight (w− n) on a

Zariski open subset of X, then V extends uniquely to an object of HMp(X,w).
(2) Conversely, every object M of HMp(X,w) is obtained this way.

Assume X = ∆n and U is a Zariski open subset of X such that D := X \ U is a
divisor (If X \ U is of higher codimension, the VHS on U extends to a VHS on X). Let
j : U →֒ X be the open embedding. Let V be a VHS over U and let M be the polarized
Hodge module on X with strict support corresponding to V. We would like to recall the
construction of the Hodge filtration F•M on M. It consists of two steps.

Step 1. Assume D is a simple normal crossing divisor, i.e. D = ∪Dj and we can choose
coordinates s1, . . . , sn on X so that Dj := {sj = 0}. Then U = (∆∗)n. Denote V>−1 to be
the Deligne’s canonical lattice associated to V. Schmid’s nilpotent orbit theorem [Sch73]
guarantees that the Hodge filtration on V extends to a Hodge filtration on V>−1, i.e.

F k(V>−1) := j∗(F
kV) ∩ V>−1

are holomorphic subbundles of V>−1. We need to reindex this decreasing filtration to an
increasing filtration for D-modules:

Fk(V>−1) := F−k(V>−1).

It is known that ( [Sai90a, (3.18.2)]) M is generated by V>−1 as a DX -module:

M = DX · V>−1.

Let i = (i1, . . . , in) ∈ Zn
+ be a n-tuple of positive integers. We denote |i| := i1 + · · · + in

and ∂i
s := ∂i1

s1 · · ·∂in
sn. The increasing Hodge filtration F•M is defined as

FkM :=
∑

i∈Zn
+

∂i
s(Fk−|i|V>−1)

=
∑

i∈Zn
+

∂i
s(F

|i|−kV>−1)

=
∑

i∈Zn
+

∂i
s(j∗(F

|i|−kV) ∩ V>−1).

Let q := max{k : F kV 6= 0} to be the lowest nonzero piece in the Hodge filtration of V
over U . Then the lowest nonzero piece in the Hodge filtration of M is

(2.2) F−qM = j∗(F
qV) ∩ V>−1.

Remark 2.10. In [Sai90b], Saito has the formula for right Hodge module:

FkM =
∑

i∈Zn
+

(j∗(F
|i|−k−nV) ∩ V>−1)∂i

s.

Here we convert it to the filtration on the corresponding left D-module, which has a shift
by n = dimX .

Step 2. Assume D is an arbitrary divisor. Let f : (X̃, D̃) → (X,D) be a log
resolution such that D̃ is a simple normal crossing divisor and X̃ \ D̃ ∼= X \D. Denote

Ũ := X̃ \ D̃. Consider Ṽ = (f |Ũ)∗V to be the VHS on Ũ . Let M̃ be the Hodge module
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on X̃ associated to Ṽ . Let FpM̃ and FpM be the lowest nonzero piece in the Hodge
filtrations. As a corollary of direct image theorem, Saito [Sai90b, Theorem 1.1] proves
that

f∗(FpM̃ ⊗ ωX̃) = FpM⊗ ωX .(2.3)

The entire filtration F •M is defined in a more complicated way. But for our purpose, it
is enough to understand the lowest nonzero piece.

2.5. Nakano positivity of Hodge bundles. Let X be a complex manifold. Let E be
a holomorphic vector bundle on X with a hermitian metric h, we say that h is Nakano

semi-positive if the curvature tensor Θh is semi-positive definite as a hermitian form on
TX ⊗E, i.e. if for every u ∈ Γ(TX ⊗E), we have

√
−1Θh(u, u) ≥ 0 (see [Dem07]).

Example 2.11. Let V be a VHS on X and let F qV be the lowest nonzero piece in
the Hodge filtration. Recall that the Hodge metric h on F qV is defined as follows: if
v, w ∈ H0(X,F qV), then

h(v, w) := (−1)qSh(v, w̄).

By Schmid’s curvature calculation [Sch73, Lemma 7.18], h is Nakano semi-positive.

Nakano semi-positive bundles satisfy an optimal version of L2 extension property
proved by Blocki and Guan-Zhou [B lo13, GZ15]. Let s1, . . . , sn be the coordinates on
Cn, we write the standard Lebesgue measure to be dµ := cnds1 ∧ ds̄1 ∧ · · · ∧ dsn ∧ ds̄n
and cn = 2−n(−1)n

2/2.

Theorem 2.12. Let B ⊂ Cn be the open unit ball. Let Z be an analytic subset of B\{0}.
Let (E, h) be a holomorphic vector bundle over B \Z such that h is Nakano semi-positive.

Then for every v ∈ E0 with |v|h,0 = 1, there is a holomorphic section σ ∈ H0(B \ Z,E)
with

σ(0) = v and
1

µ(B)

∫

B

|σ|2h dµ ≤ 1.

Remark 2.13. It is easy to see that (B \ Z, {0}) satisfies the condition (ab) in [GZ15,
Definition 1.1]. Then we can apply [GZ15, Theorem 2.2] to the pair (B \ Z, {0}), taking

A = 0, cA(t) ≡ 1 and Ψ = n log(|s1|2 + · · · + |sn|2). Guan-Zhou’s definition of dµ doesn’t
involve the constant cn, but it reduces to the version we write here because the two cn’s
in the inequality get cancelled.

2.6. Singular hermitian metrics and metric positivity. Let X be a complex man-
ifold. Let F be a torsion-free coherent sheaf on X . This means that there is an open
subset X(F) ⊂ X such that E = F|X(F) is locally free and codimension of X \X(F) is
greater or equal than 2.

Definition 2.14. A singular hermitian metric on F is a singular hermitian metric h on
the holomorphic vector bundle E.

Inspired by the optimal L2 extension theorem discussed in the previous section, it is
natural to consider the following “minimal extension property” for singular Hermitian
metrics on torsion-free sheaves [HPS18]. Let B ⊂ Cn be the open unit ball.

Definition 2.15. We say that a singular hermitian metric h on F has the minimal

extension property if there exists a nowhere dense closed analytic subset Z ⊂ X with the
following two properties

(1) F is locally free on X \ Z.
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(2) For every embedding ι : B →֒ X with x = ι(0) ∈ X \ Z, and every v ∈ Ex with
|v|h,x = 1, there is a holomorphic section σ ∈ H0(B, ι∗F) such that

σ(0) = v and
1

µ(B)

∫

B

|σ|2h dµ ≤ 1.

Example 2.16. By Theorem 2.12, if E is a holomorphic vector bundle with a Nakano
semi-positive metric h, then h has the minimal extension property. In particular, the
Hodge metric on the lowest nonzero piece in the Hodge filtration of any VHS has the
minimal extension property.

For consequences and applications of minimal extension properties, readers may refer
to [HPS18].

3. Proofs

Let X be a complex manifold of dimension n and let D be an arbitrary divisor on X .
Let V be a VHS over U and let M be the polarized Hodge module on X with strict
support corresponding to V via Saito’s structure theorem 2.9. Let F qV denote the lowest
nonzero piece in the Hodge filtration of V. By the construction in section 2.4, F−qM is
the lowest nonzero piece in the Hodge filtration of M and

F−qM
∣

∣

U
= F qV.

Let h be the Hodge metric on F qV as in Example 2.11. Saito proves that F−qM is a
torsion-free coherent sheaf [Sai90b, Proposition 2.6], so h is a singular Hermitian metric
on F−qM.

Proof of Theorem A . It suffices to show that h has the minimal extension property. It
follows that h has semi-positive curvature by the proof of [HPS18, Theorem 21.1].

Note that the divisor D ⊂ X satisfies condition (1), as in definition 2.15. For condition
(2), let us fix an embedding ι : B →֒ X with x = ι(0) ∈ X \ D, so that F−qM can be
identified with ι∗(F−qM). Choose v ∈ (F qV)x with |v|h,x = 1. By Example 2.11, h is
Nakano semi-positive over B \D so Theorem 2.12 implies that there exists a holomorphic
section σ ∈ H0(B \D,F qV|B\D) satisfying

σ(x) = v and
1

µ(B)

∫

B

|σ|2h dµ ≤ 1.(3.1)

It suffices to show that σ extends to a holomorphic section in H0(B,F−qM).
We divide the proof into two steps.
Step 1. We reduce to the situation where D is a simple normal crossing divisor. Let

f : (B̃, D̃) → (B,D)

be a log resolution such that B̃ \ D̃ ∼= B \D and D̃ is a simple normal crossing divisor.
V pulls back isomorphically to a VHS on B̃ \ D̃ which is denoted by Ṽ. By abuse of

notation, we use h to denote the Hodge metric on Ṽ . Let M̃ be the Hodge module on B̃
corresponding to Ṽ.

Fixing coordinates s1, . . . , sn on B, then β := σ ⊗ ds1 ∧ · · · ∧ dsn is a section of
H0(B,F qV ⊗ ωB). Define β ∧ β := |σ|2hdµ, (3.1) implies that

∫

B

β ∧ β < ∞.

Since we have chosen a log resolution that does not change the open subset, we have
∫

B̃

f ∗β ∧ f ∗β < ∞.(3.2)
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In Step 2, we will show that this integrability condition implies that

f ∗β ∈ H0(B̃, F−qM̃ ⊗ ωB̃).

Granting this for now, since (2.3) says

H0(B̃, F−qM̃ ⊗ ωB̃) = H0(B,F−qM⊗ ωB),

we may then conclude that
β ∈ H0(B,F−qM⊗ ωB).

Therefore
σ ∈ H0(B,F−qM).

Step 2. Working locally, we may replace B̃ by ∆n and D̃ by ∆n \ (∆∗)n. Let s1, . . . , sn
be coordinates on ∆n. Write f ∗β = σ̃ ⊗ ds1 ∧ . . . ∧ dsn. (3.2) implies that

∫

(∆∗)n
|σ̃|2h dµ < ∞,

Thus σ̃ ∈ H0(∆n, Ṽ >−1) by Proposition 3.1. Over ∆n, by (2.2) we have

F−qM̃ = j∗(F
−qṼ) ∩ Ṽ>−1,

then σ ∈ H0(∆n, F−qM̃). Therefore,

f ∗β ∈ H0(∆n, F−qM̃ ⊗ ω∆n).

�

3.1. L2 sections are holomorphic. In this section, we give the main technical result:

Proposition 3.1. Let V be a VHS over (∆∗)n, let F qV be the lowest nonzero piece in the

Hodge filtration, and let h be the Hodge metric on F qV. If a section σ ∈ H0((∆∗)n, F qV)
satisfies

∫

(∆∗)n
|σ|2h dµ < ∞,

then σ ∈ H0(∆n,V>−1).

We will first prove a reduction lemma.

Lemma 3.2. If the Proposition 3.1 holds for VHS with unipotent monodromy, then it

holds for VHS with quasi-unipotent monodromy.

Proof. Let V be a VHS with quasi-unipotent monodromy over (∆∗)n with rkV = r. Let
Tj be the j-th monodromy operator with Jordan decomposition Tj = (Tj)s(Tj)u. Let mj

be the quasi-unipotency index of Tj such that (Tj)
mj
s = Id.

Let p be the universal covering map of (∆∗)n:

p : Hn → (∆∗)n, (z1, . . . , zn) 7→ (e2π
√
−1z1 , . . . , e2π

√
−1zn).

Set V := H0(Hn, p∗V)p
∗∇, which is isomorphic to the fiber of V. Since Tj commute with

each other, there is a basis (vα)1≤α≤r of V so that it simultaneously diagonalizes all (Tj)s.
We choose integer 0 ≤ kαj ≤ mj − 1 such that

(Tj)s · vα = e−2π
√
−1kαj/mj · vα.

By Construction 2.4, let Rj := log Tj with the decomposition

Rj = Hj + Nj ,

where Hj = log(Tj)s and Nj = log(Tj)u. By the construction we have

Hj · vα = −(2π
√
−1kαj/mj) · vα.
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and Nj is nilpotent for each j.
To reduce to the unipotent situation, consider the following unramified covering map:

f : (∆∗)n → (∆∗)n, (s̃1, . . . , s̃n) 7→ (s̃m1
1 , . . . , s̃mn

n ).

Let (Ṽ , ∇̃) := f ∗(V,∇) to be the VHS polarized by f ∗h. Note that (Ṽ, ∇̃) has unipotent
monodromy because the j-th monodromy operators T̃j equals to T

mj

j = (Tj)
mj
u . Set

R̃j := log T̃j, then R̃j = mjNj . The finite base change comes with the following diagram:

Hn f̃−−−→ Hn

p̃





y

p





y

(∆∗)n
f−−−→ (∆∗)n

where

p̃(z̃1, . . . , z̃n) = (e2π
√
−1z̃1 , . . . , e2π

√
−1z̃n),

f̃(z̃1, . . . , z̃n) = (m1z̃n, . . . , mnz̃n).

Let Ṽ to be H0(Hn, p̃∗Ṽ)p̃
∗∇̃. Then as in section 2.2,

V>−1 ∼= (e
∑

zjRjV ) ⊗C O∆n , Ṽ>−1 ∼= (e
∑

zjR̃j Ṽ ) ⊗C O∆n.

Now we want to calculate the pull back of generating sections of V>−1 via f . Since
they are identified with holomorphic functions on Hn, it suffices to pull back via f̃ . Let
v ∈ V and w = e

∑
zjRjv, then

f̃ ∗(w) = exp(
∑

z̃jmjRj)f̃
∗v

= exp(
∑

z̃jmjHj) · exp(
∑

z̃jmjNj)f̃
∗v

= exp(
∑

z̃jmjHj) · exp(
∑

z̃jR̃j)f̃
∗v

= exp(
∑

z̃jmjHj)w̃.

where w̃ = e
∑

z̃jR̃j f̃ ∗v ∈ H0(∆n, Ṽ>−1).
Since (vα)1≤α≤r is the basis of V such that

Hj · vα = −(2π
√
−1kαj/mj) · vα.

Set wα = e
∑

zjRjvα, then

f̃ ∗(wα) = e
∑

z̃jmjHj w̃ =
∏

e−2π
√
−1z̃jkαj w̃ =

∏

s̃
−kαj

j w̃α.(3.3)

where w̃α = e
∑

z̃jR̃j f̃ ∗vα.

Remark 3.3. The generating sections of V>−1 pull back to generating sections of Ṽ>−1

with an extra monomial factor.

Now we start the proof of this lemma. Let σ be a section of F qV over (∆∗)n such that
∫

(∆∗)n
|σ|2h dµ < +∞. Let j : (∆∗)n →֒ ∆n be the open embedding. By the construction

of Deligne’s canonical lattice,

H0 ((∆∗)n, F qV) ⊂ H0
(

(∆∗)n,V>−1|(∆∗)n
)

.

Therefore we can write

σ =
r
∑

α=1

hαwα,
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where hα ∈ C(s1, . . . , sn) is a holomorphic function over (∆∗)n. To show σ ∈ H0(∆n,V>−1),
it suffices to show that each hα is actually a holomorphic function over ∆n.

Since
∫

(∆∗)n
|σ|2h dµ < +∞, local calculation shows that

∫

(∆∗)n
f ∗(|σ|2h dµ) =

∫

(∆∗)n

∣

∣

n
∏

j=1

mj s̃
mj−1
j · f ∗(σ)

∣

∣

2

f∗h
dµ̃ < +∞.

Here
dµ = cnds1 ∧ ds̄1 ∧ · · · ∧ dsn ∧ ds̄n, dµ̃ = cnds̃1 ∧ d¯̃s1 ∧ · · · ∧ ds̃n ∧ d¯̃sn

are the standard Lebesgue measure on ∆n and cn = 2−n(−1)n
2/2. Since we assume that

Proposition 3.1 is true for VHS with unipotent monodromy, it follows that
n
∏

j=1

s̃
mj−1
j · f ∗(σ)

must belongs to H0(∆n, Ṽ>−1), which equals to H0(∆n, Ṽ0) by remark 2.5. By (3.3),

f ∗(σ) =
r
∑

α=1

f ∗(hαwα)

=
r
∑

α=1

f ∗(hα) ·
n
∏

j=1

s̃
−kαj

j w̃α

Hence
n
∏

j=1

s̃
mj−1
j · f ∗(σ) =

r
∑

α=1

(

f ∗(hα) ·
n
∏

j=1

s̃
mj−1−kαj

j

)

w̃α.

Therefore we conclude that for each 1 ≤ α ≤ r, the corresponding coefficient function

f ∗(hα) ·
n
∏

j=1

s̃
mj−1−kαj

j

is holomorphic in s̃1, . . . , s̃n. In particular, this implies that hα must be a meromorphic
function. For each α, we let nαj be the lowest power of sj in the Laurent expansion of
hα, then the lowest power of s̃j in f ∗(hα) is mjnαj . Holomorphicity imply that

mjnαj + mj − 1 − kαj ≥ 0.

Because kαj ≥ 0, we have

nαj ≥ −1 +
1 + kαj
mj

≥ −1 +
1

mj
,

Since nαj is an integer, it follows that nαj ≥ 0, i.e. hα is actually a holomorphic function
in s1, . . . , sn. Therefore we conclude that σ ∈ H0(∆n,V>−1).

�

Proof of Proposition 3.1 . Let V be a VHS over (∆∗)n and D := ∆n \ (∆∗)n = ∪Dj is the
simple normal crossing divisor. By Schmid’s monodromy theorem [Sch73, Theorem 6.1],
(V,∇) has quasi-unipotent monodromy. Then we can assume that (V,∇) has unipotent
monodromy by Lemma 3.2, . Let σ be a section of H0((∆∗)n, F qV) such that

∫

(∆∗)n
|σ|2hdµ < +∞.

By Hartog’s theorem, to show σ ∈ H0(∆n,V>−1), it suffices to show that σ extends over
any generic point of each divisor Dj.
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Without loss of generality, let us assume j = 1. Around a generic point of D1, we can
choose a coordinate neighborhood U1 such that it is isomorphic to ∆∗ × ∆n−1. Let s1 be
the coordinate of ∆∗. Let T be the monodromy operator of V|U1 and N := log T . Let
p : H × ∆n−1 → ∆∗ × ∆n−1 be the universal covering map and let Φ : H × ∆n−1 → D

be the corresponding period map. Let V = H0(H × ∆n−1, p∗V)p
∗∇ and let W•V be the

weight filtration associated with N .
Let ∆∗

r := {s1 ∈ ∆∗ : |s1| < r} be the punctured disk of radius r < 1. By Corollary 2.8,
there exists a Hermitian inner product Q on V and over ∆∗

r × ∆n−1, there exists C1 > 0
such that

|σ|2h,s = |p∗σ|2Φ(z) ≥ C1

∑

l

(− log|s1|)l · |p∗σ|2Ql
.

Here Q = ⊕Ql corresponds to the grading V = ⊕lGrWl V and we write p∗σ in terms of
basis of V using the trivialization of p∗V by V .

Let (vα) be an Q-orthogonal basis of V with respect to V = ⊕lGrWl V . Then (wα =
ez1Nvα) is a basis of generating sections of V>−1|U1. Set

σ
∣

∣

U1
=
∑

α

hαwα,

where hα is a holomorphic function over ∆∗
r × ∆n−1. It suffices to prove that hα extends

to a holomorphic function over ∆r × ∆n−1

Since N is nilpotent and |s1| is bounded, there exists a constant C2 > 0 such that for
all l,

|p∗σ|2Ql
≥ C2|e−z1Np∗σ|2Ql

= C2

∣

∣

∑

α

hαvα
∣

∣

2

Ql
.

Therefore

∞ >

∫

∆∗
r×∆n−1

|σ|2hdµ

> C1

∫

∆∗
r×∆n−1

∑

l

(− log|s1|)l|p∗σ|2Ql
dµ

> C1C2

∫

∆∗
r×∆n−1

∑

l

(− log|s1|)l
∣

∣

∑

α

hαvα
∣

∣

2

Ql
dµ.

Since (vα) is Q-orthogonal, for each α there exists l such that
∫

∆∗
r×∆n−1

(− log|s1|)l|hα|2dµ < ∞.

We can rescale r to 1, then by lemma 3.4, hα is holomorphic over ∆r × ∆n−1. Therefore
σ extends to a holomorphic section of V>−1 over ∆n.

�

To conclude the proof, we need the following

Lemma 3.4. Let f is a holomorphic function on ∆∗ ×∆n−1. Let s1 be the coordinate of

∆∗. Suppose there exists an integer k such that
∫

∆∗×∆n−1

(− log|s1|)k · |f |2dµ < ∞,

Then f must be a holomorphic function on ∆ × ∆n−1.
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Proof. We denote dµn = cnds1∧ds̄1∧· · ·∧dsn∧ds̄n to be the standard Lebesgue measure
on ∆n and cn = 2−n(−1)n

2/2. Then dµn = dµ1 × dµn−1. Expand f as a Laurent series in
s1:

f =
∑

i∈Z
fis

i
1,

where fi is a holomorphic function on ∆n−1.
To simplify the presentation, we denote − log|s1| by L(s1). Let (r, θ) be the polar

coordinate such that s1 = re
√
−1θ. Observe that L(s1) is a function only depending on

|s1| = r, then for any integers i, j such that i 6= j,
∫

∆∗

L(s1)
ksi1s̄

j
1dµ1 =

∫ 1

0

L(r)kri+j+1dr

∫ 2π

0

e
√
−1θ(i−j)dθ = 0.

Since the Laurent series converges on any anulus {ǫ1 ≤ |s1| ≤ ǫ2} × ∆n−1, so
∫

∆∗×∆n−1

L(s1)
k · |f |2dµ =

∫

∆n−1

(

∫

∆∗

L(s1)
k ·
∑

i,j

si1s̄
j
1dµ1

)

fif̄jdµn−1

=
∑

i∈Z

(
∫

∆∗

L(s1)
k|s1|2idµ1

)

·
(
∫

∆n−1

|fi|2dµn−1

)

Since
∫

∆∗ L(s1)
k|s1|2idµ < ∞ if and only if i ≥ 0 and

∫

∆n−1 |fi|2dµn−1 = 0 if and only if
fi ≡ 0, we must have fi ≡ 0 for all i < 0. In particular we conclude that f is holomorphic
over ∆ × ∆n−1.

�

3.2. Consequences. In this section, we would like to prove Corollary B. Let X be a
complex manifold and let D be an arbitrary divisor. Let (E, h) be a holomorphic vector
bundle on X \D with a smooth Hermitian metric. A section σ of E is said to be locally

L2 near D if for any point in D, there exists a coordinate neighborhood U such that |σ|2h
is integrable with respect to the standard Lebesgue measure on U .

Let V be a VHS on X \D and F qV is the lowest nonzero piece in the Hodge filtration.
Let j : X \D →֒ X be the open embedding. Let F be the subsheaf of j∗(F

qV) consisting
of sections of F qV which are locally L2 near D. We want to show that F is coherent.

Proof of Corollary B. Let M be the Hodge module on X with strict support correspond-
ing to V. The proof of Theorem A implies that

F ⊂ F−qM.

We will show

F ⊃ F−qM.(3.4)

In particular F = F−qM. Since the filtered D-module (M, F•M) underlying M is good,
F must be coherent.

Since (3.4) is a local statement, we can assume X = ∆n. Let σ be a section of F−qM,
then σ ∈ H0(X \D,F qV). As usual, we divide the proof into two steps.

Step 1. If D is a simple normal crossing divisor, we can choose s1, . . . , sn to be the
coordinates on X such that D = ∪{si = 0}. By Theorem 2.6, over any region of the form

{s ∈ (∆∗)n : |s| < a < 1;
log |sj|

log |sj+1|
≥ ǫ, 1 ≤ j ≤ n− 1},

|σ|2h is bounded above by sums of products of logarithm functions in |si|. In particular,
it is integrable with respect to the standard Lebesgue measure on this region. Since we
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can cover the neighborhood of any point of D using finite regions of this type, it follows
that σ is locally L2 near D.

Step 2. If D is an arbitrary divisor, we can choose a log resolution

f : (X̃, D̃) → (X,D),

such that D̃ is simple normal crossing and X̃ \ D̃ ∼= X \ D. The VHS V on X \ D

pulls back isomorphically to a VHS Ṽ on X̃ \ D̃. Let M̃ be the Hodge module on X̃
corresponding to Ṽ.

Since f ∗σ ∈ H0(X̃, F−qM̃), by the previous step it follows that f ∗σ is locally L2 near

D̃. Because X̃ \ D̃ ∼= X \D, we can conclude that σ is locally L2 near D. �

References

[B lo13] Zbigniew B locki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Inventiones
mathematicae 193 (2013), no. 1, 149–158.

[Bru17] Yohan Brunebarbe, Semi-positivity from Higgs bundles, arXiv:1707.08495 (2017).
[BS03] Nero Budur and Morihiko Saito, Multiplier ideals, V-filtration, and spectrum, arXiv preprint

math/0305118 (2003).
[CK89] Eduardo Cattani and Aroldo Kaplan, Degenerating variations of Hodge structure, Astérisque
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