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r é s u m é

On généralise le théorème de E. Cattani, P. Deligne, et A. Kaplan aux variations de structure
de Hodge mixtes admissibles.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The purpose of this Note is to prove the following generalization of the famous theorem of Cattani, Deligne, and Ka-
plan [2].

Theorem 1. Let S be a Zariski-open subset of a complex manifold S̄ , and let V be a variation of mixed Hodge structure on S. Suppose
that V is defined over Z, graded polarized by forms Q k : GrW

k V ⊗ GrW
k V → Z(−2k), and admissible with respect to S̄ . For each

integer K , let Hdg(V )K denote the locus of Hodge classes α in V such that Q 0(α + W0,α + W0) = K . Then Hdg(V )K extends to
an analytic space, finite and proper over S̄ .

As in the original paper, where the result is proved for variations of pure Hodge structure, Chow’s theorem implies that
the locus of Hodge classes consists of algebraic varieties if S is algebraic.

Corollary 2. In the situation of Theorem 1, suppose that S is quasi-projective. Then, for each K ∈ Z, Hdg(V )K is a quasi-projective
algebraic variety.

We remind the reader of a few basic definitions. Given a mixed Hodge structure V defined over Z, a Hodge class in V
is an element of VZ ∩ W0 VC ∩ F 0 VC , or equivalently, a morphism of mixed Hodge structures Z(0) → V . Given a variation
of mixed Hodge structure V on a complex manifold S , let VZ denote the underlying integral local system. Its étalé space
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T (VZ) is a covering space of S with countably many connected components; it naturally embeds into the holomorphic
vector bundle E(VO). The locus of Hodge classes in V can then be described as the intersection

Hdg(V ) = T (VZ) ∩ E
(

F 0VO
) ∩ E(W0VO).

It is a disjoint union: Hdg(V ) = ∐
K Hdg(V )K .

We deduce Theorem 1 from the original result by Cattani, Deligne, and Kaplan with the help of the following difficult
theorem; it is the main result of [1], and can also be proved by the methods of [9]. (A similar result has also been announced
by Kato, Nakayama, and Usui in [6].) Either proof relies on the SL(2)-orbit theorem of Kato, Nakayama, and Usui [5].

Theorem 3. Let ν be an admissible higher normal function on S, that is, an admissible extension of Z(0) by a polarized variation of
Hodge structure of negative weight. Let Z(ν) = {s ∈ S: ν(s) = 0} denote the zero locus of ν . (See the discussion at the beginning of
Section 3.) Then the closure of Z(ν) in S̄ is an analytic subset.

Note that this result includes the case of classical normal functions (where the Hodge structure has weight −1). Theo-
rem 3 in itself is most interesting when S is a quasi-projective complex manifold; we may then take S̄ to be any smooth
projective compactification, since the notion of admissibility is independent of the particular choice.

Corollary 4. Suppose that ν is an admissible higher normal function on S, that is, an extension of Z(0) by a polarized variation of
Hodge structure of negative weight. Then the zero locus Z(ν) is an algebraic subset of S.

One source for higher normal functions is through families of higher Chow cycles. Let π : X → S be an algebraic family
of complex projective manifolds with S smooth and quasi-projective. Then the regulator map from motivic cohomology
H p

M(X,Z(q)) � CHq(X,2q − p) to Deligne cohomology H p
D(X,Z(q)) induces a homomorphism

CHq(X,2q − p) ⊗ Q →
⊕

k∈Z

Extp−k
MHM(S)

(
Q(0), Rkπ∗Q(q)

)
,

using the decomposition theorem, where MHM(S) is the category of mixed Hodge modules on S [8, Section 5.1]. In particu-
lar, a higher Chow cycle on X determines an element in Ext1

MHM(S)(Q, R p−1π∗Q(q)); some multiple is an admissible higher

normal function for the variation of Hodge structure R p−1π∗Z(q) of weight p − 2q − 1 < 0.
The same methods can be used to describe the locus of points s ∈ S where V s splits over Z (we say that a mixed Hodge

structure V splits over Z if V � ⊕
m GrW

m V in MHS).

Theorem 5. Let V be an admissible variation of mixed Hodge structure on S. Then the set of points s ∈ S where the mixed Hodge
structure V s splits over Z is an algebraic subset of S.

Since V s splits over Z iff there is a Hodge class in End(V s) that induces a splitting of the underlying integral lattice, this
result may also be viewed as a special case of Theorem 1.

2. Admissibility

Let V be a variation of Z-mixed Hodge structure on a Zariski-open subset S of a complex manifold S̄ . We call V
admissible with respect to S̄ if V ⊗ C is admissible in the sense of Kashiwara [4] (where admissibility is defined by a curve
test). It is clear from this definition that admissibility is preserved under holomorphic maps f : S̄ ′ → S̄ with the property
that f −1(S) is dense in S̄ ′ . Moreover, duals and tensor products of admissible variations of mixed Hodge structure are again
admissible; this is proved in the appendix to [10].

By work of Saito [7], admissibility can also be phrased in terms of mixed Hodge modules: V ⊗Q defines a mixed Hodge
module on S , and is admissible if and only if that mixed Hodge module can be extended to S̄ .

3. The locus of Hodge classes

We now turn to the proof of Theorem 1. Throughout, we let V be a variation of mixed Hodge structure over S , admis-
sible with respect to S̄ . We can assume (without loss of generality) that the local systems WmV making up the weight
filtration are defined over Z, with GrW

m V torsion free, and that S is connected.
To begin with, we can replace V by W0V , and assume without loss of generality that V is of weight � 0. We then

have

Hdg(V ) = T (VZ) ∩ E
(

F 0VO
)
.

The next step is to prove a more general version of Theorem 3. Recall that a generalized normal function ν is an extension,
in the category of variations of mixed Hodge structure, of Z(0) by a variation of mixed Hodge structure H , all of whose
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weights are � −1. It is said to be admissible if the corresponding variation is admissible. At each point s ∈ S , the extension
determines a point ν(s) ∈ Ext1

MHS(Z(0), Hs); the zero locus Z(ν) of the generalized normal function is by definition the set
of points where ν(s) = 0. We let

NF(S,H ) = Ext1
VMHS(S)

(
Z(0),H

)

denote the group of generalized normal functions.

Proposition 6. Let ν be an admissible generalized normal function on S. Then the closure of Z(ν) in S̄ is an analytic subset.

Proof. Let V be the corresponding admissible variation of mixed Hodge structure, and H = W−1V . If H is pure,
then the result follows from Theorem 3. Otherwise, we let m � −1 be the smallest integer for which GrW

m V 	= 0. De-
fine V ′ = V /WmV , and let ν0 be the corresponding generalized normal function induced on V ′ by ν . Note that we have
Z(ν) ⊆ Z(ν0).

Let S0 denote the regular locus of an irreducible component of Z(ν0). By induction, we know that the closure of S0
inside of S̄ is analytic; let π : S̄0 → S̄ be a resolution of singularities of the closure that is an isomorphism over S0 [3].
Since π is proper, we are allowed to replace S̄ by S̄0 and ν by its pullback to S0; we may therefore assume from the
beginning that ν0 = 0. Now the exact sequence

0 → NF(S, WmH ) → NF(S,H ) → NF(S,H /WmH )

shows that ν induces a generalized normal function ν ′ ∈ NF(S, WmH ). Since WmH is pure of weight m, we conclude
from Theorem 3 that Z(ν ′) has an analytic closure inside S̄; but clearly Z(ν) = Z(ν ′), and so the assertion follows. �

We are now ready to prove Theorem 1 in general.

Proof of Theorem 1. Let V be the admissible variation of mixed Hodge structure; as explained above, we may suppose that
it has weights � 0. For any point s ∈ S , let V s be the corresponding mixed Hodge structure; then we have an exact sequence

0 → Hdg(V s) → Hdg
(
GrW

0 V s
) → Ext1

MHS

(
Z(0), W−1 V s

)
. (1)

It follows that the locus of Hodge classes for V is embedded into that for GrW
0 V . Let Z = Hdg(V )K , and let Y =

Hdg(GrW
0 V )K . By the theorem of Cattani, Deligne, and Kaplan [2], Y can be extended to an analytic space Ȳ that is proper

and finite over S̄ . Let μ : Ȳ ′ → Ȳ be a resolution of singularities of the analytic space Ȳ and denote by V ′ the pullback
of V to Y .

By construction, we have a section Z(0) → GrW
0 V ′ . It induces a generalized normal function ν ′ ∈ NF(Y ,H ′), where

H ′ = W−1V ′ . Moreover, it is clear from (1) that Z = Z(ν ′). Since ν ′ is easily seen to be admissible with respect to Ȳ ′ , we
conclude from Proposition 6 that the closure of Z(ν ′) in Ȳ ′ is analytic. Because μ is proper, it follows that Z has an analytic
closure inside of Ȳ ; this completes the proof. �
4. The split locus

The proof of Theorem 5 is similar to that of Theorem 1.

Proof of Theorem 5. It suffices to prove the statement with coefficients in Q. So let V be an admissible variation of mixed
Hodge structure on S , where S is Zariski-open in a complex manifold S̄ . Let m be the largest integer for which GrW

m V 	= 0.
By induction, we know that the locus of points s ∈ S where Wm−1 V s splits over Q has an analytic closure inside of S̄ .
Arguing as before, we may therefore assume from the beginning that Wm−1V is split. Now V determines an element of

Ext1
VMHS(S)

(
GrW

m V , Wm−1V
) �

⊕

k<m

Ext1
VMHS(S)

(
GrW

m V ,GrW
k V

)

�
⊕

k<m

Ext1
VMHS(S)

(
Q(0),

(
GrW

m V
)∨ ⊗ GrW

k V
)
.

Since admissibility is preserved under tensor products, the problem is reduced to the case of admissible higher normal
functions; applying Theorem 3 completes the proof. �
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