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HIGHER MULTIPLIER IDEALS

CHRISTIAN SCHNELL AND RUIJIE YANG

Dedicated to Rob Lazarsfeld on the occasion of his 70th birthday

Abstract. We associate a family of ideal sheaves to any Q-effective divisor on a com-
plex manifold, called the higher multiplier ideals, using the theory of mixed Hodge
modules and V -filtrations. This family is indexed by two parameters, an integer indi-
cating the Hodge level and a rational number, and these ideals admit a weight filtration.
When the Hodge level is zero, they recover the usual multiplier ideals.

We study the local and global properties of higher multiplier ideals systematically. In
particular, we prove vanishing theorems and restriction theorems, and provide criteria
for the nontriviality of the new ideals. The main idea is to exploit the global structure
of the V -filtration along an effective divisor using the notion of twisted Hodge modules.
In the local theory, we introduce the notion of the center of minimal exponent, which
generalizes the notion of minimal log canonical center. As applications, we prove some
cases of conjectures by Debarre, Casalaina-Martin and Grushevsky on singularities of
theta divisors on principally polarized abelian varieties and the geometric Riemann-
Schottky problem.
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1. Introduction

Let X be a complex manifold of dimension n, and let D be an effective divisor on X .
We construct a family of ideal sheaves Ik,α(D) from (X,D), using the Hodge theory of
the Kashiwara-Malgrange filtration along D; these are indexed by k ∈ N and α ∈ Q. We
defer the somewhat technical construction to the end of the introduction. One purpose of
this work is to show that these ideal sheaves can serve as a new measure of singularities
of D and lead to a number of applications for singularities of divisors. The theory is
most interesting in those cases where there is no useful information left in the usual
multiplier ideals; this happens for example for theta divisors on principally polarized
abelian varieties (more generally when (X,D) is log canonical).

We call the new ideals higher multiplier ideals, because I0,<−α(D) = J (X,αD) is
the usual multiplier ideal of the effective Q-divisor αD. (Here the subscript < α is an
abbreviation for α− ε, where ε > 0 is a small positive real number.) When D is reduced,
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Ik,α(D) recover Saito’s “microlocal multiplier ideal sheaves” [65]; in this work we study
them from a more global point of view and prove many new results about them. In
the introduction, we outline the most important result: a version of the Nadel vanishing
theorem; restriction and semicontinuity theorems; a numerical jumping criterion; and a
host of smaller results. This makes the theory almost as good as that of usual multiplier
ideals.

1.1. Basic properties of higher multiplier ideals. To begin with, our higher multi-
plier ideals Ik,α(D) have similar formal properties as usual multiplier ideals. One has the
increasing property

Ik,α(D) ⊆ Ik,β(D), whenever α ≤ β,

and as with usual multiplier ideals, we call α ∈ Q a jumping number if Ik,<α(D) 6=
Ik,α(D). The graded pieces

(1.1) Gk,α(D) = Ik,α(D)/Ik,<α(D)

are supported inside the singular locus of D if α ∈ (−1, 0]. They have an additional
“weight filtration”, indexed by Z, whose subquotients we denote by the symbol grWℓ Gk,α(D).
This induces a weight filtration W•Ik,α(D) via (1.1). Here are some basic properties of
these ideals.

(I) One has Ik,<k(D) = OX , i.e. all jumping numbers of Ik,α(D) are less than k
(Proposition 5.10).

(II) The sequence of ideal sheaves {Ik,α(D)}α∈Q is discrete and right continuous. For
any α ∈ Q, there exist isomorphisms

Ik,α−1(D)
∼−→ Ik,α(D)⊗OX(−D), for α < 0,

Ik+1,α+1(D)
∼−→ Ik,α(D), for α ≥ −1.

Therefore all Ik,α(D) are controlled by those with α ∈ [−1, 0]; see Proposition
5.10.

(III) If D is smooth, then Ik,α(D) = OX for all α ∈ [−1, 0] and all k; Theorem 1.2
provides an effective converse statement.

(IV) One has Ik+1,α(D) ⊆ Ik,α(D) for α ∈ Q, k ∈ N (Corollary 5.17).
(V) The minimal exponent α̃D of any effective divisor D, defined in [63], can be

characterized using the first jumping number of {Ik,α(D)}k∈N,α∈(−1,0]:

α̃D = min
k∈N,α∈(−1,0]

{k − α | Ik,<α(D) ( OX}(1.2)

= min
k∈N,α∈(−1,0]

{k − α | Gk,α(D) 6= 0},

see Lemma 5.26. This generalizes the fact that the log canonical threshold of D
is the first jumping number of the multiplier ideals {J (βD)}β≥0. It also means
that the minimal exponent is completely determined by the vanishing cycle mixed
Hodge modules along D; see (5.6) and §2.1. Moreover, this provides a close con-
nection between the notion of k-du Bois and k-rational singularities, introduced
recently in [21] and [26], and higher multiplier ideals. Because these notions for
hypersurfaces can be completely controlled by minimal exponents.

(VI) The minimal exponent α̃D is a root of the Bernstein-Sato polynomial of D. Gen-
eralizing the relation between minimal exponent and jumping numbers in the
previous statement, locally for any x ∈ X , choose fx to be the local defining
equation of D near x. Then the set of roots of the Bernstein-Sato polynomial of
fx is the set of all jumping numbers of {Ik,•(D)x} for all k, modulo Z. This is
essentially due to Malgrange [39], see Proposition 5.10.
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(VII) The definition of higher multiplier ideals naturally extends to effective Q-divisors
for α ≤ 0. In §5.3, we show that for an effective divisor D, one has

Ik,mα(D)⊗OX(kD) ∼= Ik,α(D)⊗OX(kmD).

Then if E is an effective Q-divisor, we choose m ≥ 1 such that mE has integer
coefficients, and set

Sk,α(E) := Ik,α/m(mE)⊗OX(kmE).

This is a well-defined rank-one torsion-free sheaf, due to the isomorphism above.
Therefore the reflexive hall of Sk,α(E) is a line bundle and we can extract an ideal
sheaf Ik,α(E) out of Sk,α(E); for details, see §5.3. Consequently, we will focus
on the case of effective divisors in the introduction; many local properties easily
carry over to Q-divisors.

Let us discuss some local properties of higher multiplier ideals. First, they behave well
under restriction; for more details, see Theorem 7.6.

Theorem 1.1. Let i : H →֒ X be the closed embedding of a smooth hypersurface that
is not entirely contained in the support of D so that the pullback DH = i∗D is defined.
Then one has an inclusion

Ik,α(DH) ⊆ Ik,α(D) · OH ,

where the latter is defined as the image of {i∗Ik,α(D) → i∗OX = OH}. If H is sufficiently
general, then

Ik,α(DH) = Ik,α(D) · OH .

There are variants of the restriction theorem for the weight filtrations WℓIk,α(D) and
WℓGk,α(D), see Theorem 7.9. By a standard argument, the restriction theorem implies
the semicontinuity of higher multiplier ideals in families (Theorem 7.12). With the help of
these theorems, we can show that the presence of very singular points forces certain higher
multiplier ideals to jump. Using multiplicity as a coarse measure for the singularities, we
define

Singm(D) := {x ∈ X | multxD ≥ m}.
Theorem 1.2. Let D be an effective divisor on a complex manifold X of dimension
n. Suppose that Z ⊆ Singm(D) is an irreducible component of dimension d. Write
n− d = km+ r with k ∈ N and 0 ≤ r ≤ m− 1. Then

Ik,<α(D) 6= OX , for some α ≥ −r/m.
For the more precise statement about the containment of Ik,α(D) in certain symbolic

powers of IZ , see Theorem 7.17. The proof works by using the restriction and semiconti-
nuity theorems to reduce the problem to the case of an isolated singularity of multiplicity
m and codimension n− d whose projectivized tangent cone Xm ⊆ Pn−d−1 is smooth. In
this case, the sheaf Gk,α(D) is then computed in Proposition 6.5 and Theorem 6.6 using
the primitive cohomology of the cyclic covering of Pn−d−1 branched along Xm; this is one
of the most difficult computations in this paper and uses the work of Qianyu Chen [13]
and Saito’s bistrict direct images. The numbers above can be remembered using Griffiths
formulas for the Hodge numbers of hypersurfaces (because the cyclic covering mentioned
above is a hypersurface in Pn−d).

We close the discussion of local properties with the generalization of minimal log canon-
ical centers. Let D be an effective divisor on a complex manifold X . In birational geome-
try, the log canonical center is another basic invariant of the pair (X,D). For example, it
is a foundational result of Kawamata [28] that any minimal log canonical center is normal
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and has at worst rational singularities. By the work of Lichtin [38] and Kollár [31], one
has

(1.3) lct(D) = min{1, α̃D},
where α̃D is again the so-called minimal exponent of the divisor D. In particular, α̃D is a
more refined invariant than lct(D). By (1.2), we see that the minimal exponent α̃D can
be characterized using the higher multiplier ideals. Therefore it is natural to study the
notion of “the center of minimal exponent”, which is defined as the subscheme Y ⊆ X
such that

(1.4) grWℓ Gk,α(D) = OY ,

where α̃D = k − α for k ∈ N, α ∈ (−1, 0] and ℓ is the largest integer such that
grWℓ Gk,α(D) 6= 0; for more details, see §7.4. In Theorem 7.36, we prove

Theorem 1.3. Every connected component of the center of minimal exponent of (X,D)
is irreducible, reduced, normal and has at worst rational singularities.

This theorem relies on a Hodge module theoretic statement (Proposition 7.37). Using
the same statement, we can recover the criterion due to Ein-Lazarsfeld [19] (for detecting
normality and rational singularities of a hypersurface D in terms of the adjoint ideal
adj(D)) as well as the aforementioned result by Kawamata under additional assumptions,
see Corollary 7.41 and Corollary 7.42. The key idea is that the adjoint ideal and minimal
log canonical centers can be related to weight filtrations on higher multiplier ideals. We
also compute the center of minimal exponent for theta divisors of hyperelliptic curves
and Brill-Noether general curves, see Example 7.39.

Regarding the global properties of higher multiplier ideals, we prove several vanishing
theorems, similar in spirit to Nadel’s vanishing theorem for usual multiplier ideals, but
involving the de Rham-type complex (n = dimX)

grWℓ Kk,α(D) = [Ωn−k
X ⊗ grWℓ G0,α(D) → · · ·
· · · → Ωn−1

X ⊗ Lk−1 ⊗ grWℓ Gk−1,α(D) → Ωn
X ⊗ Lk ⊗ grWℓ Gk,α(D)][k].

Recall that once we go beyond the first step in the Hodge filtration, vanishing theorems
for mixed Hodge modules always involve complexes of sheaves (see [68], for example).
The following result is proved in Theorem 8.1.

Theorem 1.4. Let D be an effective divisor on a projective complex manifold X. Let
k ∈ N, ℓ ∈ Z and α ∈ [−1, 0]. Furthermore, let B be an effective divisor such that the
Q-divisor B + αD is ample. Then

H i
(
X, grWℓ Kk,α(D)⊗OX(B)

)
= 0, for every i > 0.

This is proved by relating higher multiplier ideals with the notion of twisted polar-
izable Hodge modules, which give us a handle on their global properties. They will be
discussed later in the introduction. Assuming the triviality of higher multiplier ideals of
lower orders, one can obtain a more precise vanishing theorem for Ik,α(D),Gk,α(D) and
WℓIk,α(D), see Corollary 8.2, Corollary 8.3 and Corollary 8.5. The vanishing theorem
improves dramatically when X is an abelian variety or a projective space and D is itself
an ample divisor, see §8.2 and §8.3.

Theorem 1.5. Let D be an effective divisor on an abelian variety A such that the line
bundle L = OA(D) is ample. For any line bundle ρ ∈ Pic0(A) and i ≥ 1, we have

(1) H i
(
A,Lk+1 ⊗WℓGk,α(D)⊗ ρ

)
= 0 for k ∈ N, ℓ ∈ Z and α ∈ (−1, 0].

(2) H i(A,Lk ⊗ Ik,0(D)⊗ ρ) = 0 for k ≥ 1.
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(3) H i(A,Lk+1 ⊗ Ik,α(D)⊗ ρ) = 0 for k ∈ N and α ∈ [−1, 0).

Theorem 1.6. Let D be a reduced hypersurface of degree d in Pn. For k ∈ N and i ≥ 1,
we have

(1) H i (Pn,OPn(m)⊗WℓGk,α(D)) = 0 for α ∈ (−1, 0], ℓ ∈ Z andm > d(k−α)−n−1.
(2) H i (Pn,OPn(m)⊗ Ik,0(D)) = 0 for k ≥ 1 and m ≥ kd− n− 1.
(3) H i (Pn,OPn(m)⊗ Ik,α(D)) = 0 for α ∈ [−1, 0) and m ≥ (k + 1)d− n− 1.

1.2. Twisted Hodge modules. An important feature of the present work is that we
can relate higher multiplier ideals to twisted D-modules, which give us a handle on
their global properties. More precisely, we introduce a notion of twisted polarizable Hodge
modules, which provides a convenient framework for discussing global structures of nearby
and vanishing cycles along effective divisors.

First, let us recall the notion of twisted D-modules, developed by Bernstein and Beilin-
son in [5, §2]. Roughly speaking, these are objects that are locally D-modules, but with
a different transition rule from one coordinate chart to another. The twisting depends
on two parameters: a holomorphic line bundle L on the complex manifold X and a
complex number α ∈ C. Like the sheaf of differential operators DX itself, the sheaf of
αL-twisted differential operators DX,αL is a noncommutative OX-algebra; it still has an
order filtration F• such that

grFk DX,αL
∼= Symk

TX ,

where TX is the tangent bundle of X . In particular, we have grF• DX,αL
∼= grF• DX . But

unlike in the case of DX where F1DX = OX ⊕ TX , the sequence

0 → OX → F1DX,αL → TX → 0

does not split; instead, its extension class is equal to α · c1(L) in Ext1X(TX ,OX) ∼=
H1(X,Ω1

X). We give a construction of DX,αL using differential operators on the total
space of the line bundle L in §3.2. An αL-twisted D-module is a right module over
DX,αL. One crucial difference with usual D-modules is that there is no de Rham complex
for twisted D-modules, because there is no longer an action by TX . But we do have
grF1 DX,αL

∼= TX , and so the “graded pieces of the de Rham complex”, by which we mean
the complex

grFp DR(M) =
[
grFp−nM⊗

n∧
TX → · · ·

· · · → grFp−2M⊗
2∧

TX → grFp−1M⊗ TX → grFp M
]
[n]

still make sense for a twisted D-module M with a good filtration F•M.
Together with Claude Sabbah, the first author is developing a theory of complex mixed

Hodge modules, where one removes perverse sheaves from the picture and describes po-
larizations as certain distribution-valued pairings on the underlying D-modules. In §3.8
below, this formalism is extended to αL-twisted polarizable Hodge modules : for α ∈ R,
these are filtered DX,αL-modules with a pairing valued in the sheaf of αL-twisted currents
(that transform by |g|−2α under a change in trivialization of L); see also [66].

We prove a general vanishing theorem of twisted polarizable Hodge modules; for more
details, see Theorem 4.7. A version of this theorem has been independently proved by
Dougal Davis and Kari Vilonen [14, Theorem 1.4].

Theorem 1.7. Let D be an effective divisor on a projective complex manifold X and
denote L = OX(D). For any α ∈ Q, let M be an αL-twisted Hodge module with strict
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support X and let B be an effective divisor on X such that the Q-divisor B + αD is
ample. Then for any k ∈ Z, we have

H i
(
X, grFk DR(M)⊗OX(B)

)
= 0, for every i > 0,

where (M, F•M) is the filtered twisted D-module underlying M .

The vanishing Theorem 1.4 will be reduced to this theorem. As another application,
in §4.1 we give a quick proof of a log Kawamata-Viehweg type Akizuki-Nakano vanishing
theorem in [1].

1.3. Higher multiplier ideals and twisted Hodge modules. We now give the con-
struction of higher multiplier ideals and discuss how they are related to twisted Hodge
modules.

Let D be an effective divisor on a complex manifold X . Let L = OX(D) be the
corresponding holomorphic line bundle and let s ∈ H0(X,L) be a section with div(s) = D.
We view s as a closed embedding s : X → L into the (n + 1)-dimensional total space of
the line bundle, which is also denoted by L. Let

M = s∗Q
H
X [n] ∈ MHM(L)

be the direct image of the constant Hodge module on X , where MHM(L) is the category
of graded-polarizable mixed Hodge modules on L. There are several interesting filtrations
on the underlying D-module of M . First, the filtered right D-module underlying M is

(1.5) (M, F•M) = s+(ωX , F•ωX),

where ωX is viewed as a right D-module with F−nωX = ωX , F−n−1ωX = 0 and s+ is the
direct image functor for filtered D-modules. One can show that

grF−n+k M ∼= s∗(ωX ⊗ Lk)

for k ∈ N. On the other hand, let V•M be the V -filtration relative to the zero section of
L; locally it is the V -filtration of Kashiwara and Malgrange relative to any local equation
for D (see §2). For every α ∈ Q, the sheaf grF−n+k VαM is a coherent sub-O-module of
grF−n+k M. Then the higher multiplier ideal Ik,α(D) is defined as a unique coherent ideal
sheaf satisfying

(1.6) grF−n+k VαM = s∗
(
ωX ⊗ Lk ⊗ Ik,α(D)

)
.

Similarly, we define Ik,<α(D) using V<αM. The discreteness of V -filtration implies that
Ik,<α(D) = Ik,α−ǫ(D) for 0 < ǫ≪ 1.

Now we relate the higher multiplier ideals with twisted Hodge modules. Let

grVα M = VαM/V<αM
be the associated graded of the V -filtration. There is a weight filtrationW•(N) grVα M on
grVα M induced by the nilpotent monodromy operator N , see §3.11. By (1.1) and (1.6),
one has an isomorphism ωX ⊗ Lk ⊗ Gk,α(D) ∼= grF−n+k gr

V
α M, which induces a weight

filtration W•Gk,α(D) on Gk,α(D), and we denote by

grWℓ Gk,α(D) := WℓGk,α(D)/Wℓ−1Gk,α(D)

the graded pieces. The following result is proved in Proposition 3.12.

Proposition 1.8. For ℓ ∈ Z and α ∈ [−1, 0], the pair

(gr
W (N)
ℓ grVα M, F•+⌊α⌋ gr

W
ℓ grVα M)
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is a filtered αL-twisted D-module that underlies an αL-twisted polarizable Hodge module
on X. Moreover, for any k ∈ N, we have an isomorphism of coherent OX-modules

ωX ⊗ Lk ⊗ grWℓ Gk,α(D) ∼= grF−n+k gr
W (N)
ℓ grVα M.

Theorem 1.4 then follows from the combination of Proposition 1.8 and the general
vanishing theorem 1.7. Note that locally the direct sum ⊕−1≤α<0 gr

V
α M is a mixed Hodge

module in Saito’s sense, but the individual summands grVα M are (locally) complex mixed
Hodge modules without any rational structure. This is one of the reason why we need
the theory of complex mixed Hodge modules.

1.4. Comparison with other ideals. The higher multiplier ideals are closely related
to other generalization of multiplier ideals. Let D be an effective divisor on a complex
manifold X .

First, the higher multiplier ideals Ik,α(D) can recover the microlocal V -filtration Ṽ •OX ,
which is an decreasing filtration induced on OX by D, and vice versa. It is first defined
in the case of global hypersurfaces by Saito [64, 65] and later generalized to arbitrary
effective divisors in [41]. The minimal exponent α̃D can be characterized as the first
jumping number of microlocal V -filtration. The following result is proved in Corollary
5.16.

Proposition 1.9. Let D be an effective divisor on X. Then

Ṽ βOX =

{
I⌊β⌋,−{β}(D) if β 6∈ N,

Iβ−1,−1(D) if β ∈ N≥1,

where ⌊β⌋ and {β} are the integer and fractional parts of β. Conversely,

Ik,α(D) =

{
Ṽ k−αOX , if α ≥ −1,

Ṽ k−(α+t)OX ⊗OX(−tD), if α < −1 and −1 ≤ t+ α < 0 for a unique t ∈ N.

This proposition is very useful for computational purposes. For example, it induces
a Thom-Sebastiani formula for higher multiplier ideals and one can use it to compute
Ik,α(D) for hypersurfaces with weighted homogeneous isolated singularities, see §6.3 and
Remark 6.10.

There is another well-known generalization of multiplier ideals of Q-divisors, called
Hodge ideals, proposed by the first author [67] and then developed by Mustaţă and Popa
in a series of work [45, 46, 47]. Later, Olano further studied the weight filtration on
Hodge ideals, called weighted Hodge ideals, for reduced divisors in [51, 52]. We show the
following comparison result; for details, see §5.5.

Proposition 1.10. Let D be a reduced effective divisor on a smooth algebraic variety.
For any α ∈ [−1, 0) and k ∈ N, we have

(1.7) Ik,α(D) ≡ Ik(−αD) mod ID,

where Ik(−αD) is the kth Hodge ideal of the Q-divisor −αD. Furthermore, for any ℓ ∈ Z,
one has

(1.8) WℓIk,−1(D) =

{
I
Wℓ+1

0 (D), if k = 0,

I
Wℓ+1

k (D) mod ID, if k ≥ 1,

where W•Ik,−1(D) is induced by the weight filtration W•Gk,−1(D) (see Definition 5.8) and
IW•

k (D) is the weight filtration on the Hodge ideal Ik(D).
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The first equality (1.7) follows from Proposition 1.9 and a result of Mustaţă and Popa
[47]; for the weighted version (1.8) we follow a different path: the idea is that Hodge ideals
depend on the D-module OX(∗D), which is determined by X \D, and higher multiplier
ideals are controlled by D-modules grVα M related to the embedding D →֒ X . These D-
modules are related by the two distinguished triangles associated to a closed embedding.
The additional shift by 1 for the weighted case comes from the weight convention on
grV−1M, see (2.3). It happens already for ordinary singularities that the equality (1.7)
can hold without ID and can also fail, see Example 5.19 and Example 6.20.

1.5. Applications. The first sets of application of higher multiplier ideals is a better
understanding of minimal exponents. Using fundamental theorems of higher multiplier
ideals and the characterization (1.2), we deduce some properties of minimal exponents of
hypersurfaces, see Corollary 7.21.

Proposition 1.11. Let D be an effective divisor on a complex manifold X.

(1) Let m ≥ 2 and suppose that Z ⊆ Singm(D) = {x ∈ D | multx(D) ≥ m} is an
irreducible component of dimension d. Then

(1.9) α̃D ≤ codimX(Z)

m
.

(2) Let H ⊆ X be a smooth hypersurface that is not entirely contained in the support
of D. Denote by DH := D|H . Then

α̃DH
≤ α̃D.

Equality holds if H is sufficiently general.
(3) Consider a smooth morphism π : X → T , together with a section s : T → X such

that s(T ) ⊆ D. If D does not contain any fiber of π, so that for every t ∈ T the
divisor Dt = D|π−1(t) is defined, then the function

T → Q, t 7→ α̃Dt,s(t)

is lower semicontinuous.

The second and the third statement have been proved in [47, Theorem E] using Hodge
ideals. Combining (1.9) with a lower bound from [47, Corollary D] in terms of log
resolutions of (X,D), we can compute the minimal exponent in certain circumstances as
follows (see Proposition 7.24).

Proposition 1.12. Let D be an effective divisor on a complex manifold X. Assume there
exists a log resolution π : X̃ → X of (X,D) satisfying the following conditions:

• the proper transform D̃ is smooth and π∗D has simple normal crossing support,
• the morphism π is the iterated blow up of X along (the proper transform of) all
irreducible components of Singm(D) for all m ≥ 2, and all the blow-up centers are
smooth.

Then

α̃D = min
codimX(Z)

m
,

where the minimum runs through allm ≥ 2 and all irreducible components Z of Singm(D).

We use this to compute several geometrically interesting examples, including the theta
divisor on the Jacobian of a smooth hyperelliptic curve (see Theorem 9.6) and the secant
hypersurface of a curve embedded by a positive enough line bundle (see Example 7.25),
which seem quite hard to compute directly.

Higher multiplier ideals also give new applications to singularities of divisors on pro-
jective spaces and theta divisors.
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Proposition 1.13. Let D be a reduced hypersurface of degree d in Pn with n ≥ 3. The the
set of isolated singular points on D of multiplicity m ≥ 2 imposes independent conditions
on hypersurfaces of degree at least⌈

n + 1− ⌈n/m⌉
m− 1

⌉
· d− n− 1.

If n = 3 and D has only nodal singularities, then the bound above is 2d− 4, which is
still one worse than Severi’s 2d− 5 bound. In general, our bound is better than the ones
obtained by [45, Corollary H] using Hodge ideals, and thus is better than what is known
for most other n and m in the literature, see the further discussion in §8.4.

For abelian varieties, we have the following application to theta divisors and the geo-
metric Riemann-Schottky problem. Let us recall the following conjecture from [11]; for
more detailed discussion, see §9. Let (A,Θ) be an indecomposable principally polarized
abelian variety, i.e. Θ is irreducible.

Conjecture 1.14. If (A,Θ) is not a hyperelliptic Jacobian or the intermediate Jacobian
of a smooth cubic threefold, then

dimSingm(Θ) ≤ g − 2m

for every m ≥ 2.

When m = 2, the conjecture is due to Debarre [15], which says that an irreducible
ppav is the Jacobian of a hyperelliptic curve if and only if the singular locus of Θ has
codimension 3 in A. Our first application is a partial solution of this conjecture.

Theorem 1.15. Assume the center of minimal exponent Y of (A,Θ), defined using (1.4),
is a one dimensional scheme, then

dim Singm(Θ) ≤ g − 2m+ 1, for all m ≥ 2,

and Y must be a smooth hyperelliptic curve. Moreover, if there exists m ≥ 2 such that

dimSingm(Θ) = g − 2m+ 1,

then one of the following holds

(1) either (A,Θ) = (Jac(Y ),ΘJac(Y )),
(2) or g(Y ) = 2m, dimA = 2m− 1, the minimal exponent of Θ is 2m−1

m
and Θ has a

singular point of multiplicity m.

We also have the following general statement, due to Popa [55].

Proposition 1.16. A modified Conjecture A of Pareschi and Popa [53] implies Conjec-
ture 1.14.

Here we need to modify this conjecture slightly, see §9.4. The idea is that, assume
dimSingm(Θ) ≥ g − 2m + 1, then we can show that the center of minimal exponent Y
of (A,Θ) generates A and the twisted ideal sheaf IY (2Θ) has the IT0 property. Then a
modified version of [53, Conjecture A] perdicts that (A,Θ) must be a Jacobian or the
intermediate Jacobian of a smooth cubic threefold. By a result of Martens, if (A,Θ) is a
Jacobian and dimSingm(Θ) ≥ g−2m+1, it must be hyperelliptic. Therefore Conjecture
1.14 holds.

To have a better understanding of the picture, we also compute certain higher multiplier
ideals for theta divisors in the boundary case of Conjecture 1.14, see Theorem 9.6 and
Theorem 9.8.

Finally, assuming Θ has only isolated singularities, it is proved by Mustaţă and Popa
[45, Theorem I] that multx(Θ) ≤ (g+1)/2 for every x ∈ Θ. We give an alternative proof
of their result using higher multiplier ideals in §9.5.
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1.6. Statement in terms of left D-modules. In this work, we work exclusively with
right D-modules (because this is more natural where spaces with singularities are in-
volved), but one can also use left D-modules to define higher multiplier ideals, where the
notation is more aligned with the classical theory. To illustrate this, let us state some
results.

Let us repeat the set-up in the beginning of introduction: assume D is an effective
divisor on X . Let L = OX(D) be the corresponding holomorphic line bundle, and let
s ∈ H0(X,L) be a section with div(s) = D, which is also viewed as a closed embedding
s : X → L, where L is the total space of line bundle on L. Set

M = s∗Q
H
X [n] ∈ MHM(L)

be the direct image of the constant Hodge module on X . Consider the underlying left
filtered DX-module

(M, F•M) = s+(OX , F•OX),

with F0OX = OX and F−1OX = 0. Let V •M be the V -filtration of M relative to the
zero section of L.

For each k ∈ N and β ∈ Q, we define Jk(βD) to be the unique ideal sheaf on X
satisfying

s∗(Jk(βD)⊗OX(kD)) = grFk V
>βM.

Using the translation rule between left and right D-modules, we have

Jk(βD) = Ik,<−β(D), Ik,β(D) = Jk((−β − ǫ)D).

On the associated graded level we have

Jk((β − ǫ)D)

Jk(βD)
= Gk,−β(D).

Using this, all results discussed in the earlier part of Introduction can be translated. For
example, the Budur-Saito result translates into

J0(αD) = J (αD), ∀α ≥ 0.

Acknowledgement. We would like to thank Qianyu Chen, Bradley Dirks, Lawrence
Ein, Sam Grushevsky, János Kollár, Rob Lazarsfeld, Mircea Mustaţă, Mihnea Popa,
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for Geometry and Physics at Leibniz Universität Hannover and a postdoc research fel-
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NSF grant DMS-1551677 and by a Simons Fellowship (award number 817464, Christian
Schnell). Both authors individually thank the Max-Planck-Institute for Mathematics for
providing them with excellent working conditions.

2. Kashiwara-Malgrange V -filtrations

The work of Budur and Saito [9] reinterprets multiplier ideals using the V -filtration
(or Kashiwara-Malgrange filtration). The theory of higher multiplier ideals is a further
development of this circle of ideas. As a preparation, in this section we recall the defini-
tion of the rational Kashiwara-Malgrange filtration and how it interacts with the Hodge
filtration in the theory of mixed Hodge modules. For normal crossing divisors, there are
explicit formulas for V -filtrations by Saito [61] and Qianyu Chen [13]. Together with
bifiltered direct images, these results enable the computation of higher multiplier ideals
in terms of log resolutions. Towards the end of this section, we prove some new technical
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results about V -filtrations, which are essential for the theory of higher multiplier ideals
of Q-divisors.

2.1. Nearby and vanishing cycles, and V -filtrations. The most important opera-
tions in Saito’s theory are the nearby and vanishing cycle functors. Let M be a mixed
Hodge module onX , with underlying perverse sheaf K and filtered D-module (M, F•M).
Suppose that f : X → C is a nonconstant holomorphic function. The nearby cycles re-
spectively unipotent vanishing cycles

ψfM =
⊕

|λ|=1

ψf,λM and φf,1M

are again mixed Hodge modules on X ; they are supported on the hypersurface X0 =
f−1(0), and contain information about the behaviour of M near X0. The underlying
perverse sheaf ψfK was constructed by Deligne: he sets ψfK = i−1Rk∗(k

−1K)[−1],
where k and i are as follows:

X̃ X X0

C C {0}

k

f

i

e2πiz

Roughly speaking, Deligne’s definition pulls K back to the “generic fiber” of f , and then
retracts onto the “special fiber”, with a shift to keep the complex perverse. Accordingly,
ψfK contains more information about the behaviour of K near the hypersurface X0 than
the naive restriction i−1K. The deck transformation z 7→ z + 1 induces a monodromy
transformation T ∈ Aut(ψfK), and

ψfK =
⊕

|λ|=1

ψf,λK

is the decomposition into generalized eigenspaces; the eigenvalues are actually roots of
unity. Somewhat indirectly, φf,1K is then constructed as a part of the following distin-
guished triangle

i−1K[−1] → ψf,1K → φf,1(K) → i−1K.

The analogous construction for D-modules needs the V -filtration of Kashiwara and
Malgrange. Let M be a right D-module on X and let f : X → C be a non-constant
holomorphic function. The V -filtration only makes sense for smooth hypersurfaces and
so we use the graph embedding

if : X → X × C, if(x) = (x, f(x))

and work with the filtered right D-module

(2.1) (Mf , F•Mf) = (if)+(M, F•M)

on X × C. Let t be the coordinate on C, and ∂t = ∂/∂t the corresponding vector field.
Inside DX×C, we have the subsheaf V0DX×C of those differential operators that preserve
the ideal sheaf of X × {0}; it is generated by DX and the additional two operators t and
t∂t.

Definition 2.1. The Kashiwara-Malgrange V -filtration on Mf is an increasing filtration
V•Mf , indexed by Q, with the following properties:

(1) Each VαMf is coherent over V0DX×C.
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(2) VαMf is indexed right-continuously and discretely, i.e.

VαMf =
⋂

β>α

VβMf ,

so that

V<αMf := ∪β<αVβMf = Vα−ǫMf

for some 0 < ǫ≪ 1. Moreover, the set of α ∈ Q such that

grVα Mf := VαMf/V<αMf 6= 0

is discrete.
(3) One has VαMf · t ⊆ Vα−1Mf , with equality for α < 0.
(4) One has VαMf · ∂t ⊆ Vα+1Mf .
(5) The operator t∂t − α acts nilpotently on grVα Mf .

Remark 2.2. If M is holonomic, Kashiwara [27] proved that the V -filtration exists and
is unique.

Remark 2.3. The notion of V -filtration can be easily extended to any effective divisor
in X . This is because VαMf only depends on the ideal sheaf generated by f , see [7,
Proposition 1.5], hence only on the ideal sheaf of the divisor.

Remark 2.4. If f−1(0) is smooth, then there exists a unique filtration VαM with the
same properties, where one sets t = f and replaces V0DX×C by V0DX .

If M is regular holonomic, Kashiwara [27] showed that each grVα Mf is again a regular
holonomic DX -module, with a nilpotent endomorphism N = t∂t − α. Furthermore, let
K = DR(M), he proved that for −1 ≤ α < 0, one has

(2.2) DR(grVα Mf) ∼= ψf,e2πiαK, and DR(grV0 Mf) ∼= φf,1K;

under these isomorphisms, the monodromy operator T becomes equal to e2πiα · e2πiN . To
summarize, the D-module theoretic nearby and vanishing cycles can be described in the
following way. Let F•M be a good filtration on M. For −1 ≤ α < 0, the nearby cycles
for the eigenvalue λ = e2πiα are described by the following data:

(2.3) ψf,λM =
(
grVα Mf , F•−1 gr

V
α Mf , ψf,λK

)
, W• gr

V
α Mf =W•+n−1(N) grVα Mf ,

where W•(N) means the weight filtration of N and

F• gr
V
α Mf :=

F•Mf ∩ VαMf

F•Mf ∩ V<αMf
.

For the unipotent vanishing cycles, this changes to

(2.4) φf,1M =
(
grV0 Mf , F• gr

V
0 Mf , φf,1K

)
, W• gr

V
0 Mf = W•+n(N) grV0 Mf .

These shifts are needed to make the definition work out properly in all cases.
In the definition of mixed Hodge modules, Saito imposes the following two additional

conditions on how the rational V -filtration interacts with the Hodge filtration F•Mf .

Definition 2.5. We say that the filtered D-module (M, F•M) is quasi-unipotent along
f = 0 if all eigenvalues of the monodromy operator on ψfK are roots of unity, and if the
V -filtration V•Mf satisfies the following two additional conditions:

(1) t : FpVαMf → FpVα−1Mf is an isomorphism for α < 0 and p ∈ Z.
(2) ∂t : Fp gr

V
α Mf → Fp+1 gr

V
α+1Mf is an isomorphism for α > −1 and p ∈ Z.
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Remark 2.6. If (M, F•M) is the filtered D-module underlying a mixed Hodge mod-
ule on X , then (M, F•M) is quasi-unipotent along any local holomorphic function. If
(M, F•M) has strict support X , then ∂t : Fp gr

V
α Mf → Fp+1 gr

V
α+1 Mf is surjective for

α = −1 and p ∈ Z.

Let us end this section with a result about how the V -filtration behaves under non-
characteristic restriction to a hypersurface. This is proved in [16, Thm. 1.1].

Lemma 2.7. Let t be a smooth function on X, let i : H →֒ X be a hypersurface that
is not contained in X0 = t−1(0), and set MH = i∗M = ωH/X ⊗OX

M. Suppose that
H is non-characteristic with respect to both M and M(∗X0), then there is a natural
isomorphism induced by i:

Vα(MH) = ωH/X ⊗OX
VαM, for all α,

where Vα(MH) is the V -filtration with respect to t|H .
2.2. Birational formula for V -filtrations. We use the work of Qianyu Chen [13] and
Saito’s bifiltered direct images to give a formula for the associated graded of the V -
filtration in terms of log resolutions, using sheaves of log forms. It is a crucial tool for
the computation of higher multiplier ideals of ordinary singularities in §6.

The set up of this section is the same as the one in §1.3 of the Introduction. Let D
be an effective divisor on a complex manifold X of dimension n and set L = OX(D).
Let s : X → L be the graph embedding associated to a section s ∈ H0(X,L) so that
D = div(s). Denote by

MX = s∗Q
H
X [n] ∈ MHM(L),

the direct image of the constant Hodge module on X . Denote by V•MX the V -filtration
of MX with respect to the zero section of L. Let π : Y → X be a log resolution of (X,D)
and write

(2.5) π∗D =
∑

i∈I
eiYi, ei ∈ N,

which is a normal crossing divisor on Y . Analogous to the construction of M , we define

MY = sY,∗Q
H
Y [n] ∈ MHM(LY ),

where sY : Y → LY is the graph embedding of the divisor π∗D and LY is the total space
of OY (π

∗D).

Notation 2.8. Here we use MX and MY to stress the dependence on spaces. In the
below, we follow the notation in [13] closely with minor differences: Chen’s Y is our
divisor π∗D, and Chen’s X is our ambient space Y .

For any α ∈ [−1, 0), define the index set

Iα := {i ∈ I | ei · α ∈ Z}.
For any subset J ⊆ Iα, we define a pair (Y J , E) as follows. First set

Y J :=
⋂

j∈J
Yj,

with the following commutative diagram

Y J Y

X.

πJ

τJ

π
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Then consider a normal crossing divisor on Y J ,

E :=
⋃

i∈I\Iα

(
Yi ∩ Y J

)
,

the union of divisors in the set I \ Iα restricting to Y J . It is direct to check that

E = supp{απ∗D}|Y J ,(2.6)

where {∑ aiEi} =
∑{ai}Ei and supp(

∑
biEi) =

∑
Ei. For a normal crossing divisor

E ⊂ X , denote by Ω•
X(logE) the sheaves of log forms on X with poles along E.

Proposition 2.9. Fix α ∈ [−1, 0), k ∈ N and r, p ∈ Z, then the following results hold.

(1) One has

(2.7) (grVα MX , F•) = R0π+(gr
V
α MY , F•).

Moreover, (grWr grVα MX , F•) is the cohomology of

R−1π+(gr
W
r+1 gr

V
α MY , F•) → R0π+(gr

W
r grVα MY , F•) → R1π+(gr

W
r−1 gr

V
α MY , F•).

(2) There is a nilpotent operator N on grVα MY so that N |Iα| = 0, where |Iα| is the
cardinality of Iα. For any r ≥ 0, there is a filtered isomorphism

(2.8) (grWr grVα MY , F•) ∼=
⊕

ℓ≥0

N ℓ




⊕

J⊆Iα,
|J |=r+1+2ℓ

τJ+(Vα,J , F•−ℓ)(− codimY (Y
J))


 ,

where (Vα,J , F•) is a filtered D-module on Y J and the Tate twist is (N , F•N )(−r) =
(N , F•+rN ). Moreover, if α ∈ (−1, 0), then

(2.9) grF− dimY J+k DRY J (Vα,J) ∼= ΩdimY J−k
Y J (logE)⊗O

Y J
OY (⌊απ∗D⌋)[k].

For α = −1, one has

(2.10) (V−1,J , F•) ∼= (ωY J , F•).

(3) We have

(2.11) grVα MX = 0, whenever Iα = ∅.

Remark 2.10. When apply the proposition in practice, one needs to compute grWr grVα MY

using (2.8). There one needs to be careful to note that grWr grVα MY is the direct sum of
direct images of D-modules on Y J . For the direct image induced by τJ : Y J → Y , one
has

grFp (τ
J
+N ) 6= τ∗ gr

F
p N !

See Lemma 6.4. See Proposition 6.5 for how to apply this birational formula in practice.

Proof. Since π is proper and α ∈ [−1, 0), the bistrictness property in Saito’s bifiltered
direct images for Hodge and V -filtrations [61, (3.3.3)-(3.3.5)] (see also [9, (3.2.2)]) implies
that

(grVα MX , F•) = π+(gr
V
α MY , F•),(2.12)

thus (2.7) holds. Moreover, by [61, Proposition 5.3.5], there is a weight spectral sequence

Er,s
1 = Rr+sπ+(gr

W
−r(gr

V
α MY , F•)) =⇒ Rr+sπ+(gr

V
α MY , F•),

which degenerates at E2-page.
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Concerning the Lefschetz decomposition, we can assumeD = div(f). ThenOY (π
∗D) ∼=

OY and by shrinking the target slightly there is a proper holomorphic morphism

f ◦ π : Y → X → ∆,

such that f is smooth away from the origin and the central fiber Y0 = (f ◦π)−1(0) = π∗D
is a normal crossing divisor. Therefore we are in the setting of Chen [13] and we can
use his work to compute the primitive pieces of (grWr grVα MY , F•) with respect to the
nilpotent operator N . But this needs a bit translation as follows. In [13, Theorem
C], Chen constructed a filtered right DY -module (M, F•M) equipped with an operator
R : (M, F•M) → (M, F•+1M) with eigenvalues in [0, 1) ∩ Q so that there is a filtered
quasi-isomorphism

(DRY M, F•)
∼−→ (Ω•+n−1

Y/∆ (log Y0)|Y0 , F•),

where n = dimY and the right hand side is Steenbrink’s relative log de Rham complex
with the “stupid” Hodge filtration, see [13, Page 2]. Moreover, the operator DRY (R)
can be identified with Steenbrink’s operator [∇] ∈ EndDb

c(Y,C)
(Ω•+n−1

Y/∆ (log Y0)|Y0), where

Db
c(Y,C) stands for the derived category of C-constructible sheaves on Y . On the other

hand, Steenbrink [71] proved that there is a quasi-isomorphism

Ω•+n−1
Y/∆ (log Y0)|Y0

∼−→ ψf◦π(CY [n]),

where the latter is the nearby cycle complex. Moreover, he proved that the operator
[∇] corresponds to the monodromy operator on the nearby cycle (because [∇] is the
Gauss-Manin connection). For β ∈ [0, 1), denote by Mβ the β-generalized eigenspace
of M with respect to R, i.e. Rβ := R − β is nilpotent on Mβ. Combining these two
quasi-isomophisms, one concludes that

DRY (Mβ)
∼−→ ψf◦π,e2πiβ(CY )[n].

For α ∈ [−1, 0), using (2.2) one can show that there is a nilpotent operator N on grVα MY

(locally induced by t∂t − α) and

DRY (gr
V
α MY ) ∼= ψf◦π,e2πiα(CY )[n].

For a more detailed discussion, see §2.1. This leads to the following translation rule
between grVα MY in our paper and Mβ in [13].

Lemma 2.11. One has

(grVα MY , F•) =

{
(M−α, F•+1M−α) if α ∈ (−1, 0),

(M0, F•+1M0) if α = −1.

The monodromy operator N on grVα MY corresponds to the operator Rβ on Mβ, where
β = −α if α ∈ (−1, 0) and β = 0 if α = −1.

With the translation above, Chen’s result can be stated as follows. For the ease of
notation, we only deal with the case α ∈ (−1, 0); the case α = −1 is similar. Set
|Iα| = ℓ+ 1 for ℓ ∈ N, then N ℓ+1 = 0 on grVα MY with the weight filtration

0 ⊆W−ℓ gr
V
α MY ⊆ · · · ⊆Wℓ gr

V
α MY = grVα MY .

In [13, Theorem 7.5], it is shown that N induces a filtered morphism

N : (grWr grVα MY , F•) → (grWr−2 gr
V
α MY , F•+1), ∀r ∈ Z,

so that N r is an isomorphism if r ≥ 0. Then for r ∈ N, the primitive part Pα,r with
respect to N is defined by

Pα,r := ker{N r+1 : grWr grVα MY → grW−r−2 gr
V
α MY },
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and there is a Hodge filtration F•Pα,r induced by F• gr
W
r grVα MY such that

(2.13) F• gr
W
r grVα MY =

⊕

ℓ≥0

N ℓF•−ℓPα,r+2ℓ.

Furthermore, [13, Theorem 7.13] shows that there is an isomorphism of filtered D-
modules:

(2.14) (Pα,r, F•) ∼=
⊕

J⊆Iα,|J |=r+1

τJ+(Vα,J , F•)(−r),

where τJ : Y J → Y is the closed embedding, (Vα,J , F•) is a filtered D-module on Y J ,
r = codimY (Y

J)− 1, and the Tate twist is (N , F•N )(−r) = (N , F•+rN ).
The filtered D-module (Vα,J , F•) is induced by an integrable log connection on the

line bundle OY (−⌈−απ∗D⌉) = OY (⌊απ∗D⌋) (see [13, §7.4]). In a short word, this log
connection is defined by

∇ : OY (⌊απ∗D⌋) → Ω1
Y (log

∑

i∈I\Iα

Yi)⊗OY (⌊απ∗D⌋)

∇s =
∑

i∈I\Iα

{αei}
dzi
zi

⊗ s,(2.15)

where zi is the local equation of Yi. This connection has poles along Yi for i ∈ I \ Iα,
with eigenvalues {αei}. The filtered D-module (Vα,J , F•) is defined by

(2.16) Vα,J :=
(
ωY J (logE)⊗O

Y J
(τJ)∗(OY (⌊απ∗D⌋),∇)

)
⊗D

Y J (logE)
DY J ,

where

• DY J (logE) ⊆ DY J is the subsheaf of differential operators preserving the ideal IE ,

• ωY J (logE) is the sheaf of top holomorphic forms on Y J with log poles along E,
which is a right DY J(logE)-module,

• the Hodge filtration F•Vα,J is induced by the order filtration on DY J (see [13,
Page 51 before Lemma 7.9]).

By [13, Lemma 7.9], there is a filtered quasi-isomorphim in Db
coh(Y

J):

(2.17) (DRY J (Vα,J), F•)
∼−→ (ΩdimY J+•

Y J (logE)⊗O
Y J

OY (⌊απ∗D⌋), F•),

where dimY J = n − r − 1 and the filtration on the right hand side is induced by the
“stupid” filtration. In particular, we have a quasi-isomorphism:

grF− dimY J+k DRY J (Vα,J)
∼−→ ΩdimY J−k

Y J (logE)⊗O
Y J

OY (⌊απ∗D⌋)[k].
Therefor, (2.8) and (2.9) hold using Lemma 2.11 (note that the Hodge filtration is shifted
by 1). The case of α = −1 proceeds in the same fashion: the only difference is that the
corresponding log connection comes from the line bundle OY . Hence we need to replace
all the terms O(⌊απ∗D⌋) above by O.

The statement (2.11) is a direct corollary of the previous statements. �

2.3. V -filtrations for powers of functions. In this section, we prove a technical result
about V -filtrations that is needed to define a version of higher multiplier ideals for Q-
divisors (see §5.3). It includes a formula for the nearby cycles of a D-module with respect
to a power of a function; in the case of twistor D-modules, this is due to Sabbah [59,
3.3.13]. Let f : X → C be a nonconstant holomorphic function on a complex manifold X .
We want to relate the nearby cycles and the V -filtration with respect to the two functions
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f and fm. Let M ∈ MHM(X), and denote by (M, F•M) the underlying filtered right
D-module. For m ≥ 1, consider the graph embedding

im : X → X × C, im(x) =
(
x, f(x)m

)
.

In order to keep the notation consistent, we set

Mm := (im)∗M ∈ MHM(X × C),

and denote the underlying filtered D-module by (Mm, F•Mm) = (im)+(M, F•M). Let
V•Mm denote the V -filtration with respect to the function t : X × C → C.

Proposition 2.12 (V -filtrations for fm). For any real number α < 0, there is a natural
isomorphism of filtered OX-modules

φα :
(
VmαM1, F•VmαM1

)
→
(
VαMm, F•VαMm

)

such that φα(v · tm) = φα(v) · t and φα(v · 1
m
t∂t) = φα(v) · t∂t for all local sections

v ∈ VmαM1. If multiplication by f is injective on M, then the same is true for α = 0.

Corollary 2.13. On the level of mixed Hodge modules, this gives

ψfm,λM ∼= ψf,λmM and φfm,1M ∼= φf,1M,

under the assumption that multiplication by f is injective on M.

The proof takes up the remainder of this section. We observe that the graph embed-
dings fit into a commutative diagram

X X × Ct X × Ct × Cs

X × Cs

i1

im

j

p

q

in which j(x, t) = (x, t, tm), p(x, t) = (x, tm), and q(x, t, s) = (x, s). To distinguish the
two copies of X × C, let us denote the two coordinate functions by t and s, as indicated
in the diagram above; then s ◦ p = tm. Since the diagram is commutative, we have

(2.18) Mm
∼= p∗M1

∼= q∗
(
j∗M1

)
.

Our strategy is to compute these direct images, and then use the bistrictness of direct
images with respect to the Hodge and V -filtration.

We begin by describing the D-modules involved in the computation. Since i1 is a closed
embedding, the D-module underlying the direct image M1 = (i1)∗M is

M1 = M⊗C C[∂t],

with the right DX×Ct-module structure determined by the following formulas:

(u⊗ ∂kt ) · t = uf ⊗ ∂kt + ku⊗ ∂k−1
t

(u⊗ ∂kt ) · ∂t = u⊗ ∂k+1
t

(u⊗ ∂kt ) · xj = uxj ⊗ ∂kt

(u⊗ ∂kt ) · ∂j = u∂j ⊗ ∂kt − u
∂f

∂xj
⊗ ∂k+1

t

Here x1, . . . , xn are local coordinates on X , and ∂j = ∂/∂xj are the corresponding vector
fields. The Hodge filtration F•M1 is given by

FpM1 =
∑

k∈Z
Fp−kM⊗ ∂kt .
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Similarly, the D-module underlying the direct image M̃1 = j∗M1 is

M̃1 = M1 ⊗C C[∂s],

with the right DX×Ct×Cs-module structure determined by the formulas

(v ⊗ ∂ℓs) · s = vtm ⊗ ∂ℓs + ℓv ⊗ ∂ℓ−1
s

(v ⊗ ∂ℓs) · ∂s = v ⊗ ∂ℓ+1
s

(v ⊗ ∂ℓs) · P = vP ⊗ ∂ℓs for any P ∈ DX

(v ⊗ ∂ℓs) · ∂t = v∂t ⊗ ∂ℓs −mvtm−1 ⊗ ∂ℓ+1
s

and the Hodge filtration

FpM̃1 =
∑

ℓ∈Z
Fp−ℓM1 ⊗ ∂ℓs.

Lastly, the filtered D-module underlying Mm
∼= q∗M̃1 can be computed by the relative

de Rham complex, and this gives us a short exact sequence

(2.19) 0 (M̃1, F•−1M̃1) (M̃1, F•M̃1) (Mm, F•Mm) 0.
∂t π

The next step is to compute the V -filtrations. Since M is a mixed Hodge module,
the V -filtration V•M1 with respect to the function t exists, and with the convenient
shorthand FpVαM1 = FpM1 ∩ VαM1, the two morphisms

t : FpVαM1 → FpVα−1 and ∂t : Fp gr
V
α M1 → Fp gr

V
α+1M1

are isomorphisms for α < 0 respectively α > 0 (see Definition 2.5). The V -filtration
V•Mm with respect to the function s also exists and has the same properties. The

following lemma describes the V -filtration of M̃1 with respect to the function s : X ×
Ct × Cs → Cs, which is inspired by [62, Theorem 3.4].

Lemma 2.14. The V -filtration on M̃1 = M1 ⊗C C[∂s] is given by the formula

VαM̃1 =
∑

k,ℓ∈N

(
Vm(α−ℓ)M1 ⊗ ∂ℓs

)
· ∂kt .

Proof. It is easy to see that VαM̃1 is preserved by the action of DX×Ct , and that one

has VαM̃1 · ∂s ⊆ Vα+1M̃1 and VαM̃1 · s ⊆ Vα−1M̃1 for every α ∈ R, with the second

inclusion being an equality for α < 0. It remains to show that each VαM̃1 is coherent

over V0DX×Ct×Cs, and that the operator s∂s−α acts nilpotently on the quotient grVα M̃1.
Both of these facts rely on the following important identity, which is readily proved using

the formulas for the D-module structure on M̃1:

(2.20) (v ⊗ ∂ℓs) · (s∂s − α) =
1

m

(
v
(
t∂t −m(α− ℓ)

)
⊗ ∂ℓs − (v ⊗ ∂ℓs) · t∂t

)

Let us first prove the coherence. Set a = max(0, ⌊α⌋). If α 6∈ N, then α − a < 0, and
so for every integer ℓ ≥ a + 1, we have

Vm(α−ℓ)M1 ⊗ ∂ℓs = Vm(α−a)M1 · tm(ℓ−a) ⊗ ∂ℓs =
(
Vm(α−a)M1 ⊗ 1

)
· sℓ−a∂ℓs

by the properties of the V -filtration on M1. Together with the relation in (2.20), this

allows us to eliminate all the terms with ℓ ≥ a+1 from the formula for VαM̃1. If α ∈ N,
then α = a, and for every integer ℓ ≥ a + 1, we still have

Vm(α−ℓ)M1 ⊗ ∂ℓs = V−1M1 · tm−1+m(ℓ−a−1) ⊗ ∂ℓs =
(
V−1M1 · tm−1 ⊗ 1

)
sℓ−a−1∂ℓs.
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With the help of the identity

vtm−1 ⊗ ∂ℓ+1
s =

1

m

(
v∂t ⊗ ∂ℓs − (v ⊗ ∂ℓs) · ∂t

)

we can then again eliminate all terms with ℓ ≥ a+1 from the formula for VαM̃1. In both
cases, the conclusion is that

(2.21) VαM̃1 =
∑

k∈N

max(0,⌊α⌋)∑

ℓ=0

(
Vm(α−ℓ)M1 ⊗ ∂ℓs

)
· ∂kt .

Since each Vm(α−ℓ)M1 is finitely generated over V0DX×Ct , this shows that VαM̃1 is finitely
generated over V0DX×Ct×Cs .

Finally, we argue that s∂s −α acts nilpotently on grVα M̃1. For this, it suffices to show
that if v ∈ Vm(α−ℓ)M1 is any local section, then

(v ⊗ ∂ℓs) · (s∂s − α)N ∈ V<αM̃1

for N ≫ 0. But since t∂t − m(α − ℓ) acts nilpotently on grVm(α−ℓ) M1, this is an easy

consequence of the identity in (2.20). �

The next task is to compute the intersection

FpVαM̃1 = FpM̃1 ∩ VαM̃1.

This is the content of the following lemma.

Lemma 2.15. For every α < 0 and every p ∈ Z, one has

FpVαM̃1 =
∑

k∈N

(
Fp−kVmαM1 ⊗ 1

)
· ∂kt .

This also holds for α = 0, provided that multiplication by f is injective on M.

Proof. Since the right-hand side is obviously contained in the left-hand side, it suffices

to prove the reverse inclusion. According to (2.21), any local section w ∈ VαM̃1 can be
written, for some d ∈ N, in the form

w =
d∑

k=0

(
vk ⊗ 1) · ∂kt ,

with local sections v0, . . . , vd ∈ VmαM1. Using the formulas for the D-module structure

on M̃1, this expression for w can of course be rewritten as

d∑

ℓ=0

uℓ ⊗ ∂ℓs,

which is a local section of FpM̃1 exactly when uℓ ∈ Fp−ℓM1 for every 0 ≤ ℓ ≤ d. We
now analyze these expressions from the top down. A short computation shows that

ud = (−1)dmd · vdtd(m−1) ∈ Fp−dVmα−d(m−1)M1.

Now there are two cases. One case is α < 0. Here multiplication by td(m−1) is a filtered
isomorphism, and therefore vd ∈ Fp−dVmα. This means that vd ⊗ ∂ds is contained in
the right-hand side, and so we can subtract it from the expression for w, and finish the
proof by induction on d ≥ 0. The other case is α = 0. Here we can only conclude
that vdt ∈ Fp−dV−1M1. But since M is a mixed Hodge module, the variation morphism
t : grV0 M1 → grV−1M1 is strict with respect to the Hodge filtration. It follows that there
is some v′d ∈ Fp−dV0M1 such that v′dt = vdt. Because multiplication by f is injective on
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M, multiplication by t is injective on M1, and therefore vd ∈ Fp−dV0M1. We can then
finish the proof exactly as in the case α < 0. �

Now let us go back to the short exact sequence in (2.19). Since M is a mixed Hodge

module, the relative de Rham complex computing the direct imageMm
∼= q∗M̃1 is bistrict

with respect to the Hodge filtration and the V -filtration [61, (3.3.3)-(3.3.5)]. For α ≤ 0
and p ∈ Z, we therefore get an induced short exact sequence

(2.22) 0 Fp−1VαM̃1 FpVαM̃1 FpVαMm 0.
∂t π

For the remainder of the argument, we shall assume that either α < 0, or α = 0 and
multiplication by f is injective on M. Under this assumption, we have

FpVαM̃1 =
∑

k∈N

(
Fp−kVmαM1 ⊗ 1

)
· ∂kt = FpVmαM1 ⊗ 1 + Fp−1VαM̃1 · ∂t.

We can now conclude from the exactness of (2.22) that the morphism

φα : FpVmαM1 → FpVαMm, φα(v) = π(v ⊗ 1),

is an isomorphism of OX-modules. From the formulas for the D-module structure on

M̃1, we obtain the identities

φα(v) · s = φα(v · tm) and φα(v) · s∂s = φα

(
v · 1

m
t∂t

)
.

This proves Proposition 2.12, up to the change in notation caused by using s for the
coordinate function on the graph embedding im : X → X × Cs by the function fm. The
asserted identities for the nearby and vanishing cycles of the mixed Hodge module M
follow by passing to the graded quotients grVα for α ∈ [−1, 0].

3. Twisted D-modules

In this section, we give a brief summary of the theory of twisted D-modules by Beilin-
son and Bernstein [5], both from a local and global point of view. We then introduce
twisted Hodge modules, by generalizing the theory of polarizable complex Hodge modules
developed by Sabbah and the first author [60] to the setting of twisted D-modules. We
show that twisted Hodge modules appear naturally as nearby and vanishing cycles with
respect to divisors. In §4, we prove a general vanishing theorem for twisted Hodge mod-
ules, extending Saito’s vanishing theorem for Hodge modules. These global results are
crucial for the properties of higher multiplier ideals in later chapters.

3.1. Local trivializations. We first explain a convenient way to deal with local trivial-
izations. Let X be a complex manifold, and L a holomorphic line bundle on X . A local
trivialization of L is a pair (U, φ), where U ⊆ X is an open subset and

φ : L|U → U × C

is an isomorphism of holomorphic line bundles. We can restrict a local trivialization to any
open subset of U in the obvious way. In order to compare different local trivializations, it
is therefore enough to consider local trivializations over the same open subset. Suppose
now that we have two local trivializations (U, φ) and (U, φ′). The composition

φ′ ◦ φ−1 : U × C → L|U → U × C

then has the form (x, t) 7→
(
x, g(x)t

)
for a unique holomorphic function g ∈ Γ(U,O×

U ) that
is nonzero everywhere on U . This way of thinking about local trivializations eliminates
all the unnecessary subscripts.
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We can also describe the change of trivialization in terms of sections. Let s ∈ Γ(U, L)
be the nowhere vanishing section of L determined by (U, φ): the composition

φ ◦ s : U → L|U → U × C

satisfies (φ ◦ s)(x) = (x, 1). Similarly, define s′ ∈ Γ(U, L) using the local trivialization
(U, φ′). Then (φ′ ◦ s)(x) = (x, g(x)) and (φ′ ◦ s′)(x) = (x, 1), and therefore s = g · s′.
3.2. The sheaf of twisted differential operators. Let X be a complex manifold of
dimension n, and let L be a holomorphic line bundle on X . We view L as a complex
manifold of dimension n + 1, and denote the bundle projection by p : L→ X . On L, we
have the usual sheaf of differential operators DL. Let IX ⊆ OL be the ideal sheaf of the
zero section. This gives us an increasing filtration

VjDL =
{
P ∈ DL

∣∣ P · Ii
X ⊆ Ii−j

X for all i ≥ 0
}
.

We are only going to use V0DL, which consists of those differential operators that preserve
the ideal of the zero section, and the quotient

grV0 DL = V0DL/V−1DL = V0DL/IXV0DL.

This quotient is naturally a sheaf of OX-bimodules. A local trivialization (U, φ) for L
determines an isomorphism of sheaves of algebras (and OU -bimodules)

(φ−1)∗ : DU [t∂t] → grV0 DL|U .
We denote by θ ∈ Γ(U, grV0 DL) the image of t∂t = t ·∂/∂t. This is actually a well-defined
global section of grV0 DL; the invariant description is as the vector field tangent to the
natural C×-action on the line bundle L. This tells us what grV0 DL looks like locally.

Let us now try to understand what happens when we change the trivialization. Suppose
that (U, φ) and (U, φ′) are two local trivializations of L, and that we have local holomor-
phic coordinates x1, . . . , xn on the open set U . Set ∂j = ∂/∂xj . A short computation
using the chain rule shows that the composition

φ′
∗ ◦ (φ−1)∗ : DU [t∂t] → grV0 DL|U → DU [t∂t]

acts on the vector fields ∂1, . . . , ∂n, t∂t in the following way:

t∂t 7→ t∂t, ∂j 7→ ∂j + g−1 ∂g

∂xj
· t∂t

We use this to define the sheaf of twisted differential operators.

Definition 3.1. Let X be a complex manifold, L a holomorphic line bundle on X , α ∈ R
a real number. The sheaf of αL-twisted differential operators on X is the quotient

DX,αL = grV0 DL

/
(θ − α) grV0 DL.

In a local trivialization (U, φ), the sheaf of αL-twisted differential operators is just

DX,αL|U ∼= DU [t∂t]/(t∂t − α)DU [t∂t] ∼= DU .

We only see the difference with usual differential operators when we change the trivial-
ization: if (U, φ) and (U, φ′) are two local trivializations, then

φ′
∗ ◦ (φ−1)∗ : DU → DX,αL|U → DU

acts on the coordinate vector fields ∂1, . . . , ∂n as

(3.1) ∂j 7→ ∂j + α · g−1 ∂g

∂xj
.

This formula is the reason for the name “twisted” differential operators.
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3.3. Twisted D-modules. We keep the notation from above. An αL-twisted D-module
on X is simply a module over the sheaf DX,αL of αL-twisted differential operators. We
generally work with right modules (because this is more appropriate when dealing with
singularities). Suppose that M is a sheaf of right DX,αL-modules. If we have a local
trivialization (U, φ) for L, then the isomorphism

(3.2) (φ−1)∗ : DU → DX,αL|U
gives M|U the structure of a usual DU -module. A twisted D-module therefore looks like
a usual D-module in any local trivialization of L, but the action by vector fields changes
according to the formula in (3.1) from one local trivialization to another. Since it is easy
to get confused about the signs, we give the local formulas. Let M be a right module
over DX,αL. For every local trivialization (U, φ), we get a right DU -module M(U,φ), whose
D-module structure is defined by the rule

(m · P )(U,φ) = m · (φ−1)∗(P ), for every P ∈ Γ(U,DU).

If (U, φ′) is a second local trivialization, then we obtain
(
m ·
(
∂j + αg−1 ∂g

∂xj

))

(U,φ′)

= m · (φ′−1)∗
(
φ′
∗ ◦ (φ−1)∗(∂j)

)
=
(
m · ∂j

)
(U,φ)

.

The D-module structure therefore changes from one local trivialization to another in
accordance with the identity in (3.1).

Let us also convince ourselves that tensoring by the line bundle L changes the twisting
parameter in the expected way. Suppose that M is a right grV0 DL-module. The tensor
product M⊗L is naturally a sheaf of right modules over L−1⊗ grV0 DL ⊗L. If we view θ
as a morphism θ : OX → grV0 DL, we see that L−1 ⊗ grV0 DL ⊗ L also has a global section
that we denote by the same letter θ.

Lemma 3.2. There is a canonical isomorphism

grV0 DL
∼= L−1 ⊗ grV0 DL ⊗ L

that takes the global section θ on the left-hand side to θ + 1.

Proof. We give a local proof to show how the formulas work. Let us first work out the
local description of L−1 ⊗ grV0 DL ⊗ L. Let (U, φ) be a local trivialization of L, and let
s ∈ Γ(U, L) be the resulting nowhere vanishing section. Denote by s−1 ∈ Γ(U, L−1) the
induced section of the dual line bundle. We get an isomorphism

DU [t∂t] → L−1 ⊗ grV0 DL ⊗ L|U , P 7→ s−1 ⊗ (φ−1)∗(P )⊗ s.

Let s′ ∈ Γ(U, L) be the section determined by a second local trivialization (U, φ′). This
gives us a second isomorphism

DU [t∂t] → L−1 ⊗ grV0 DL ⊗ L|U , Q 7→ s′−1 ⊗ (φ′−1)∗(Q)⊗ s′.

If we compose the first isomorphism with the inverse of the second one, and remember
that s = gs′, we find that the change of trivialization is

DU [t∂t] → DU [t∂t], P 7→ g−1 · φ′
∗ ◦ (φ−1)∗(P ) · g.

In local coordinates x1, . . . , xn as above, this acts on the vector fields ∂1, . . . , ∂n, t∂t by

t∂t 7→ t∂t, ∂j 7→ ∂j + g−1 ∂g

∂xj
· (t∂t + 1).

This shows that the collection of isomorphisms

DU [t∂t] → DU [t∂t], t∂t 7→ t∂t + 1, ∂j 7→ ∂j ,

give us the desired isomorphism between grV0 DL and L−1 ⊗ grV0 DL ⊗ L. �
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Remark 3.3. In particular, Lemma 3.2 says that if M is an αL-twisted right D-module,
then the tensor product M⊗ L is an (α + 1)L-twisted right D-module. More generally,
if M is a right grV0 DL-module on which the operator θ−α acts nilpotently, then M⊗L
is again a right grV0 DL-module on which θ− (α+1) acts nilpotently. Note that this only
works nicely for right modules: if M is an αL-twisted left D-module, then L ⊗ M is
(α−1)L-twisted. This is one of many reasons why it is better to use right DX,αL-modules.

3.4. Twisted currents. We also need a notion of twisted currents, in order to define
hermitian pairings on twisted D-modules. We first introduce the space of twisted test
functions. These are compactly supported sections of a certain smooth line bundle that
we now describe. Fix a real number α ∈ R. The principal C×-bundle corresponding to
the holomorphic line bundle L is obtained by removing the zero section from L. Let Lα

be the smooth line bundle associated to the representation

C× → GL1(C), z 7→ |z|2α.
We can also describe Lα in terms of local trivializations. A local trivialization (U, φ) of
L determines an isomorphism

φα : Lα|U → U × C.

Let (U, φ′) be a second local trivialization, and let g ∈ Γ(U,O×
U ) be the unique nowhere

vanishing holomorphic function such that (φ′ ◦ φ−1)(x) = (x, g(x)t). Then we have

φ′
α ◦ φ−1

α : U × C → Lα|U → U × C, (x, t) 7→
(
x, |g(x)|2αt

)
.

An αL-twisted test function is a compactly supported smooth section of the smooth line
bundle Lα. We give this space the topology that agrees with the usual topology on the
space of compactly supported smooth functions in any local trivialization of L.

Definition 3.4. An αL-twisted current is a continuous linear functional on the space of
(−αL)-twisted test functions. We denote by CX,αL the sheaf of αL-twisted currents.

Here is a more concrete description. An αL-twisted test function ϕ ∈ Γc(X,Lα) is
the same thing as a collection of smooth functions ϕ(U,φ) : U → C, one for each local
trivialization (U, φ) of the line bundle L, that are compatible with restriction to open
subsets, and are related to each other by the formula

ϕ(U,φ′) = |g|−2α · ϕ(U,φ),

where (φ′ ◦ φ−1)(x, t) = (x, g(x)t) is the transition from one local trivialization to the
other. Of course, the union of the supports of all the functions ϕ(U,φ) must be a compact
subset of X . Dually, an αL-twisted current C ∈ Γ(X,CX,αL) is the same thing as a
collection of currents C(U,φ) ∈ Γ(U,CX) that are compatible with restriction, and are
related to each other by the formula

C(U,φ′) = C(U,φ) · |g|2α.
Let us return to the general properties of twisted currents. We denote the natural

pairing between twisted currents and twisted test functions by the symbol

〈C, ϕ〉 ∈ C,

for C ∈ Γ(U,CX,αL) a twisted current and ϕ ∈ Γc(U, L−α) a twisted test function. As
usual, operations on twisted currents are defined in terms of the corresponding operations
on twisted test functions. For example, the complex conjugate of a twisted current is
defined by the formula 〈

C, ϕ
〉
= 〈C, ϕ〉.
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The sheaf of αL-twisted currents has the structure of a right DX,αL-module. This can be
seen as follows. Each local trivialization (U, φ) for L determines an isomorphism

CU
∼= CX,αL|U ,

where CU is the sheaf of currents on U and is of course a right DU -module. Moreover,
the transition from one local trivialization to another works correctly. Indeed, if we have
a twisted current C, represented by a collection of currents C(U,φ) ∈ Γ(U,CX) such that

C(U,φ′) = C(U,φ)|g|2α,
then a brief computation shows that

(
C(U,φ)∂j

)
|g|2α = C(U,φ)|g|2α

(
∂j + αg−1 ∂g

∂xj

)
= C(U,φ′)

(
∂j + αg−1 ∂g

∂xj

)
.

This proves that CX,αL is an αL-twisted right D-module.

3.5. Flat hermitian pairings on twisted D-modules. Fix a real number α ∈ R. A
flat hermitian pairing on an αL-twisted right D-module M is a morphism of sheaves

S : M⊗C M → CX,αL

with the following properties. First, S is hermitian symmetric, in the sense that for any
two local sections m′, m′′ ∈ Γ(U,M), one has

S(m′′, m′) = S(m′, m′′)

as twisted currents on U . Second, S is DX,αL-linear in its first argument, meaning that

S(m′P,m′′) = S(m′, m′′)P

for every twisted differential operator P ∈ Γ(U,DX,αL). It follows that S is conjugate
DX,αL-linear in its second argument. In any local trivialization of L, the twisted D-module
M becomes a usual D-module, and the flat hermitian pairing S becomes a sesquilinear
pairing as in [60, Ch. 12].

3.6. Good filtrations. The sheaf grV0 DL inherits an increasing filtration F• gr
V
0 DL from

the order filtration on DL. Locally, this is just the usual order filtration on differential
operators. Indeed, if (U, φ) is a local trivialization for L, then under the isomorphism

(φ−1)∗ : DU [t∂t] → grV0 DL|U ,
the filtration F• gr

V
0 DL|U is just the order filtration on DU [t∂t], with t∂t being considered

as a differential operator of order 1. Globally, the first nonzero piece of our filtration is
F0 gr

V
0 DL

∼= OX; the next graded piece grF1 grV0 DL sits in a short exact sequence

0 OX grF1 grV0 DL TX 0,θ

whose extension class in Ext1OX
(TX ,OX) ∼= H1(X,Ω1

X) is the first Chern class c1(L). The

order filtration on grV0 DL induces a filtration on DX,αL = grV0 DL/(θ − α) grV0 DL, and
from the above, we get a short exact sequence

(3.3) 0 OX F1DX,αL TX 0,

whose extension class is now α · c1(L). Note that

grF• DX,αL
∼= grF• DX

∼= Sym•
TX

is isomorphic to the symmetric algebra on the tangent sheaf TX , just as in the untwisted
case. This is a consequence of (3.1).
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Good filtrations on twisted D-modules are defined just as in the untwisted case. Let M
be a right DX,αL-module, and let F•M be an exhaustive increasing filtration by coherent
OX-submodules such that, locally on X , one has FkM = 0 for k ≪ 0. We say that such
a filtration F•M is a good filtration if

FkM · FℓDX,αL ⊆ Fk+ℓM,

with equality for k ≫ 0. As usual, this is equivalent to the condition that

grF• M =
⊕

k∈Z
FkM/Fk−1M

is coherent over grF• DX,αL
∼= Sym•

TX .

3.7. Graded pieces of the de Rham complex. One important difference between
twisted D-modules and usual D-modules is that there is no de Rham complex for twisted
D-modules (unless α = 0), because there is no longer an action by TX . This is due to the
fact that the short exact sequence in (3.3) does not split (unless α = 0). But we do have
grF1 DX,αL

∼= TX , so the notion of “graded pieces of the de Rham complex” still makes
sense for a twisted D-module M with a good filtration F•M.

Definition 3.5. Let (M, F•M) be a twisted D-module on X with a good filtration. For
every k ∈ Z, the graded piece of the de Rham complex is defined by

(3.4) grFk DR(M) :=

[
grFk−nM⊗

n∧
TX → · · · → grFk−1M⊗ TX → grFk M

]
[n],

where n = dimX and where the differential is induced by the multiplication morphism
grFk M⊗ grF1 DX,αL → grFk+1M and the isomorphism grF1 DX,αL

∼= TX .

3.8. Twisted Hodge modules. Before we can define twisted Hodge modules, which are
the main objects in this chapter, we briefly review the theory of complex Hodge modules
from [60, §14]. We will give a simplified version of the definition (without weights) that
is sufficient for our purposes.

Let X be a complex manifold of dimension n. A complex Hodge module on X consists
of the following three pieces of data:

(1) A regular holonomic right DX-module M.
(2) An increasing filtration F•M by coherent OX-submodules. This filtration needs

to be good, which means that it is exhaustive; that FkM = 0 for k ≪ 0 locally
on X ; and that one has FkM · FℓDX ⊆ Fk+ℓM, with equality for k ≫ 0.

(3) A flat hermitian pairing S : M ⊗C M → CX , valued in the sheaf of currents of
bidegree (n, n) on X . Again, S needs to be hermitian symmetric and DX -linear
in its first argument (and therefore conjugate linear in its second argument).

The objectM = (M, F•M, S) is a polarized Hodge module if it satisfies several additional
conditions that are imposed on the nearby and vanishing cycle functors with respect to
holomorphic functions on open subsets of X . An important point is that the definition
is local: if the restriction of M to every subset in an open covering of X is a polarized
Hodge module on that open subset, then M is a polarized Hodge module on X .

Remark 3.6. Note that there are no weights in the simplified definition above. In order
to have an intrinsic notion of weights, one needs to work with triples of the form

(
(M′, F•M′), (M′′, F•M′′), S

)
,
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where M′ and M′′ are regular holonomic right DX -modules with good filtrations F•M′

and F•M′′, and where S : M′ ⊗C M′′ → CX is a flat sesquilinear pairing. In this formu-
lation, a polarization is then a certain kind of isomorphism between M′ and M′′ that is
compatible with the filtrations and the pairing [60, Ch. 14].

We now come to the main definition of this chapter. It is modelled on the definition
of polarized complex Hodge modules [60, §14.2], but with twisted D-modules in place
of usual ones. This works because being a polarized complex Hodge module is a local
condition.

Let X be a complex manifold, L a holomorphic line bundle on X , and α ∈ R a real
number. We again consider objects of the type (M, F•M, S), where M is a right DX,αL-
module with a good filtration F•M, and where

S : M⊗C M → CX,αL

is a flat hermitian pairing on M. If (U, φ) is a local trivialization of the line bundle L, the
restriction (M, F•M, S)|U to the open subset U becomes, via the isomorphism in (3.2),
a usual filtered DU -module with a flat hermitian pairing.

Definition 3.7 (Twisted polarized Hodge modules). We say that an object (M, F•M, S)
is an αL-twisted polarized Hodge module if, for any local trivialization (U, φ), the restric-
tion (M, F•M, S)|U is a polarized complex Hodge module in the usual sense.

Because of the local nature of the definition, all local properties of polarized complex
Hodge modules (such as existence of a decomposition by strict support or the strictness
of morphisms) immediately carry over to the twisted setting [60, §14.2].

3.9. Direct images and the decomposition theorem. Another important difference
between twisted D-modules and usual D-modules is that one cannot take the direct image
of a twisted D-module (or twisted Hodge module) along a proper morphism f : X → Y
unless the line bundle L is pulled back from Y .

Let us start with a few remarks about the direct image functor for twisted D-modules.
Let f : X → Y be a proper holomorphic mapping between complex manifolds, and let L
be a holomorphic line bundle on Y , viewed as a complex manifold of dimension dimY +1
via the bundle projection p : L→ Y . Let LX = X×Y L be the pullback of the line bundle
to X , as in the commutative diagram below.

LX L

X Y

p

f

Let α ∈ R. As in the untwisted case [60, 8.6.4], we introduce the transfer module

DX→Y,αL = OX ⊗f−1OY
f−1

DY,αL.

This is an (DX,αLX
, f−1DY,αL)-bimodule: the right f−1DY,αL-module structure is the

obvious one, and the left DX,αLX
-module structure is induced by the morphism

F1DX,αLX
→ f ∗F1DY,αL = OX ⊗f−1OY

f−1F1DY,αL,

which is part of the following commutative diagram:

0 OX F1DX,αLX
TX 0

0 OX f ∗F1DY,αL f ∗TY 0
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We can then define the direct image functor

f+ : D
b
coh(DX,αLX

) → Db
coh(DY,αL)

from the derived category of right DX,αLX
-modules to that of right DY,αL-modules as

f+(−) = Rf∗
(
−⊗L

DX,αLX
DX→Y,αL

)
,

which is essentially the same formula as in the untwisted case [60, §8.7]. If φ : L|U → U×C

is a local trivialization of L, then we get an induced trivialization of LX over the open
subset f−1(U), and so twisted D-modules on U and f−1(U) are the same thing as usual
D-modules. It is then easy to see that the diagram

Db
coh(DX,αLX

) Db
coh(Df−1(U))

Db
coh(DY,αL) Db

coh(DU)

f+ f+

is commutative, where the horizontal arrows are restriction to the open subsets U and
f−1(U) and f+ : D

b
coh(Df−1(U)) → Db

coh(DU ) is the usual direct image functor for right
D-modules. By the same method as in [60, §8.7], the definition of the direct image
functor can be extended to filtered D-modules (using the natural filtration on the transfer
module), and as in [60, §12], a flat hermitian pairing S : M⊗C M → CX,αLX

on an αLX-
twisted D-module induces flat sesquilinear pairings

Si : H
if+M⊗C H −if+M → CY,αL.

We can now state the decomposition theorem for twisted Hodge modules.

Theorem 3.8. Let f : X → Y be a projective morphism between complex manifolds,
let L be a holomorphic line bundle on Y , and set LX = f ∗L. If (M, F•M, S) is an
αLX-twisted polarized Hodge module on X, then each

H
if+(M, F•M)

with the induced polarization, is an αL-twisted polarized Hodge module on Y . Moreover,
the decomposition theorem

f+(M, F•M) ∼=
⊕

i∈Z
H

if+(M, F•M)

holds in the derived category of filtered twisted DY -modules.

Proof. Locally on Y , the direct image functor for twisted D-modules agrees with the usual
direct image functor for D-modules. All the local assertions in the theorem therefore
follow from [60, §14.3], and in particular, each H if+(M, F•M) is strict. Let ω be the
first Chern class of a relatively ample line bundle. From the relative Hard Lefschetz
theorem for complex Hodge modules, applied locally, it follows that

ωi : H
−if+(M, F•M) → H

if+(M, F•−iM)

is an isomorphism for every i ≥ 0. Just as in the untwisted case, this implies the decom-
position theorem. The relative Hard Lefschetz theorem also gives us a representation of
the Lie algebra sl2(C) on the direct sum of all the H if+M, and we again let w denote
the corresponding Weil element. Then [60, §14.3], applied locally, shows that the flat
hermitian pairing

(−1)i(i−1)/2Si ◦ (id⊗w) : H
if+M⊗C H if+M → CY,αL

polarizes H if+(M, F•M), which is therefore a twisted polarized Hodge module. �
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3.10. Kashiwara’s equivalence. Let i : Y →֒ X be the inclusion of a closed submani-
fold. Let L be a holomorphic line bundle on X and set LY = i∗L. For any α ∈ R, there
is a direct image functor [5, §2.2]

i+ : {αLY -twisted D-modules} → {αL-twisted D-modules},
which gives a twisted version of Kashiwara’s equivalence [5, §2.5.5(iv)].

Theorem 3.9 (Beilinson-Bernstein). The functor i+ induces an equivalence between the
category of coherent αLY -twisted right D-modules and the category of coherent αL-twisted
right D-modules whose support is contained in the submanifold Y .

Since the definition of twisted Hodge modules is local, the functor i+ extends to

i+ : {αLY -twisted Hodge modules on Y } → {αL-twisted Hodge modules on X},
using the direct image functor for polarized complex Hodge modules.

Theorem 3.10. The functor i+ induces an equivalence between the category of αLY -
twisted polarized Hodge modules on Y and the category of αL-twisted polarized Hodge
modules on X whose support is contained in the submanifold Y .

Proof. This follows from the twisted Kashiwara’s equivalence (Theorem 3.9) and the strict
Kashiwara’s equivalence for complex polarized Hodge modules [60, Proposition 9.6.2]. �

3.11. Nearby and vanishing cycle for divisors. Now let us explain why the nearby
and vanishing cycles of a complex Hodge module with respect to a divisor are naturally
twisted Hodge modules.

Let X be a complex manifold and let M be a regular holonomic right DX-module. Let
D be an effective divisor on X , set L = OX(D), and let s ∈ H0(X,L) be a global section
such that div(s) = D. We view L as a complex manifold of dimension dimX + 1, and
the section s as a closed embedding s : X →֒ L. Let

ML = s+M
be the direct image D-module on L.

The zero section of L induces a filtration V•ML; this is defined locally as the V -filtration
in Definition 2.1, but the resulting filtration on ML is actually globally well-defined [7,
Proposition 1.5]. Each VαML is a sheaf of V0DL-modules and each grVα ML is therefore
a well-defined grV0 DL-module, but unlike in the local setting, it is not a DX-module. We
get closer to D-modules once we take the associate graded of the weight filtration. Recall
from §3.2 that the operator θ ∈ F1 gr

V
0 DL is globally well-defined and central, then the

properties of V -filtration implies that the operator

(3.5) N := θ − α

acts nilpotently on grVα ML. Let W•(N) denote the weight filtration of this nilpotent
operator. Since DX,αL = grV0 DL/(θ − α) grV0 DL, it follows that each subquotient

gr
W (N)
ℓ grVα ML

has the structure of an αL-twisted right D-module.
Now let us suppose that M comes with a flat hermitian pairing

S : M⊗C M → CX

into the sheaf of currents of bidegree (n, n). In that case, we get an induced flat hermitian
pairing on grVα M, but now valued in the sheaf of twisted currents.
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Lemma 3.11. For each α ∈ [−1, 0], we have an induced flat hermitian pairing

Sα : grVα ML ⊗C grVα ML → CX,αL.

The operator θ ∈ End(grVα ML) is self-adjoint with respect to Sα.

Proof. The point is that the construction of the induced pairing on nearby and vanishing
cycles in [60] transforms correctly from one local trivialization of L to another. We will
give the proof for −1 ≤ α < 0, the case α = 0 being similar.

Let φ : L|U → U ×C be a local trivialization of the line bundle L, and denote by t the
coordinate function on C. The restriction of VαML to the open subset U×C is a module
over V0DL, and the restriction of grVα ML to the open set U is a right DU -module. Let
us quickly review the construction of the induced pairing Sα, using the Mellin transform.
Let ϕ ∈ Ac(U) be a test function with compact support in U , and let η : C → [0, 1] be
a compactly support smooth function that is identically equal to 1 near the origin. Let
m1, m2 ∈ Γ(U × C, VαML) The expression

〈
S(m1, m2), |t|2sη(t)ϕ

〉

is a holomorphic function of s ∈ C as long as Re s ≫ 0, and extends to a meromorphic
function on all of C (using the properties of the V -filtration). One can show that the
residue at s = α depends continuously on the test function ϕ, and that the formula

〈
Sα([m1], [m2]), ϕ

〉
= Ress=α

〈
S(m1, m2), |t|2sη(t)ϕ

〉

defines a flat hermitian pairing on the right DU -module grVα ML|U . Moreover, the endo-
morphism θ = t∂t is self-adjoint with respect to this pairing.

To prove the lemma, it is enough to check that these pairings transform correctly from
one local trivialization to another. Let us denote by C(U,φ) = Sα([m1], [m2]) the current
constructed above. Let (U, φ′) be a second trivialization such that

(φ′ ◦ φ−1)(x, t) =
(
x, g(x)t

)
and g ∈ Γ(U,O×

X).

If we let t′ be the resulting holomorphic coordinate on C, we have t′ = gt. The same
formula as above then defines a second current

〈
C(U,φ′), ϕ

〉
= Ress=α

〈
S(m1, m2), |t′|2sη(t′)ϕ

〉

Since g is holomorphic, the right-hand side evaluates to

Ress=α

〈
S(m1, m2), |g|2s|t|2sη(gt)ϕ

〉
= Ress=α

〈
S(m1, m2), |g|2α|t|2sη(gt)ϕ

〉

=
〈
C(U,φ), |g|2αϕ

〉
,

and so we arrive at the identity C(U,φ′) = C(U,φ) · |g|2α. This is enough to conclude that the
currents on each local trivialization glue together into an αL-twisted current on X . �

As long as α ∈ R, the nilpotent endomorphism N = θ − α is self-adjoint with respect
to the pairing Sα, and so the pairing descends to the graded quotients of the weight
filtration. This gives us flat sesquilinear pairings

Sα : gr
W (N)
ℓ grVα ML ⊗C gr

W (N)
−ℓ grVα ML → CX,αL.

We need one extra piece of data to describe the induced polarization. The direct sum
⊕

ℓ∈Z
gr

W (N)
ℓ grVα ML
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carries a representation of the Lie algebra sl2(C). If we denote the three generators by

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
,

then H acts as multiplication by ℓ on gr
W (N)
ℓ , and Y acts as N = θ−α. The Weil element

w =

(
0 1
−1 0

)
∈ SL2(C)

has the property that wHw
−1 = −H, wXw−1 = −Y, and wYw

−1 = −X, and therefore

determines an isomorphism between gr
W (N)
−ℓ and gr

W (N)
ℓ . It follows that

Sα ◦ (id⊗w) : gr
W (N)
ℓ grVα ML ⊗C gr

W (N)
ℓ grVα ML → CX,αL

is a flat hermitian pairing on the indicated αL-twisted D-module. We can use this to
show that the nearby and vanishing cycles of a complex Hodge module are naturally
twisted Hodge modules.

Proposition 3.12. Let (M, F•M, S) be a polarized complex Hodge module on X. For
any real number α ∈ [−1, 0) and any integer ℓ ∈ Z, the object

(
gr

W (N)
ℓ grVα ML, F•−1 gr

W (N)
ℓ grVα ML, Sα ◦ (id⊗w)

)

is a polarized αL-twisted Hodge module on X. The object

(
gr

W (N)
ℓ grV0 ML, F• gr

W (N)
ℓ grV0 ML, S0 ◦ (id⊗w)

)

is a polarized complex Hodge module (without any twisting).

Proof. The claim is that both objects are polarized complex Hodge modules in any local
trivialization of L. This follows from the definition of polarized complex Hodge modules,
because in any local trivialization, the two objects are exactly the nearby cycles and
unipotent vanishing cycles of (M, F•M, S). �

Remark 3.13. From (2.9) and Lemma (4.11), we also see that grWr grVα ML is naturally
twisted by αL for α ∈ (−1, 0).

3.12. Untwists. The following lemma provides a procedure to “untwist” a twisted Hodge
module when the twisting is an integer.

Lemma 3.14. If M = (M, F•M, S) is an αL-twisted Hodge module, then

M ⊗ L := (M⊗ L, F•M⊗ L, S ⊗ L)

is an (α + 1)L-twisted Hodge module. Here S ⊗ L is a current defined by multiplication
of S by |g|2 when one changes the trivialization of L by g.

In particular, if α ∈ Z and (M, F•M) underlies an αL-twisted Hodge module, then
(M, F•M)⊗ L−α underlies a polarized complex Hodge module.

Proof. It suffices to check that if M is a right αL-twisted D-module, then M ⊗ L is a
right (α + 1)L-twisted D-module, which follows from Remark 3.3. �
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4. Vanishing theorems for twisted Hodge modules

In this section, we prove a general vanishing theorem for twisted Hodge modules,
extending Saito’s vanishing theorem [62, §2.g] (see also [68]). We work with algebraic
setting in this section. Before the proof, we need the notion of non-characteristic for
twisted D-modules and twisted Hodge modules. First, let us recall the situation of
filtered D-modules.

Definition 4.1. [61, §3.5.1] Let f : Y → X be a morphism of smooth algebraic varieties.
We say that f is non-characteristic for a filtered D-module (M, F•M) if the following
conditions are satisfied:

(1) Hi(f−1 grF• M
L

⊗f−1OX
OY ) = 0 for all i 6= 0, where

grF• M =
⊕

k

FkM/Fk−1M.

(2) The morphism df : (pr2)
−1Char(M) → T ∗Y is finite, where

Y ×X T ∗X T ∗Y

T ∗X,

df

pr2

and pr 2 is the natural projection and df(y, ξ) := (df)∗ξ for y ∈ Y, ξ ∈ T ∗
f(y)X .

Remark 4.2. To check condition (1), it suffices to prove that OY is a flat module over
f−1OX . The condition (2) means that f is non-characteristic for the D-module M,
and can be checked as follows (see [61, 3.5.1.3] and discussion after [68, Definition 9.1]).
Consider a Whitney stratification {Sβ} of X such that Char(M) ⊆ ⋃

β T
∗
Sβ
X , then the

condition (2) is satisfied if the fiber product Sβ ×X Y is smooth for every β.

Let L be a line bundle on X , α ∈ Q and let (M, F•M) be a filtered αL-twisted
D-module with a good filtration.

Definition 4.3. We say that f is non-characteristic for the filtered twisted D-module
(M, F•M) if for every open subset U ⊆ X trivializing L, the induced morphism f−1(U) →
U is non-characteristic for the filtered D-module (M, F•M)|U .
Lemma 4.4. Let M be a αL-twisted polarized Hodge module on X with strict support
Z. If f : Y → X is non-characteristic for the underlying twisted D-module (M, F•M).
Then we have isomorphisms

f ∗M ∼−→ MY , f ∗F•M ∼−→ F•MY ,

where (MY , F•MY ) underlies an αLY -twisted polarized Hodge module with strict support
f−1(Z) and LY = f ∗L.

Proof. This can be argued in the same way as in [68, Theorem 9.3] by using the equivalence
between a polarized complex Hodge module of weight w with strict support Z and a
polarized complex variation of Hodge structures of weight w − dimZ on a Zariski-open
subset of the smooth locus of Z. �

Now we extend Saito’s vanishing theorem to complex Hodge modules.

Theorem 4.5. Let X be a smooth projective variety and let M be a polarized complex
Hodge module on X with strict support Z, where Z is reduced and irreducible. Let L be
an ample line bundle on Z, then one has

H i(Z, grFp DR(M)⊗ L) = 0, for i > 0, and p ∈ Z.
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If Ω1
X is trivial, then

H i(Z, grFp M⊗ L) = 0, for i > 0, and p ∈ Z,

where L is any ample line bundle on Z.

Proof. We sketch a proof following the method of [68], which is based on the Esnault-
Viehweg method. In this proof, we use left D-modules and explain how ingredients for
complex Hodge modules from [60] fit together to give such a statement.

First we need to show that each

grFp DR(M) =
[
grFp M → Ω1

X ⊗ grFp+1M → · · · → Ωn
X ⊗ grFp+nM

]
[n]

is a well-defined complex of coherent OZ-modules, where n = dimX . One needs to show
that if f is an arbitrary local section of the ideal sheaf IZ , then f · grFp M = 0, which
is the consequence of (M, F•M) being strictly R-specializable along f = 0. In fact one
only needs the condition (for right Hodge modules)

(Fp gr
V
α M) · ∂t = Fp+1 gr

V
α+1M, for all p ∈ Z and α > −1,

see [69, Exercise 11.3]. This is satisfied by [60, Definition 10.6.1, Condition (b)].
Then one needs to show the compatibility of the de Rham complex with the duality

functor, i.e. if M is a polarizable complex Hodge module on an n-dimensional complex
manifold X of weight w, then any polarization on M induces an isomorphism

RHomOX
(grFp DR(M), ωX [n])

∼−→ grF−p−w DR(M).

This is proved in [60, Corollary 8.8.22 (6)] (the underlying filtered D-module (M, F•M)
of a complex Hodge module is a holonomic RFDX-module and ExtiRF DX

(RFM, RFDX)
is a strict RFDX -module for every i). It can be compared with [61, Lemme 5.1.13]. This
compatibility is needed because then the desired vanishing statement is equivalent to

H i(Z, grFp DR(M)⊗ L−1) = 0, ∀i < 0, and p ∈ Z.

Lastly, we need the non-characteristic pull back of complex Hodge modules (c.f. Lemma
4.4) and the E1-degeneration of Hodge-de Rham spectral sequence

Ep,q
1 = Hp+q(X, grF−p DR(M)) =⇒ Hp+q(X,DR(M))

for a complex Hodge module M on a smooth projective variety X . This is proved in [60,
Theorem 14.3.1]. �

Remark 4.6. There are two more strategies for the proof of Theorem 4.5: either one
follows Saito’s original proof [62, §2.g] and uses necessary ingredients from [60], or one
generalizes Hyunsuk Kim’s analytic proof for [29, Theorem 1.4] to complex Hodge mod-
ules.

Now we can prove the vanishing theorem for twisted Hodge modules. If α = 0, this
recovers Theorem 4.5.

Theorem 4.7. Let D be an effective divisor on a projective complex manifold X and
denote L = OX(D). For any α ∈ Q, let M be an αL-twisted Hodge module with strict
support Z and let B be an effective divisor on Z such that the Q-divisor B + αD|Z is
ample. Then we have

H i
(
Z, grFk DR(M)⊗OZ(B)

)
= 0, for every i > 0 and k ∈ Z.

If Ω1
X is trivial, then

H i
(
Z, grFk M⊗OZ(B)

)
= 0, when i > 0 and k ∈ Z.
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Proof. The general idea is to go to a finite branched covering on which αD becomes
integral, and then to apply the untwisting Lemma 3.14 as well as the vanishing theorem
4.5 for complex Hodge modules.

Write α = p/m with gcd(p,m) = 1. By a result of Bloch and Gieseker (see [6] and [33,
Proposition 2.67]), there is

(∗) a finite flat morphism f : Y → X , with Y smooth projective, f ∗L = mLY

for a line bundle LY on Y .
We claim that one can choose f to be non-characteristic for the filtered twisted D-

module (M, F•M) in the sense of Definition 4.3. To prove this, let us recall the con-
struction of Bloch-Gieseker covering following [35, Theorem 4.1.10]. By writing L as the
difference of two very ample divisors and applying the following construction to each
of them, we can assume that there is a finite-to-one mapping φ : X → Pr such that
L = φ∗OPr(1). Fix a branched covering µ : Pr → Pr such that µ∗OPr(1) = OPr(m).
Given g ∈ G := GL(r + 1) acting on Pr in the natural way, denote by µg : Pr → Pr

the composition µg = g ◦ µ. Define Yg := X ×Pr Pr, with a map fg as in the following
Cartesian square

Yg Pr

X Pr.

fg µg

φ

It is shown in [35, Theorem 4.1.10] that if g ∈ G is sufficiently general, then fg : Yg → X
satisfies the condition in (∗). We will show further that one can choose g such that
fg : Yg → X is non-characteristic for (M, F•M). Let us choose an open cover {Ui}
of X trivializing L so that M |Ui

is a Hodge module. By Definition 4.3, it suffices to
check conditions (1),(2) in Definition 4.1 for the morphism f−1(Ui) → Ui. Consider the
mapping

m : G×Pr → Pr, (g, z) 7→ g · µ(z),
and form the fiber productW = X×Pr (G×Pr) with the following commutative diagram

W G×Pr G

X Pr.

b

n m

pr1

φ

The fiber of b over g ∈ G is just Yg. The Generic Flatness Theorem implies that for a
generic g ∈ G, we have OYg is a flat f−1OX -module, which verifies the condition (1) by
Remark 4.2. For the condition (2), choose a Whitney stratification {Sβ} of X such that

Char(M|Ui
) ⊆

⋃

β

T ∗
Sβ∩Ui

Ui, for all i, β.

By the proof of [24, III.10.8], we see thatm is a smooth morphism, hence the base change n
and Sβ×XW → Sβ are smooth, therefore the fiber product Sβ×XW is smooth. Applying
the Generic Smooth Theorem applied to the map Sβ ×X W → G, we see that Sβ ×X Yg
is smooth, then the condition (2) is satisfied by Remark 4.2.

With such a choice of f , by Lemma 4.4 and note that αf ∗Y = mLY , one knows that
the pullback

(MY , F•MY ) := ωY/X ⊗ (M, F•M)
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still underlies a pLY -twisted polarized Hodge module with strict support f−1(Z) and

grFk DR(MY )⊗ f ∗OZ(B) = ωY/X ⊗ f ∗(grFk DR(M)⊗OZ(B)).

Then by Lemma 4.8, it is enough to prove the vanishing of

H i
(
Y, grFk DR(MY )⊗ f ∗OZ(B)

)
= H i

(
Y, grFk DR(MY ⊗ L−p

Y ))⊗ f ∗OZ(B)⊗ Lp
Y

)
.

Since p is an integer, Lemma 3.14 implies that (MY , F•MY )⊗L−p
Y underlies a polarized

complex Hodge module with strict support f−1(Z). Note that the line bundle

f ∗OZ(B)⊗ Lp
Y |f−1(Z) = f ∗OZ(B + αD|Z)

is ample by assumption and finiteness of f , therefore the desired vanishing follows from
Theorem 4.5.

If Ω1
X is trivial, one can argue as in the proof of [56, Lemma 2.5]. �

Lemma 4.8. Let f : Y → X be a finite surjective morphism of smooth complex projective
varieties and let E• be a bounded complex of coherent sheaves on X. Then the natural
homomorphism

Hj(X,E•) → Hj(Y, ωY/X ⊗ f ∗E•)

induced by f is injective. In particular, if Hj(Y, ωY/X ⊗ f ∗E•) = 0 for some j ≥ 0, then
Hj(X,E•) = 0.

Proof. The proof is similar to [35, Lemma 4.1.14]. By the projection formula and the
finiteness of f , we have

Hj(Y, ωY/X ⊗ f ∗E•) = Hj(X,Rf∗(ωY/X ⊗ f ∗E•))

=Hj(X,Rf∗ωY/X ⊗E•) = Hj(X, f∗ωY/X ⊗E•).

Since the natural inclusion OX → f∗ωY/X is splitted via the trace map f∗ωY/X → OX ,
we conclude that E• → f∗ωY/X ⊗ E• also splits. The stated injectivity follows. �

4.1. A Kawamata-Viehweg type log Akizuki-Nakano vanishing theorem. We
discuss some consequences of the vanishing Theorem 4.7 for twisted Hodge modules. As
an illustration, we give a quick proof of a Kawamata-Viehweg type log Akizuki-Nakano
vanishing, which is a special case of [1, Theorem 2.1.1]. The key idea is to construct an
αL-twisted Hodge module associated to OX(⌊αD⌋) where D is a normal crossing divisor
and L = OX(D). We would like to thank Jakub Witaszek for pointing this out.

Let A =
∑

i eiAi be a Q-divisor. There are several related divisors

⌈A⌉, ⌊A⌋, and {A}
defined by applying the same operation to coefficients ei. For example,

⌈A⌉ :=
∑

i

⌈ei⌉Ai, {A} :=
∑

i

{ei}Ai.

We also denote the support of A to be

suppA :=
∑

i

Ai.

It is immediate to see that

supp{A}+ ⌊A⌋ = ⌈A⌉.
We prove the following Kawamata-Viehweg type log Akizuki-Nakano vanishing theorem.
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Theorem 4.9. Let X be a smooth projective variety of dimension n and let A be an
ample Q-divisor on X with normal crossing support. Then

H i(X,KX + ⌈A⌉) = 0, ∀i > 0.

More generally, we have

Hp(X,Ωq
X(log supp{A})⊗OX(⌊A⌋)), whenever p+ q > n.

Here Ωq
X(log supp{A}) is the sheaf of log forms along the normal crossing divisor supp{A}.

Remark 4.10. This recovers [1, Theorem 2.1.1] for the case of

A = A, D = G = supp{A}, F = ⌈A⌉ −A.

The idea of the proof is to produce a (positively) twisted polarized Hodge module M
such that the underlying filtered twisted D-module satisfies

grF−n+pDRX(M) = Ωn−p
X (log supp{A})⊗OX(⌊A⌋)[p].

Then the desired vanishing statement will follow from Theorem 4.7. To do this, we need
twisted version of some constructions in §2.2 and so we use similar notations. Let X be
a complex manifold of dimension n and let

D =
∑

i∈I
eiYi, ei ∈ N

be a normal crossing divisor on X . For α ∈ (0, 1], let

(4.1) Iα = {i ∈ I | ei · α ∈ Z}, E =
∑

i∈I\Iα

Yi = supp{αD}, L = OX(D).

We consider a log version of twisted differential operators in §3.2. Let

DX,αL(logE) ⊆ DX,αL

be the sub-algebra of DX,αL locally generated by elements preserving the ideal sheaf of
E. Over an open subset U trivializing L, one has DX,αL(logE)|U = DU(logE|U) ⊆ DU , the
differential operators over U preserving the ideal sheaf of E|U .
Lemma 4.11. The line bundle OX(⌊αD⌋) is equipped with a left DX,αL(logE)-module
structure.

Proof. The construction is similar to the one in [13, §7.4]. To make ideas more clear, let
us first give a less rigorous discussion. If we allow the expression OX(αD), we can write

OX(⌊αD⌋) = OX(αD − {αD})

= OX(αD)⊗OX


 ∑

i∈I\Iα

−{αei}Yi


 .

Thus on any open subset U trivializing OX(D), one has

OX(⌊αD⌋) ∼= OX


 ∑

i∈I\Iα

−{αei}Yi


 .

Then one can define a DU(logE|U)-action as in (2.15) and would expect globally this
gives a left DX,αL(logE)-module in the presence of OX(αD).
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To make it more rigorously, let N be the greatest common divisor of {ei}i∈Iα and
consider the line bundle

Lα := OY

(
−
∑

i∈Iα

ei
N
Yi

)
.

Note that αN is an integer. Then we have

OX(⌊αD⌋)) = (Lα)
−αN ⊗OX


 ∑

i∈I\Iα

⌊αei⌋Yi




On the other hand, one has

(Lα)
−N = OX(D)⊗OX


−

∑

i∈I\Iα

eiYi


 .

Let φ : L|U → U × C be the local trivialization of the line bundle L = OX(D). Let
ℓ ∈ Γ0(U, Lα) be a local section. Then φ∗(ℓ

−N) =
∏

i∈I\Iα z
ei
i , where zi is the local

equation of Yi. Let

s = ℓ−αN
∏

i∈I\Iα

z
−⌊αei⌋
i

be a local frame in Γ0(U,OX(⌊αD⌋)) , then
φ∗(s) =

∏

i∈I\Iα

z
αei−⌊αei⌋
i =

∏

i∈I\Iα

z
{αei}
i ,

Now we define a left DU(logE|U)-action by

∂i · φ∗(s) =

{
{αei}
zi

· φ∗(s), if i ∈ I \ Iα,
0, if i ∈ Iα.

It is immediate to verify that this gives a left DX,αL(logE)-module.
�

Now we define a right filtered DX,αL-module similar to (2.16). Since the sheaf ωX(logE)
is a natural right DX(logE)-module, thus ωX(logE)⊗OX

OX(⌊αD⌋) has a right DX,αL(logE)-
module structure and

M := (ωX(logE)⊗OX
OX(⌊αD⌋))⊗DX,αL(log E)

DX,αL

is a right DX,αL-module. There is a good filtration F•M on M induced by the order
filtration on DX,αL, similar to F•Vα,J in (2.16). Similar to (2.17), one can show that

(4.2) grF−n+pDRX(M) = Ωn−p
X (logE)⊗OX(⌊αD⌋)[p], ∀p.

We claim that the filtered twisted D-module (M, F•M) underlies an αL-twisted po-
larized Hodge module. Since locally (M, F•M) is the filtered D-module underlying the
constant Hodge module, it suffices to write down a flat Hermitian pairing

S : M⊗C M → CX,αL.

The construction is similar to [13, (8.46)]. As before, on an open subset U trivializing
OX(D), we have

M|U ∼= (ωU ⊗OU(⌊αD⌋+ E))⊗ DU

∼=


ωU ⊗OU(

∑

i∈I\Iα

(−{αei}+ 1)Yi)


⊗ DU ,



HIGHER MULTIPLIER IDEALS 38

where E =
∑

i∈I\Iα Yi. The Hermitian pairing S|U is induced by

S([s1 ⊗ P1], [s2 ⊗ P2]) =
(−1)

n(n+1)
2

(2π
√
−1)n

∫

X

(P1P2−)(s1 ∧ s2)h,

where Pi ∈ Γ0(U,DU) and si ∈ Γ0(U, ωU ⊗OU (
∑

i∈I\Iα(−{αei}+1)Yi)). Here (s1∧s2)h is

the top form induced by the canonical singular Hermitian metric |− |h on the line bundle

OU (
∑

i∈I\Iα

(−{αei}+ 1)Yi)

with weight function
∏

i∈I\Iα z
{αei}−1
i . One can check that it glues to a pairing into CX,αL

and is DX,αL-linear. Then Theorem 4.7 together with (4.2) imply the following

Lemma 4.12. If X is smooth projective, D is an ample normal crossing divisor on X
and α ∈ (0, 1], then

H i+p(X,Ωn−p
X (logE)⊗OX(⌊αD⌋)) = 0, ∀i > 0.(4.3)

Proof of Theorem 4.9. Let us choose the smallest integer N such that N · A has integer
coefficients. Then D := N · A is an ample normal crossing divisor on X and we choose
α = 1

N
∈ (0, 1]. In the notation of (4.1) one has

E = supp{αD} = supp{A}, ⌊αD⌋ = ⌊A⌋.
Now (4.3) gives the desired vanishing

H i+p(X,Ωn−p
X (logE)⊗OX(⌊A⌋)) = 0, ∀i > 0.

For p = 0, we have Ωn
X(logE) = OX(KX + E), hence

H i(X,KX + ⌈A⌉) = H i(X,KX + supp{A}+ ⌊A⌋) = 0, ∀i > 0.

This proves the Kawamata-Viehweg vanishing. �

5. Higher multiplier ideals: definition and first properties

In this section, we define higher multiplier ideals for effective Q-divisors and establish
some first properties. The more detailed local and global studies are carried out in the
later sections. Here is the main set-up of the following sections.

Set-up 5.1. Let X be a complex manifold of dimension n and denote by QH
X [n] the

constant Hodge module on X , with the underlying filtered D-module (ωX , F•ωX) where

F−n+kωX =

{
ωX if k ≥ 0,

0 if k < 0.

Let D be an effective divisor on X . Let L = OX(D) be the associated holomorphic line
bundle and also denote by L the total space of the line bundle, with the natural projection
p : L → X . Let s ∈ H0(X,L) be a section with div(s) = D, which is viewed as a closed
embedding

s : X → L,

such that p ◦ s = idX . Consider the direct image Hodge module

M := s∗Q
H
X [n],

with the underlying filtered D-module

(M, F•M) = s+(ωX , F•ωX).
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5.1. Definition. First we need a lemma on the associated graded of the Hodge filtration
on M.

Lemma 5.2. With Set-up 5.1, we have

grF−n+k M ∼=
{
s∗(ωX ⊗ Lk), if k ≥ 0.

0, if k < 0.

Proof. For any open subset U such that L|U ∼= OU , let f : U → C be a local function
such that D|U = div(f). Then the map s is given by the graph embedding of f :

s|U = if : U → U × C, x 7→ (x, f(x)).

The underlying filtered D-module of s∗(Q
H
X [n]|U) = s∗Q

H
U [n] can be computed as follows.

Let t be the holomorphic coordinate on the second component of U × C. Using the
formula for the direct image by a closed embedding and a change of coordinates t 7→
t− f(x), x 7→ x, one has

s+(ωX |U) ∼=
∑

ℓ∈N
ωU ⊗ ∂ℓt , Fks+(ωX |U) ∼=

∑

0≤ℓ≤k

ωU ⊗ ∂ℓt .

Thus for k ≥ 0, we have

(5.1) grF−n+k s+(ωX |U) ∼= ωU ⊗ ∂kt ,

and grF−n+k s+(ωX |U) = 0 if k < 0. Let us examine how the isomorphism (5.1) depends
on the choice of trivialization. Note that we can identify t : U × C → C as the local
OU -generator e of Γ(U, L) so that the trivialization is given by

(5.2) OX(U)
∼−→ Γ(U, L), f 7→ f · e.

Now we change the trivialization (5.2) by g ∈ O×
X(U) so that

OX(U) → Γ(U, L) → OX(U), f 7→ g · f.
Since the local generator e changes to g−1 · e, the local coordinate t also changes to
t′ = g−1 · t. By the chain rule, we have ∂t′ = g · ∂t. This gives the following commutative
diagram

grF−n+k s+(ωX |U) ωX ⊗ ∂kt

grF−n+k s+(ωX |U) ωX ⊗ ∂kt′

∼

= ·gk

∼

Therefore, we conclude that there is a global isomorphism

grF−n+k s+M = grF−n+k s+(ωX) ∼= s∗(ωX ⊗ Lk).

�

Let V•M be the V -filtration relative to the zero section of L; locally it is the Kashiwara-
Malgrange V -filtration relative to the local defining equation defined in §2 (see Remark
2.3). By property (1) in Definition 2.1, each VαM is a coherent sheaf of OL-modules.
Therefore there is an inclusion of coherent sheaves

grF−n+k VαM :=
F−n+kM∩ VαM
F−n+k−1M∩ VαM

→֒ grF−n+k M ∼= s∗(ωX ⊗ Lk),

by Lemma 5.2. It naturally leads to the following.
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Definition 5.3. Let D be an effective divisor on X . For any k ∈ N and α ∈ Q, the
higher multiplier ideal Ik,α(D) is defined to be the unique coherent ideal sheaf on X such
that

(5.3) grF−n+k VαM ∼= s∗(ωX ⊗ Lk ⊗ Ik,α(D)).

Similarly, we define Ik,<α(D) to be the unique ideal sheaf such that

grF−n+k V<αM ∼= s∗(ωX ⊗ Lk ⊗ Ik,<α(D)).

Remark 5.4. The sheaf Ik,α(D) can be locally described as follows. Assume D = div(f)
for some holomorphic function f : X → C. Let if : X → X ×C be the graph embedding
and t be the coordinate on C. Under the isomorphism grF−n+k if,+(ωX) ∼= ωX ⊗ ∂kt (see
(5.1)), we have

(5.4) (ωX ⊗ Ik,α(D))⊗ ∂kt = grF−n+k Vαif,+(ωX).

Remark 5.5. If k = 0, Budur and Saito’s result [9, Theorem 0.1] can be restated as: for
any α ∈ Q one has

(5.5) I0,α(D) = J (X, (−α− ǫ)D), for some 0 < ǫ≪ 1,

the right hand side is the usual multiplier ideal. Equivalently, for any α ∈ Q one has

I0,<α(D) = J (X,−αD).

By the properties of V -filtrations in Definition 2.1, one has Ik,α(D) ⊆ Ik,β(D) whenever
α ≤ β. Therefore one can talk about the associated graded pieces.

Definition 5.6. The graded pieces are defined by

Gk,α(D) := Ik,α(D)/Ik,<α(D).

We call α ∈ Q a jumping number if Ik,<α(D) 6= Ik,α(D), or equivalently Gk,α(D) 6= 0.
There is an induced isomorphism

(5.6) grF−n+k gr
V
α M ∼= ωX ⊗ Lk ⊗ Gk,α(D).

In §3.11, we construct a nilpotent operator N (see (3.5)) on grVα M and let W•(N)
denote the weight filtration of this nilpotent operator.

Definition 5.7. The weight filtration W•Gk,α(D) is induced by the weight filtration
W•(N) grVα M and the isomorphism (5.6). For each ℓ ∈ Z, the graded piece is denoted by

grWℓ Gk,α(D) :=WℓGk,α(D)/Wℓ−1Gk,α(D).

One has

(5.7) Wℓ(N) grF−n+k gr
V
α M ∼= ωX ⊗ Lk ⊗WℓGk,α(D),

(5.8) grF−n+k gr
W (N)
ℓ grVα M ∼= ωX ⊗ Lk ⊗ grWℓ Gk,α(D).

Definition 5.8. The weight filtrationW•Ik,α(D) is defined as the preimage ofW•Gk,α(D)
under the quotient map Ik,α(D) → Gk,α(D). In particular, there is a short exact sequence
for any ℓ ∈ Z

(5.9) 0 → Ik,<α(D) →WℓIk,α(D) →WℓGk,α(D) → 0.
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5.2. First properties. Using the properties of V -filtrations and Hodge filtrations in the
theory of Hodge modules, we establish some first properties of higher multiplier ideals.
Before doing so, we need a global version of action by t and ∂t.

Lemma 5.9. For any α and p ∈ Z, there exist morphisms

(5.10) FpVαM → FpVα−1M⊗OX
L,

(5.11) FpVαM → Fp+1Vα+1M⊗OX
L−1,

(5.12) Fp gr
V
α M → Fp+1 gr

V
α+1M⊗OX

L−1,

where (5.10) is locally induced by t and is an isomorphism for α < 0; (5.11), (5.12) are
both locally induced by ∂t and (5.12) is an isomorphism for α > −1 and is surjective for
α = −1.

Proof. The proof is similar to the proof of Lemma 5.2. Let U ⊆ X be an open such that
L|U ∼= OU . If the trivialization of L is changed by g ∈ O×

X(U), then the coordinate t on
C is changed to g · t. Therefore the multiplication by t globalizes to

grVα M → grVα−1M⊗OX
L.

Similarly, one can prove the action of ∂t globalizes to (5.11) and (5.12). Since ωX underlies
the Hodge module QH

X [n], the desired properties for (5.10) and (5.12) follows from the
properties in Definition 2.5 and Remark 2.6 (QH

X [n] has strict support X). �

Proposition 5.10. Let D be an effective divisor on a complex manifold X. Fix k ∈ N.

(I) If α ≤ β, then Ik,α(D) ⊆ Ik,β(D). The sequence of ideal sheaves {Ik,α(D)}α∈Q is
discrete and right continuous, the set of jumping numbers is discrete.

(II) One has Ik,<k(D) = OX .
(III) For any α, there exist morphisms

(5.13) Ik,α(D) → Ik,α−1(D)⊗OX(D),

(5.14) Ik,α(D) → Ik+1,α+1(D),

(5.15) Gk,α(D) → Gk+1,α+1(D),

so that (5.13) is an isomorphism for α < 0, (5.14) is an isomorphism for α ≥ −1
and (5.15) is isomorphic for α > −1, surjective for α = −1.

(IV) For k ≥ 1, there are two short exact sequences:

0 → Lk ⊗ Ik,0(D)⊗ ωX → Lk+1 ⊗ Ik,−1(D)⊗ ωX → grF−n+k ωX(∗D) → 0,(5.16)

0 → grF−n+k ωX(!D)⊗ L→ Lk ⊗ Gk−1,−1(D)⊗ ωX → Lk ⊗ Gk,0(D)⊗ ωX → 0,(5.17)

where (ωX(∗D), F ) and (ωX(!D), F ) are filtered D-modules underlying the mixed
Hodge modules j∗Q

H
X\D[n] and j!Q

H
X\D[n], and j : X \D →֒ X is the open embed-

ding.
(V) Let x ∈ D and fx be the local function so that fx(x) = 0 and div(fx) = D locally.

Then the set of roots of the Bernstein-Sato polynomial of fx is the set of jumping
numbers of {Ik,•(D)x} for all k, modulo Z.

Remark 5.11. For k = 0, we have I0,<0(D) = OX , which agrees with the fact that one
only consider J (βD) for β > 0, using I0,<α(D) = J (−αD). But for k ≥ 1, we can have
α ≥ 0, which provides new information and will be useful in applications. For k = 0, the
isomorphism (5.13) for α < 0 recovers the well-known periodicity of jumping numbers for
multiplier ideals [36, Example 9.3.24]. One can compare (V) with [47, Proposition 6.14]
for Hodge ideals.
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Proof. The statement (I) follows from properties of V -filtration in Definition 2.1.
For (II), if α ≥ k, the surjectivity of (5.12) for α ≥ −1 induces a surjection

F−n−1 gr
V
α−k−1M ։ F−n+k gr

V
α M⊗ L−k−1.

Since F−n−1M = 0 by Lemma 5.2, we have F−n+k gr
V
α M = 0 for α ≥ k. This means

that F−n+kM ⊆ V<kM and therefore

grF−n+k V<kM = grF−n+k M,

i.e. Ik,<k(D) = OX . This proves (II).
For (III), the existence and properties of (5.13), (5.14) and (5.15) follow from Lemma

5.9 and Definition 5.3, except for the property of (5.14). To prove the property of (5.14),
i.e.

Ik,α(D)
∼−→ Ik+1,α+1(D), whenever α ≥ −1,

let us consider the following commutative diagram

0 Ik,α(D) Ik,k(D) Ik,k(D)/Ik,α(D) 0

0 Ik+1,α+1(D) Ik+1,k+1(D) Ik+1,k+1(D)/Ik+1,α+1(D) 0,

where vertical arrows come from (5.14). It is clear by (II) that the second vertical
map is an isomorphism. The third vertical map is also an isomorphism by (5.15), since
Ik,k(D)/Ik,α(D) is a finite extension of Gk,β(D) for β ∈ (α, k] and β > α ≥ −1. We
conclude by snake lemma that the first vertical map is an isomorphism as well.

To prove (IV), let j : X \D →֒ X and i : D →֒ X be the open and closed embeddings.
We use the functorial triangles from [62, (4.4.1)]. Since i∗(H

0(i!QH
X [n])) = 0, we have a

short exact sequence of mixed Hodge modules

(5.18) 0 → QH
X [n] → j∗Q

H
X\D[n] → i∗(H

1i!QH
X [n])(−1) → 0,

with the underlying filtered D-modules

(5.19) 0 → (ωX , F ) → (ωX(∗D), F ) → i∗(H
1i!(ωX , F )) → 0.

Since QH
X [n] has strict support X , the underlying filtered D-module of i∗(H

1i!QH
X [n]) can

be computed as the cokernel of the injective morphism

var :
(
grV0 M, F• gr

V
0 M

)
→
(
grV−1M⊗ L, F• gr

V
−1M⊗ L

)
,

where locally var = t by Lemma 5.9. Since grF−n ωX = ωX and grF−n+k ωX = 0 for k ≥ 1,
combined with (5.6) and (5.19), one has a short exact sequence for k ≥ 1:

(5.20) 0 → ωX ⊗ Lk ⊗ Gk,0(D) → ωX ⊗ Lk+1 ⊗ Gk,−1(D) → grF−n+k ωX(∗D) → 0.

By (III), one has Ik,<0(D) ∼= L⊗Ik,<−1(D) and thus it gives (5.16). In addition, we also
obtain

(5.21) ωX ⊗ L⊗ G0,−1(D) ∼= grF−n ωX(∗D)

ωX
,

which will be used in later sections.
Now, let us consider the exact sequence dual to (5.18):

0 → i∗(H
−1i∗QH

X [n]) → j!Q
H
X\D[n] → QH

X [n] → 0.

Dually, becauseQH
X [n] has strict supportX , the underlying filtered D-module of i∗(H

−1i∗QH
A [g])

is computed by the kernel of the surjective morphism

can :
(
grV−1M, F•−1 gr

V
−1M

)
→
(
grV0 M⊗ L−1, F• gr

V
0 M⊗ L−1

)
,
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where locally can = ∂t by Lemma 5.9. This leads to (5.17).
The statement (V) follows from a result of Malgrange [39]: every root of the Bernstein-

Sato polynomial of a function f must be the eigenvalue of the monodromy operator on
the nearby cycle ψfC, modulo Z, and vice versa. On the other hand, by (III) we know
that modulo Z every jumping number is equal to a jumping number in [−1, 0), which is
the range of α in nearby cycles, see (2.2). �

Remark 5.12. The property F−n+k gr
V
α M = 0 for α ≥ k is the global version of [9,

2.1.4].

Remark 5.13. It is impossible to upgrade (5.17) to a short exact sequence

0 → grF−n+k ωX(!D)⊗ L→ Lk ⊗ Ik−1,−1(D)⊗ ωX → Lk ⊗ Ik,0(D)⊗ ωX → 0.

Because in general it is not true that the morphism Ik−1,<−1(D) → Ik,<0(D) locally
induced by ∂t is an isomorphism. For example, by (5.5) and Lemma 9.11 we will see that
I0,<−1(Θ) = OA(−Θ) and I1,<0(Θ) = OA, where (A,Θ) is an indecomposable principally
polarized abelian variety.

5.3. Higher multiplier ideals of Q-divisors. The definition of higher multiplier ideals
can be extended to Q-divisors, although the twisting causes some complications. Suppose
that D is an effective divisor on X , defined by a global section s ∈ H0(X,L). For any
integer m ≥ 1, we denote by Mm the Hodge module on the total space of the line bundle
Lm, obtained by the graph embedding along the section sm defining the divisor mD.
Let (Mm, F•Mm) be the underlying filtered D-module. It follows from Proposition 2.12
(applied locally) that we have an isomorphism of OX-modules

F−n+kVmαM1
∼= F−n+kVαMm,

for α ≤ 0 and k ∈ Z. In light of Definition 5.3, this is saying that

(5.22) Ik,mα(D)⊗ OX(kD) ∼= Ik,α(mD)⊗ OX(kmD).

Both sides are torsion-free coherent OX-modules of rank 1. We can use this formula in
order to extend the definition of higher multiplier ideals to effective Q-divisors.

Let E be an effective Q-divisor on a complex manifold X . Let m ≥ 1 be a positive
integer with the property that mE has integer coefficients. For α ≤ 0 and k ∈ N, we
then define the torsion-free coherent OX-module

Sk,α(E) = Ik,α(E)⊗ OX(kE) =
def

Ik,α/m(mE)⊗ OX(kmE).

Of course, the notation on the left-hand side is purely symbolic, since OX(kE) does
not make sense as a line bundle. As a consequence of Proposition 2.12, the resulting
OX-module is (up to isomorphism) independent of the choice of m.

For k = 0, we get a well-defined ideal sheaf I0,α(E) in this way. As expected, it agrees
with the usual multiplier ideal sheaf of the Q-divisor −(α + ε)E for small ε > 0.

Lemma 5.14. Let E be an effective Q-divisor on a complex manifold. Then

I0,<α(E) = J (X,−αE)
for every α ≤ 0.

Proof. Let m ≥ 1 be such that mE has integer coefficients. Then by definition and (5.5),

I0,<α(D) = I0,<α/m(mE) = J
(
X,− α

m
·mE

)
= J (X,−αE),

the last equality being of course a basic property of multiplier ideals. �
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For k ≥ 1, it is only the rank-one torsion-free sheaf Sk,α(E) = Ik,α(E)⊗ OX(kE) that
is globally well-defined. In order to get an actual sheaf of ideals, we observe that the
reflexive hull of Sk,α(E) is a line bundle. Consequently, we have

Sk,α(E) = I ′
k,α(E)⊗ Sk,α(E)

∗∗

for a unique coherent sheaf of ideals in OX. By construction, the cosupport of this ideal
sheaf has codimension ≥ 2 in X . In the case of a Z-divisor D, this ideal I ′

k,α(D) is the
result of removing from Ik,α(D) its divisorial part. All the local properties of higher
multiplier ideals therefore carry over to the setting of Q-divisors. We leave the details to
the interested readers.

5.4. Comparison with the microlocal V -filtration. We compare the higher multi-
plier ideals with Saito’s microlocal V -filtration [64, 65]. To recall the definition from [65],
we need to temporarily work with left D-modules and decreasing V -filtrations. First let
us consider the local situation: let X be a complex manifold of dimension n and let f be
a holomorphic function on X . Consider the graph embedding

if : X → X × Ct, x 7→ (x, f(x)),

where t is the coordinate on C and the following two filtered left D-modules

(5.23) (Bf , F ) := (if )+(OX , F ), (B̃f , F ) := OX ⊗C (C[∂t, ∂
−1
t ], F ).

Here (if )+ is the direct image functor for filtered D-modules and Bf
∼= OX ⊗CC[∂t]. The

Hodge filtration on Bf and B̃f are defined by

FkBf :=
∑

0≤ℓ≤k

OX ⊗ ∂ℓt , FkB̃f :=
∑

ℓ≤k

OX ⊗ ∂ℓt ,

so that

grFk Bf = OX ⊗ ∂kt , ∀k ∈ N, and grFk B̃f = OX ⊗ ∂kt , ∀k ∈ Z.

Therefore, there is a natural isomorphism:

(5.24) OX ⊗ 1 ∼= grF0 B̃f .

The microlocal V -filtration on B̃f along t = 0 is defined by

(5.25) V βB̃f =

{
V βBf ⊕ (OX [∂

−1
t ]∂−1

t ) if β ≤ 1,

∂−j
t · V β−jB̃f if β > 1, β − j ∈ (0, 1].

Here ∂tt−α acts nilpotently on grαV Bf . The microlocal V -filtration on OX is then induced
by (5.24)

Ṽ βOX ⊗ 1 := grF0 V
βB̃f .

Then we have the following statement.

Lemma 5.15. With the notation above. If 0 < β ≤ 1 and k ∈ N, then

Ṽ k+βOX ⊗ ∂kt = grFk V
βBf .

under the identification OX ⊗ ∂kt = grFk Bf .

Proof. Let u ∈ Ṽ k+βOX . Since k ∈ N and β ∈ (0, 1], by (5.25) there exist an integer
ℓ ≥ 0 and elements u−ℓ, u−ℓ+1, . . . u0 ∈ OX , such that

• u = u0,
• ∑−ℓ≤i≤0 ui ⊗ ∂it ∈ V k+βB̃f ∩ F0B̃f , where

∂kt · V k+βB̃f = V βBf ⊕OX [∂
−1
t ]∂−1

t .
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Therefore ∑

−ℓ≤i≤0

ui ⊗ ∂k+i
t = ∂kt · (

∑

−ℓ≤i≤0

ui ⊗ ∂it) ∈ V βBf ⊕OX [∂
−1
t ]∂−1

t .

Since k ≥ 0 and u⊗ ∂kt = u0 ⊗ ∂kt , we know that
∑

k+i≥0

ui ⊗ ∂k+i
t ∈ V βBf ∩ FkBf .

Hence the class of u⊗∂kt is an element in grFk V
βBf via the isomorphism grFk Bf

∼= OX⊗∂kt .
This induces a map

Ṽ k+βOX ⊗ ∂kt → grFk V
βBf ,(5.26)

u⊗ ∂kt 7→ [u⊗ ∂kt ].

Now, let us show (5.26) is an isomorphism. First, suppose that [u⊗∂kt ] = 0 ∈ grFk V
βBf ,

then u ⊗ ∂kt ∈ Fk−1V
βBf . We must have u = 0 and hence (5.26) is injective. For the

surjectivity, assume [v⊗∂kt ] ∈ grFk V
βBf for some v ∈ OX , then there exist v0, . . . , vk ∈ OX

such that
v = vk, and

∑

0≤i≤k

vi ⊗ ∂it ∈ V βBf .

Then ∑

0≤i≤k

vi ⊗ ∂i−k
t ∈ ∂−k

t · V βBf ∩ F0B̃f ⊆ V k+βB̃f ∩ F0B̃f .

Therefore v ⊗ 1 ∈ Ṽ k+βOX ⊗ 1, this means that v ∈ Ṽ k+βOX . Therefore (5.26) is also
surjective.

�

Let D be an effective divisor on a complex manifold X . There is a microlocal V -
filtration V •OX along D, see [41, §1]. The point is that the filtration Ṽ •OX does not
depend on the choice of a local defining equation, see [41, Remark 1.3].

Corollary 5.16. With the notation above. For any k ∈ N, one has

Ik,α(D) =

{
Ṽ k−αOX , if α ≥ −1,

Ṽ k−(α+t)OX ⊗OX(−tD), if α < −1 and t ∈ N so that −1 ≤ α + t < 0.

Conversely, for any rational number β > 0, we have

(5.27) Ṽ βOX = I⌊β−ǫ⌋,⌊β−ǫ⌋−β(D) =

{
I⌊β⌋,−{β}(D) if β 6∈ N,

Iβ−1,−1(D) if β ∈ N≥1.

Proof. We can check the statements locally and assume D = div(f) for some f : X → C.
Then M in Set-up 5.1 becomes ω̃X := (if )+ωX . We have the following transition rules
between left and right D-modules:

ωX ⊗OX
V βBf = V−βω̃X , ωX ⊗OX

grFk BF
∼= grF−dimX+k ω̃X .

Then for any k ∈ N and α ∈ [−1, 0), by Lemma 5.15 and (5.4) we have

Ṽ k−αOX ⊗ ∂kt = grFk V
−αBf = grF−dimX+k Vαω̃X ⊗OX

ω−1
X = Ik,α(D)⊗ ∂kt ,

which gives

Ik,α(D) = Ṽ k−α(D), when −1 ≤ α < 0.

The case α ≥ 0 follows from (5.14) being an isomorphism for α ≥ −1. If α < −1, we use
that (5.13) is an isomorphism when α < 0. �
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Corollary 5.17. One has

Ik+1,α(D) ⊆ Ik,α(D), for all α ∈ Q, k ∈ N.

More generally, if α1, α2 ≥ −1, then

Ik1,α1(D) ⊆ Ik2,α2(D), whenever k1 − α1 ≥ k2 − α2.

Proof. It follows from Corollary 5.16 and that Ṽ •OX is an decreasing filtration. �

5.5. Comparison with (weighted) Hodge ideals. We compare higher multiplier
ideals with the (weighted) Hodge ideals from the work of Mustaţă-Popa and Olano
[45, 46, 52].

Let D be a reduced effective divisor on a smooth algebraic variety X . Denote by
Ik(βD) the k-th Hodge ideal associated to the Q-divisor βD. By [45, Proposition 10.1]
and (5.5), one has

I0(D) = J (X, (1− ǫ)D) = I0,−1(D).

for some 0 < ǫ ≪ 1. For general k, we have the following comparison.

Lemma 5.18. For any rational number −1 ≤ α < 0, we have

Ik,α(D) ≡ Ik(−αD) mod ID.

Proof. By [47, Theorem A’], for any β > 0, one has

(5.28) Ik(βD) ≡ Ṽ k+βOX mod ID,

where Ṽ •OX is the microlocal V -filtration along D. Since −α > 0, together with Corol-
lary 5.16 this gives

Ik,α(D) ≡ Ṽ k−αOX ≡ Ik(−αD) mod ID.

�

Example 5.19. Assume D has an ordinary singularity at x with multx(D) = m ≥ 2. In
Theorem 6.6 we compute Ik,α(D) and it implies the following: write dimX = n = km+r
with k ∈ N and 0 ≤ r ≤ m− 1, then one has

Ik,α(D)x = Ik (−αD)x , ∀max(−1,−1 − r − 1

m
) ≤ α < 0,

i.e. (5.28) holds without ID. This can be checked as follows: set α = −p/m such that
p ∈ [1, m] and p ≤ m+ r − 1. Then (k − 1)m+ ⌈−αm⌉ < n and k ≤ n− 2, so that we
can apply (6.17) in Theorem 6.6 and [46, Example 11.7] to get

Ik(−αD)x = m
p−r
x = m

km+⌈−αm⌉−n
x = Ik,−α(D)x.

The first interesting case is n = km, r = 0 and α = −1. In this case, Ik(D)x is not
known; on the other hand, (6.17) implies that Ik,−1(D)x = (JF ,m

m
x ), where F is the

equation of P(CxD) inside P(TxX). If k > n/m, there are examples where the equality
(5.28) fails without ID: D = div(f), f = x3+y3+z3 with n = m = 3, k = 2 and α = −1.
This is a consequence of [65, §2.4, Remarks (ii)] and Corollary 5.16.

Example 5.20. Weighted homogeneous polynomials with isolated singularities provide
another example where (5.28) holds without ID for small k, see Example 6.20.

Next, we give a comparison with weighted Hodge ideals [52], generalizing Lemma 5.18.
To do this, let us start by giving a more precise comparison than Lemma 5.18 for α = −1.
For k = 0, we have

(5.29)
I0,−1(D)

OX(−D)
= G0,−1(D) =

grF−nOX(∗D)⊗OX(−D)

OX(−D)
=

I0(D)

OX(−D)
,
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where the second equality uses (5.21) and grF−n ωX(∗D) ∼= ωX ⊗ grF0 OX(∗D).

Lemma 5.21. For k ≥ 1, we have an isomorphism

Ik,−1(D)

Ik,0(D)⊗OX(−D)
∼= Ik(D)

Ik−1(D)⊗OX(−D)
.

Proof. By definition, one has FkOX(∗D) = OX((k + 1)D)⊗ Ik(D). This gives a natural
inclusion Ik−1(D)⊗OX(−D) →֒ Ik(D) and thus for k ≥ 1 one has

grFk OX(∗D)⊗OX((−k − 1)D) =
Ik(D)

Ik−1(D)⊗OX(−D)
.

On the other hand, recall from (5.16) that there is a short exact sequence for k ≥ 1:

(5.30) 0 → Ik,0(D)⊗OX(−D) → Ik,−1(D) → grFk OX(∗D)⊗OX((−k − 1)D) → 0,

where grFk OX(∗D)⊗ ωX
∼= grF−n+k ωX(∗D). This finishes the proof. �

Remark 5.22. Lemma 5.21 implies Lemma 5.18 when α = −1. It remains interesting
to see if Lemma 5.21 extends to arbitrary α.

Recall from [52] the weighted Hodge ideal is defined by

FkWn+ℓOX(∗D) = OX((k + 1)D)⊗ IWℓ
k (D),

so that the weight starts with ℓ = 0. If k = 0, it is studied as the weighted multiplier
ideal in [51]. Now we generalize Lemma 5.21 to the following.

Lemma 5.23. Fix ℓ ≥ 0. For k ≥ 1, there is an isomorphism

(5.31)
WℓIk,−1(D)

WℓIk,0(D)⊗OX(−D)
∼= I

Wℓ+1

k (D)

I
Wℓ+1

k−1 (D)⊗OX(−D)
.

For k = 0, we have

(5.32) WℓI0,−1(D) = I
Wℓ+1

0 (D), WℓG0,−1(D) = I
Wℓ+1

0 (D)/OX(−D).

Proof. For k ≥ 1, the short exact sequence (5.20) implies that

0 → Gk,0(D)⊗OX(−D) → Gk,−1(D) → grFk OX(∗D)⊗OX((−k − 1)D) → 0.

Since the weight filtration is strict, one has

WℓGk,−1(D)

WℓGk,0(D)⊗OX(−D)
∼= I

Wℓ+1

k (D)

I
Wℓ+1

k−1 (D)⊗OX(−D)
,

where the shift by 1 comes from the weight convention on grV−1M in (2.3) and the Tate
twist in (5.18). Because the weight filtration W•Ik,α(D) is induced by W•Gk,α(D) and we
have an isomorphism Ik,<0(D)⊗OX(−D) ∼= Ik,<−1(D) by (5.13), then (5.31) follows.

Similarly, (5.29) implies that WℓG0,−1(D) = I
Wℓ+1

0 (D)/OX(−D). Since WℓI0,−1(D) is
the preimage of WℓG0,−1(D) under the natural map I0,−1(D) → G0,−1(D), we must have

I
Wℓ+1

0 (D) ⊆WℓI0,−1(D).

Because both ideals I
Wℓ+1

0 (D) and WℓI0,−1(D) have the same quotient after OX(−D)
(which is WℓG0,−1(D)), they must equal to each other.

�
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Corollary 5.24. For any k ≥ 1, one has

WℓIk,−1(D) ≡ I
Wℓ+1

k (D) mod ID, for any ℓ.

For k = 0, then

W−1I0,−1(D) = OX(−D), W0I0,−1(D) = adj(D), Wn−1I0,−1(D) = I0,−1(D),

and

WℓG0,−1(D) =

{
0 if ℓ ≤ −1,

adj(D)/OX(−D) if ℓ = 0,

where adj(D) is the adjoint ideal of D.

Proof. Besides Lemma 5.23, we also use the fact that IW0
0 (D) = OX(−D), IWn

0 (D) =
I0(D) and IW1

0 (D) = adj(D) from [51, Theorem A]. �

Remark 5.25. Using the comparison result above, many results of weighted multiplier
ideals and weighted Hodge ideals from [51, 52] can be translated to W•Ik,α(D). We leave
the details to interested readers.

5.6. Minimal exponents as jumping numbers. Let f be a holomorphic function on
X . The minimal exponent of f , denoted by α̃f in [64], is defined to be the negative of the

largest root of the reduced Bernstein-Sato polynomial b̃f (s) := bf (s)/(s+1), where bf (s)
is the Bernstein-Sato polynomial of f . If D is an effective divisor, the minimal exponent
is defined by

(5.33) α̃D = min
x∈D

α̃fx ,

where fx is the local function of D such that fx(x) = 0. We can interpret α̃D as the first
jumping number of higher multiplier ideals, up to a shift.

Lemma 5.26. Let D be an effective divisor on X, then

α̃D = min{k − α, k ∈ N, α ∈ (−1, 0] | Gk,α(D) 6= 0}
= min{k − α, k ∈ N, α ∈ (−1, 0] | Ik,<α(D) ( OX}.

Proof. For the first equality, because Gk,α(D) 6= 0 if and only if Gk,α(fx) 6= 0 for some
local function fx of D, we can assume D = div(f) with f : X → C. By [42, Proposition
2.14] and [65, (1.3.8)], one has

α̃D = min{k + β, k ∈ N, β ∈ [0, 1) | grFk grβV Bf 6= 0},
where Bf is the direct image of OX from (5.23). Then the first equality follows from the
right-to-left D-module transformation

ωX ⊗ Lk ⊗ Gk,α(D) ∼= grF−n+k gr
V
α M = ωX ⊗ grFk gr−α

V Bf .

To prove the second equality, write α̃D = k − α with k ∈ N, α ∈ (−1, 0], such that
Gk,α(D) 6= 0 and

(5.34) Gj,β(D) = 0, ∀j ∈ N, β ∈ (−1, 0], and j − β < k − α.

Now it suffices to show
Gk,β(D) = 0, ∀β ∈ (α, k),

since Proposition 5.10 gives Ik,<k(D) = OX . This can be proved as follows: if β ∈ (α, 0],
then Gk,β(D) = 0 by (5.34); if β ∈ (0, k), then (5.15) being isomorphism for α > −1
implies that

Gk,β(D) ∼= Gk−1,β−1(D) ∼= . . . ∼= Gk−⌊β⌋−1,β−⌊β⌋−1(D) = 0,
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because β − ⌊β⌋ − 1 ∈ (−1, 0]. This finishes the proof.
�

6. Examples

In this section, we compute higher multiplier ideals for several important classes of divi-
sors, including ordinary singularities, normal crossing divisors and diagonal hypersurfaces
(for example cusps defined by x2 + y3). They are crucial for the further investigation of
local properties of higher multiplier ideals in §7.

6.1. Ordinary singularities. Let D be an effective divisor on a complex manifold X
of dimension n ≥ 3. Following [45], we say a point x ∈ D is an ordinary singular point
if the projectivized tangent cone of D at x, denoted by P(CxD), is smooth. We give a
detailed analysis of Ik,α(D)x and Gk,α(D)x, see Theorem 6.6.

Since this is a local question, let us first analyze the local model, which is the cone over
a smooth hypersurface in a projective space. The set-up is as follows.

Set-up 6.1. -

• Let n ≥ 3 and let (Z0, . . . , Zn−1) be a homogeneous coordinate of Pn−1. Let Xm

be a smooth hypersurface in Pn−1 of degree m ≥ 2, cut out by a homogeneous
polynomial F . Let D = {F = 0} ⊆ Cn be the affine cone over Xm. Denote by

S = Sym•(Z0, . . . , Zn−1), JF = S · ( ∂F
∂Z0

, . . . ,
∂F

∂Zn−1
)

the homogeneous coordinate ring of Pn−1 and the Jacobian ideal of F .
• Let W → Pn−1 be the degree m cyclic covering of Pn−1 branched along Xm,
associated to the section F ∈ H0(Pn−1,OPn−1(1)⊗m). Let (Z0, . . . , Zn−1, t) be a
homogeneous coordinate on Pn so that W can be realized as a smooth hypersur-
face of degree m:

W = {F (Z0, . . . , Zn−1)− tm = 0} ⊆ Pn.

• There is an e2πi/m-action on Pn induced by

t 7→ e2πi/mt, Zi 7→ Zi,

which induces an action on W . Denote by Hp,q
prim(W,C) the primitive (p, q)-

cohomology (same for Hp,q
prim(Xm)) and Hp,q

prim(W,C)λ the λ-eigenspace of the ac-
tion.

To explain the computation on Gk,α(D), let us first relate the (p, q)-cohomology of the
cyclic cover with the Jacobian ring S/JF .

Lemma 6.2. With Set-up 6.1. Fix integers p ∈ [1, m] and k ∈ [0, n− 1], then

Hn−1−k,k
prim (W,C)e2πip/m

∼=
{
0, if p = m,

(S/JF )
m(k+1)−p−n, if 1 ≤ p ≤ m− 1.

Hn−1−k,k−1
prim (Xm,C) ∼= (S/JF )

mk−n,

where (S/JF )
ℓ is the degree ℓ component, with the convention that it is zero if ℓ 6∈ N.

Proof. Denote by

Jf := Sym•(Z0, . . . , Zn) ·
(
tm−1,

∂F

∂Z0

, · · · , ∂F

∂Zn−1

)
,
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the Jacobian ideal of f = F − tm, where Zn = t. Since W = {f = 0} ⊆ Pn is a smooth
hypersurface of degree m, by [73, Corollary 6.12], there is a natural isomorphism

(6.1) (Sym•(Z0, . . . , Zn)/Jf)
m(k+1)−n−1 ∼−→ Hn−1−k,k

prim (W ),

Recall that there is an action of e2πi/m on Sym•(Z0, . . . , Zn), which induces an action on
W and Sym•(Z0, . . . , Zn)/Jf .

Claim 6.3. The isomorphism (6.1) induces an isomorphism of eigenspaces:
(6.2)(

(Sym•(Z0, . . . , Zn)/Jf)
m(k+1)−n−1

)
e2πi(p−1)/m

∼−→ Hn−1−k,k
prim (W )e2πip/m, ∀p ∈ [1, m].

Proof of claim. Let us recall the construction of (6.1) using Griffiths’ residue. Let Ω be
a generator of H0(Pn, ωPn(n+ 1)) given by

Ω :=
∑

i

(−1)iZidZ0 ∧ . . . ∧ dẐi ∧ . . . ∧ dZn.

where Zn = t. Denote U = Pn \W and consider the following composition of maps

H0(Pn,OPn(m(k + 1)− n− 1)) → F n−kHn(U,C) ∼= F n−k−1Hn−1
prim(W )

։ grn−k−1
F Hn−1

prim(W ) = Hn−1−k,k
prim (W ),

where the first map associates a polynomial P to the residue of the class of the mero-
morphic form PΩ

fk+1 . Griffiths [22] showed that this composition map is surjective and the

kernel is generated by (Jf)
m(k+1)−n−1, so this induces (6.1). Observe that

(e2πi/m · Ω) = e2πi/mΩ, e2πi/m · f = f,

hence

e2πi/m · PΩ
fk+1

=
(e2πi/m · P )(e2πi/m · Ω)

(e2πi/m · f)k+1
= e2πi/m

(e2πi/m · P )Ω
fk+1

.

Therefore

e2πi/m · P = e2πi(p−1)/mP ⇐⇒ e2πi/m · ΩP

fk+1
= e2πip/m

ΩP

fk+1
,

and (6.2) follows. �

To finish the proof, let us fix an integer ℓ ≥ 0 and analyze (Sym•(Z0, . . . , Zn)/Jf)
ℓ
e2πi(p−1)/m ,

which is generated by the class of tp−1. There are two cases.

• If p = m, then (Sym•(Z0, . . . , Zn)/Jf)
ℓ
e2πi(p−1)/m = 0 for all ℓ, because the generat-

ing class tm−1 is zero in Sym•(Z0, . . . , Zn)/Jf .
• If 1 ≤ p ≤ m− 1, then

(Sym•(Z0, . . . , Zn)/Jf)
ℓ
e2πi(p−1)/m

∼= (Sym•(Z0, . . . , Zn−1)/JF )
ℓ−(p−1) · tp−1.

We then obtain the statement for W by setting ℓ = m(k + 1) − n − 1 and using (6.2).
The statement for Xm directly follows from [73, Corollary 6.12].

�

Let us also recall a formula regarding the direct image of filtered D-modules.

Lemma 6.4. Let X be a complex manifold and let i : X →֒ X × Cn be the closed
embedding induced by x 7→ (x, 0). Let (M, F•M) be a filtered D-module on X, then

grFp (i+M) ∼=
⊕

ℓ≥0

(grFp−ℓM)⊕(
n+ℓ−1

ℓ ).
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Proof. Let t1, . . . , tn be the holomorphic coordinates on Cn and set ∂i = ∂/∂ti. It follows
immediately from the formula

i+M ∼=
∑

a1,...,an∈N
M⊗ ∂a11 · · ·∂ann

with filtration given by

Fp(i+M) ∼=
∑

a1,...,an∈N
Fp−(a1+···+an)M⊗ ∂a11 · · ·∂ann .

�

Proposition 6.5. With Set-up 6.1. Denote by x ∈ D the unique cone point. Fix k ∈ N
and α ∈ (−1, 0]. Then

suppGk,α(D) ⊆ {x} and Gk,α(D) = 0, whenever αm 6∈ Z.

Furthermore, assume αm ∈ Z, then the weight filtration on Gk,α(D) is trivial and the
following hold.

• If m(k − α)− n ∈ [0, m− 1] and k ∈ [0, n− 1], one has

(6.3) Gk,α(D)x ∼= (S/JF )
m(k−α)−n,

where S = Sym•(Z0, . . . , Zn−1). More precisely,

(6.4) Gk,α(D)x ∼=
{
Hn−1−k,k

prim (W,C)e2πiα if α ∈ (−1, 0),

Hn−1−k,k−1
prim (Xm,C) if α = 0.

• In general, we have

(6.5) Gk,α(D)x ∼=
⊕

0≤ℓ≤m(k−α)−n
m

k−ℓ∈[0,n−1]

(
(S/JF )

m(k−α−ℓ)−n
)⊕(n+ℓ−1

ℓ )
.

Proof. Denote by X = Cn. Since α ∈ (−1, 0], it is clear that the support of Gk,α(D) is
contained in the support of the vanishing cycle of CX along the divisor D by (2.2), which
is DSing = {x}.

To compute Gk,α(D), the plan is to use the birational formula in Proposition 2.9 in
terms of a log resolution. Let π : Y → X be the blow up of X along x, which is a log
resolution of (X,D). We have π∗D = D̃ +mE, where E is the exceptional divisor and
D̃ is the proper transform of D. Moreover

(6.6) E ∼= Pn−1, E ∩ D̃ ∼= Xm, OE(E) ∼= OPn−1(−1).

The geometry is summarized in the following diagram

Xm
∼= E ∩ D̃ Y E

{x} X {x}

iXm

πXm π

iE

πE

i

i

Let MX ,MY be the D-module associated to the total embedding of the divisor D and
π∗D, respectively, as in the set up of Proposition 2.9. Then (2.11) implies that

grVα MX = 0, whenever αm 6∈ Z.

From now on, we assume αm ∈ Z and write

α = −q/m, for some 0 ≤ q ≤ m− 1.



HIGHER MULTIPLIER IDEALS 52

There are two cases. Assume α ∈ (−1, 0), then E is the only divisor on Y whose
multiplicity multiplies α is equal to an integer, so Proposition 2.9 implies that the weight
filtration on grVα MY is trivial (so are grVα MX and Gk,α(D)x). Then (2.7) and (2.8) gives

(grVα MX , F•) =R
0π+(gr

V
α MY , F•)

=R0(π ◦ iE)+(Vα,J , F•+1)

=i+ ◦R0πE,+(Vα,J , F•+1),

where J = {E}. Denote by (Nα, F•) = R0πE,+(Vα,J , F•+1), which is a filtered D-module
over π(E) = {x}. Then by (2.9) and the formula for direct images of filtered D-modules
under projection (πE is a projection), one has

grF−n+k Nα = R0πE,∗(gr
F
−n+k+1DRE(Vα,J))

= R0πE,∗(gr
F
− dimE+k DRE(Vα,J))

= Hk(E,ΩdimE−k
E (logE ∩ D̃)⊗OE(⌊απ∗D⌋|E))

∼= Hk(Pn−1,Ω
(n−1)−k
Pn−1 (logXm)⊗OPn−1(−(m− q))).

The last equality uses (6.6) to obtain

OE(⌊απ∗D⌋|E) = OE((−D̃ − qE)|E) ∼= OPn−1(−(m− q)).

Now let us identify the cohomology group above with (p, q)-cohomology of W . Denote
by µ : W → Pn−1 the cyclic covering map. The e2πi/m-action on W induces an action on
µ∗Ω

p
W , whose eigenspace decomposition is (see [68, §10] or [20, §3])

µ∗Ω
p
W

∼= Ωp
Pn−1 ⊕

m−1⊕

i=1

Ωp
Pn−1(logXm)⊗OPn−1(−i)

for 0 ≤ p ≤ dimW = n − 1; here Ωp
Pn−1(logXm) ⊗ OPn−1(−ℓ) is the e2πiℓ/m-eigenspace.

Since µ is a finite map, it follows that

Hp,q(W,C) = Hq(W,Ωp
W ) = Hq(Pn−1, µ∗Ω

p
W )

∼=Hq(Pn−1,Ωp
Pn−1)⊕

⊕

1≤i≤m−1

Hq
(
Pn−1,Ωp

Pn−1(logXm)⊗O(−i)
)
.

Moreover, we can also identify the eigenspaces:

Hn−1−k,k
prim (W,C)e−2πiq/m = Hn−1−k,k

prim (W,C)e2πi(m−q)/m(6.7)

∼= Hk(Pn−1,Ω
(n−1)−k
Pn−1 (logXm)⊗O(−(m− q))),

for 1 ≤ q ≤ m− 1. Hence we conclude that for α ∈ (−1, 0)

(6.8) (grVα MX , F•) = i+(Nα, F•), and grF−n+k Nα
∼= Hn−1−k,k

prim (W,C)e2πiα,

where (Nα, F•) is a filtered D-module over {x}.
Assume α = 0. Since π : Y → X is the blow up of Cn along the origin, it is a direct

computation to see that

R0π+ωY [n] = ωX [n]⊕ i+P, where P =

{
0, if n is odd,

ωx, if n is even.

Here ωx is the constant D-module on {x} and the shift of Hodge filtration depends on n
(see below). Since i+P supports on {x}, we have grV0 (i+P) ∼= i+P. Therefore

(grV0 MX , F•)⊕ i+(P, F•) ∼= R0π+(gr
V
0 MY , F•).
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We claim that

(grV0 MY , F•) ∼= iXm,+(ωXm, F•+1).(6.9)

This is deduced in the following way. Since the nilponent operator N on grV−1MY satisfies
N2 = 0, so (2.8) in Proposition 2.9 gives

grV0 MY = ImN(grV−1MY )(1) ∼= grW1 grV−1MY (1) ∼= iXm,+(V−1,J , F•)(−1),

where V−1,J is a D-module on Xm and J = {D̃, E}. Moreover, (2.10) implies that
(V−1,J , F•) ∼= (ωXm , F•). This proves (6.9). As a consequence, the weight filtration on
grV0 MY (hence grV0 MX) is also trivial and

(grV0 MX , F•)⊕ i+(P, F•) = i+(N ′
0, F•), grF−n+k N ′

0
∼= Hn−1−k,k−1(Xm,C),

where (N ′
0, F•) = R0πXm,+(ωXm, F•+1), a filtered D-module over {x}. There are two

subcases.

(1) If n is odd, then P = 0 and Hn−1−k,k−1(Xm,C) = Hn−1−k,k−1
prim (Xm,C) (because

Hn−2(Pn−1) = 0).
(2) If n is even, then P = ωx such that grF−n+(n/2) P ∼= Hn/2−1,n/2−1(Pn−1) and

Hn−1−k,k−1(Xm,C) =

{
Hn−1−k,k−1

prim (Xm,C), if k 6= n/2,

Hn−1−k,k−1
prim (Xm,C)⊕Hn/2−1,n/2−1(Pn−1), if k = n/2.

Therefore

(6.10) (grV0 MX , F•) ∼= i+(N0, F•), and grF−n+k N0
∼= Hn−1−k,k−1

prim (Xm,C),

where (N0, F•) is a filtered D-module over {x}.
We claim that in both (6.8) and (6.10), one has

grF−n+k Nα
∼= (S/JF )

m(k−α)−n, whenever α ∈ (−1, 0] and k ∈ [0, n− 1].

Let α = −p/m for some 0 ≤ p ≤ m− 1. By Lemma 6.2, if 1 ≤ p ≤ m− 1, then

grF−n+k Nα
∼= Hn−1−k,k

prim (W,C)e−2πip/m

= Hn−1−k,k
prim (W,C)e2πi(m−p)/m

∼= (S/JF )
m(k+1)−n−(m−p)

= (S/JF )
m(k−α)−n.

If p = 0, then

grF−n+k Nα
∼= Hn−1−k,k−1

prim (Xm,C) ∼= (S/JF )
mk−n = (S/JF )

m(k−α)−n.

Summarizing the computation above, for α ∈ (−1, 0] one has

(grVα MX , F•) = i+(Nα, F•),

grF−n+k Nα
∼=
{
(S/JF )

m(k−α)−n, if 0 ≤ k ≤ n− 1

0, else,

where (Nα, F•) is a filtered D-module over {x}. Thus by Lemma 6.4 we have

grF−n+k gr
V
α MX

∼=
⊕

ℓ≥0

(grF−n+k−ℓNα)
⊕(n+ℓ−1

ℓ )

=
⊕

ℓ≥0, 0≤k−ℓ≤n−1

((S/JF )
m(k−α−ℓ)−n)⊕(

n+ℓ−1
ℓ )
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Note that (S/JF )
p = 0 if p < 0 and Gk,α(D)x ∼= grF−n+k gr

V
α MX (it supports on {x}), one

obtains (6.5).
Moreover, if m(k − α)− n ≤ m − 1 and k ∈ [0, n− 1], then there is only term in the

formula above so that
Gk,α(D)x ∼= (S/JF )

m(k−α)−n.

This gives (6.3) and (6.4) (via Lemma 6.2). We finish the proof of this proposition. �

Theorem 6.6. Let D be an effective divisor on a complex manifold X of dimension n ≥ 2
and let x ∈ D be a singular point of multiplicity m ≥ 2 such that the projectivized tangent
cone P(CxD) is smooth. Let F be the equation of P(CxD) inside P(TxX), (Z0, . . . , Zn−1)
be the local algebraic coordinates of OX,x. Let S be the homogeneous coordinate ring of
P(TxX) and JF = S · ( ∂F

∂Z0
, . . . , ∂F

∂Zn−1
). Let mx ⊆ OX,x be the maximal ideal. For

α ∈ Q, k ∈ N, the following hold.

(1) If α > −1, then

Gk,α(D)x ∼=
⊕

0≤ℓ≤m(k−α)−n
m

k−n−1≤ℓ≤k

(
(S/JF )

m(k−α−ℓ)−n
)⊕(n+ℓ−1

ℓ )
.(6.11)

where (S/JF )
p is the degree p component. In addition, if n ≥ 3, then

(6.12) Gk,α(D)x 6= 0 ⇐⇒ k − α ≥ n

m
and mα ∈ Z.

(2) If α ≥ −1, then

Ik,α(D)x =
∑

ma+deg(vγ )≥m(k−α)−n

OX,x · (JF )a · vγ(6.13)

=
∑

0≤ℓ≤m(k−α)−n
m

OX,x · (JF )ℓ · (S/JF )≥m(k−α−ℓ)−n

where {vγ} is a monomial basis of the ring S/JF and (S/JF )≥p denotes the poly-
nomials generated by vγ with deg vγ ≥ p in S. In particular,

(6.14) Ik,α(D)x = OX,x ⇐⇒ k − α ≤ n

m
,

and

(6.15) Ik,α(D)x ⊆ m
m(k−α)−n−⌊m(k−α)−n

m
⌋

x ,

with equality when m(k − α)− n ≤ m− 1.

Remark 6.7. The dimension assumption n ≥ 3 is necessary for (6.12), otherwise it will
not hold for D = div(x2 + y2) ⊆ C2, where Gk,−1/2(D) = 0 for all k ∈ N (see Example
6.19).

Proof. By shrinking X we can assume X = Cn and work with Set-up 6.1: D ⊆ Cn is the
cone over a smooth hypersurface Xm ⊆ Pn−1 of degree m, x ∈ D is the unique singular
point.

Let us analyze Gk,α(D)x first. If α ∈ (−1, 0], (6.11) follows from (6.5) in Proposition
6.5. If α ∈ (0, k), by the repeated use of the property of (5.15), one has

Gk,α(D)x ∼= Gk−t,α−t(D)x,

where t = ⌊α⌋+ 1 such that α− t ∈ (−1, 0]. Note that k − t− (α− t) = k − α and thus
(6.11) also holds for α. If n ≥ 3, then (S/JF )

q 6= 0 if and only if q ≥ 0. Therefore (6.12)
holds.
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For Ik,α(D), we use Saito’s computation of microlocal V -filtration along F . First,
Corollary 5.16 gives

Ik,α(D)x = Ṽ k−αOX,x, whenever α ≥ −1.

Here Ṽ •OX is the microlocal V -filtration along D. Let {vγ} be a monomial basis of the
ring S/JF and denote by ∂iF = ∂F

∂Zi
. Then [65, (2.2.4)] implies that

(6.16) Ṽ k−αOX,x =
∑

m
∑

i µj+deg(vγ )≥m(k−α)−n

OX,x ·
∏

j

(∂jF )
µj · vγ.

This is because the weight for the homogeneous polynomial F is w = 1/m, so if vγ =∏
i Z

mi
i , then the requirement in [65, (2.2.4)] is

1

m

n∑

i=1

(mi + 1) +
∑

j

µj ≥ k − α.

Since Ja
F is generated by

∏
j(∂iF )

µj with
∑

j µj = a, (6.16) implies that

Ṽ k−αOX,x =
∑

ma+deg(vγ)≥m(k−α)−n

OX,x · Ja
F · vγ.

Then (6.13) and (6.14) follow immediately. For (6.15), one uses that polynomials in
Ik,α(D)x of smallest degrees appear in the term

OX,x · J ℓ
F · (S/JF )≥m(k−α−ℓ)−n,

where ℓ = ⌊m(k−α)−n
m

⌋. This is contained in

m
ℓ(m−1)+m(k−α−ℓ)−n
x = m

m(k−α)−n−⌊m(k−α)−n
m

⌋
x .

�

Remark 6.8. To see that the formula (6.13) for Ik,α(D) implies the formula (6.11) for
Gk,α(D), it suffices to note the following fact. Let {vγ} be a monomial basis of S/JF , then

deg vγ ≤ (m− 1)n, for any vγ.

Remark 6.9. For α ∈ (−1, 0], (partial cases of) the statement (6.12) can be proved in
two more ways. The first way is: since D has an ordinary singularity at x, its minimal
exponent α̃D,x is n/m; this is well-known, for example see [65, (2.5.1)]. Thus Lemma 5.26
implies that

Gk,α(D)x = 0, whenever k − α <
n

m
.

The second method is to use the comparison with Hodge ideals (Lemma 5.18) and a
characterization of vanishing of Hodge ideals for ordinary singularities [46, Corollary
11.8]. We leave the details for interested readers.

Remark 6.10. For weighted homogeneous polynomials with isolated singularities, Saito’s
formula (6.16) works in the same way, see [65, (2.2.4)]. In particular, one can obtain
compute their higher multiplier ideals in a similar fashion.

Corollary 6.11. With the same notation in Theorem 6.6. Write n = km + r for some
k ∈ N and 0 ≤ r ≤ m− 1, then

Gk,−p/m(D)x =





0 if p ∈ [0, r − 1],

m
p−r
x /mp−r+1

x if r ≤ p ≤ min(m− 1, m+ r − 2),

m
m−1
x /(mm

x , JF ) if p = m− 1 and r = 0,
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and

(6.17) Ik,−p/m(D)x =





OX,x if p ∈ [0, r],

m
p−r
x if r ≤ p ≤ min(m,m+ r − 1),

(mm
x , JF ) if p = m and r = 0,

Hence

Gk,−r/m(D)x = OX,x/mx, and Ik,<−r/m(D)x = mx.

Proof. Note that we have m(k − (−p/m)) − n = p − r. So if 0 ≤ p − r ≤ m − 1, then
(6.11) implies that

Gk,−p/m(D)x ∼= (S/JF )
p−r.

The computation for Ik,α(D)x is similar. �

6.2. Normal crossing divisors. Now we turn to normal crossing divisors. Let X be a
complex manifold of dimension n and let

D =
∑

i

miEi, mi ∈ N,

be an effective divisor on X with normal crossing support. Denote by Dred the reduced
part of D and (Dred)sing the singular locus of Dred, i.e.

Dred =
∑

i

Ei, (Dred)sing =
⋃

i 6=j

Ei ∩ Ej .

Denote by IZ the ideal sheaf of a subscheme Z.

Proposition 6.12. Assume α < 0. Then

Ik,α(D) = I0,α(D)⊗OX (−D +Dred)
⊗k ⊗ Ik

(Dred)sing
,

= OX

(
∑

i

(⌈(α + ǫ)mi⌉ − kmi + k)Ei

)
⊗ Ik

(Dred)sing
.

Here (Dred)sing = ∅ when D is smooth. In particular, if D is smooth, then

Ik,α(D) = I0,α(D) = OX(⌊α + 1⌋D).

Remark 6.13. The formulas above for D and mD are compatible with the isomorphism
from (5.22):

Ik,α(mD) ∼= Ik,mα(D)⊗OX(−(m− 1)kD).

Proof. It suffices to prove the formula locally. Assume X is a polydisk in Cn with coor-
dinates x = (x1, . . . , xn) and D = div(xm) for a monomial xm, where

m = (m1, . . . , mn) ∈ Zn
≥0.

Consider the graph embedding

i : X → X × Ct, x 7→ (x, xm).

The change of variables t 7→ t− xm and x 7→ x induces an isomorphism of D-modules

ω̃X := i+ωX
∼=
∑

ℓ≥0

ωX ⊗ ∂ℓt = ωX [∂t],
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where the action of DX×C on ωX [∂t] is as follows: denote by ∂i = ∂/∂xi
and ei =

(0, . . . , 1, . . . , 0) the i-th standard basis vector in Zn
≥0, then

(u⊗ 1) · ∂i = u∂i ⊗ 1− (miux
m−ei)⊗ ∂t

(u⊗ 1) · ∂t = u⊗ ∂t

(u⊗ 1) · f(x, t) = (uf(x, xm))⊗ 1.

We also have

F−n+kω̃X
∼=
∑

0≤ℓ≤k

ωX ⊗ ∂ℓt .

For any α ∈ Q, denote by Vαω̃X the V -filtration along t. For any a = (a1, . . . , an) ∈ Qn,
denote VaωX :=

⋂n
i=1 VaiωX , where VaiωX is the V -filtration along xi. It is direct to check

that

VaiωX =

{
ωX if ai > −1,

OX · (x⌈−ai−1⌉
i ω) if ai ≤ −1,

where ω is a nowhere vanishing canonical form of X . If α < 0, by [62, Theorem 3.4] one
has

Vαω̃X = (VαmωX ⊗ 1) · DX , where αm = (αm1, . . . , αmn).

Moreover, if we denote by FpVαω̃X = Fpω̃X ∩ Vαω̃X , then [62, Proposition 3.17] implies
that

F−n+kVαω̃X =
∑

ℓ≥0

(F−n+k−ℓVαmωX ⊗ 1) · Fℓ(DX [t∂t]),(6.18)

=
∑

0≤ℓ≤k

(VαmωX ⊗ 1) · Fℓ(DX [t∂t]).

Here we view t∂t as an degree 1 element and F•(DX [t∂t]) is the associated order filtration.
With the formulas above, we can now compute Ik,α(D) for α < 0 using (5.4)

(Ik,α(D)⊗OX
ωX)⊗ ∂kt = grF−n+k Vαω̃X .

For k = 0,

(I0,α(D)⊗OX
ωX)⊗ 1 = grF−n Vαω̃X = F−nVαω̃X = VαmωX ⊗ 1.

This gives

I0,α(D) = (VαmωX)⊗ ω−1
X

= OX(
∏

x
⌈−αmi−1⌉
i )

= OX(
∑

⌈(α + ǫ)mi⌉)Ei)

Note that ⌈(α+ǫ)mi⌉ also equals to −⌊(−α−ǫ)mi⌋, therefore this actually gives I0,α(D) =
J ((−α− ǫ)D).

Next for k = 1, one has

(I1,α(D)⊗OX
ωX)⊗ ∂t = grF−n+1 Vαω̃X .

The right hand side is the image of F−n+1Vαω̃X under the projection map

F−n+1ω̃X → grF−n+1 ω̃X = ωX ⊗ ∂t.

By (6.18), it is the image of

(VαmωX ⊗ 1) · TX [t∂t]⊕ (VαmωX ⊗ 1) · OX .
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But only the first term contributes, since the second term projects to 0. Let u be a local
section of VαmωX = I0,α(D)⊗ ωX . Then by the DX×C-action above,

(u⊗ 1) · ∂i = u∂i ⊗ 1− (miux
m−ei)⊗ ∂t,

which projects to (miux
m−ei)⊗ ∂t in ωX ⊗ ∂t. Similarly,

(u⊗ 1) · t∂t = uxm ⊗ ∂t.

Note that we always have

xm ∈
∑

mi 6=0

OX · xm−ei .

Therefore the action of t∂t can be generated using the action of all ∂i and

I1,α(D) =
∑

g∈I0,α(D),mi 6=0

OX · g · xm−ei

=
∑

g∈I0,α(D),mi 6=0

OX · g(xm
∏

mi 6=0

x−1
i )(

∏

j 6=i,mj 6=0

xj).

Note that D = div(xm), Dred = div(
∏

mi 6=0 xi) and I(Dred)sing is generated by
∏

j 6=i,mj 6=0 xj .

Hence the calculation above can be globalized to any normal crossing divisor on a complex
manifold X so that

I1,α(D) = I0,α(D)⊗OX(−D +Dred)⊗ I(Dred)sing .

For higher k ≥ 2, the argument is similar, where each action of ∂i contributes to a factor
of xm−ei .

�

Example 6.14. Let D be an effective divisor with a unique ordinary singularity at x
and let π : Y → X be the blow up of x with π∗D = D̃ + mE. Then for mα ∈ Z and
α ∈ [−1, 0), Proposition 6.12 implies that

ωY/X ⊗ Ik,α(π
∗D) = OY ((n− 1)E)⊗OY ((αm+ 1− km+ k)E)⊗ Ik

D̃∩E

= OY (−(m(k − α)− n+ k)E)⊗ Ik
D̃∩E .

Therefore by (6.13) we have

π∗(ωY/X ⊗ Ik,α(π
∗D))x = m

m(k−α)−n
x ⊆ Ik,α(D)x, ∀ℓ ∈ N.

However for ℓ≫ 0, this is usually not an equality. For example, if D has multiplicity m
at x and dimX = km, then Ik,−1(D)x = (JF ,m

m
x ) by (6.13), where JF is the Jacobian

ideal of Fx and Fx is the local equation of D around x. Thus

π∗(ωY/X ⊗ Ik,−1(π
∗D))x = m

m
x ( (JF ,m

m
x ) = Ik,−1(D)x.

6.3. Sum of functions: Thom-Sebastiani-type formula. There is a Thom-Sebastiani
formula for higher multiplier ideals, essentially due to Maxim-Saito-Schürmann [40],
which generalizes Mustaţă’s summation theorem for multiplier ideals (see [48] and [36,
Theorem 9.5.26]). Let X1 and X2 be complex manifolds and consider the product
X = X1 ×X2 with projections pi : X → Xi with i = 1, 2.

Notation 6.15. The box product for coherent sheaves Fi on Xi are defined to be

F1 ⊠ F2 := p∗1F1 ⊗ p∗2F2.
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Proposition 6.16. Let fi be nonconstant holomorphic functions on Xi and denote by
Di = div(fi) ⊆ Xi the corresponding effective divisor. Define

f := p∗1f1 + p∗2f2

as the summation function and denote D = div(f). Then for any k ∈ N and α ∈ [−1, 0),
we have

Ik,α(D) =
∑

β1+β2=k−α,β1,β2>0

I⌊β1−ǫ⌋,⌊β1−ǫ⌋−β1(D1)⊠ I⌊β2−ǫ⌋,⌊β2−ǫ⌋−β2(D2),

=
∑

k1+k2−α1−α2=k−α,
k1,k2∈N,α1,α2∈[−1,0)

Ik1,α1(D1)⊠ Ik2,α2(D2),

by replacing Xi with an open neighborhood of Di for i = 1, 2 so that Dsing = (D1)sing ×
(D2)sing if necessary.

Proof. By [40, (3.2.3)] one has

Ṽ βOX =
∑

β1+β2=β

Ṽ β1OX1 ⊠ Ṽ β2OX2 .

The desired formula then follows from (5.27) �

Example 6.17 (Diagonal hypersurfaces). Let z1, . . . , zn be a coordinate on X = Cn and
consider the divisor D defined by f =

∑n
j=1 z

mj

j , where mj ≥ 2 for all 1 ≤ j ≤ n. In [40,

Example 3.6(ii)], the authors compute the microlocal V -filtrations Ṽ •OX . By Corollary
5.16, it translates to

Ik,α(D) =
∑

µ

OX · zµ, for k ∈ N, α ≥ −1,

where the summation is taken over µ = (µ1, . . . , µn) ∈ Nn satisfying

(6.19) ρ(µ) :=

n∑

j=1

1

mj

(
µj + 1 + ⌊ µj

mj − 1
⌋
)

≥ k − α.

In particular, one sees that the minimal exponent α̃f is
∑n

j=1
1
mj

.

Example 6.18. Let D = div(xm) ⊆ C and denote by mx the maximal ideal of 0 ∈ C.

• If m ≥ 2, then

Ik,α(D) = m
k(m−1)−⌈(α+ǫ)m⌉
x , whenever α < 0.

• If m = 1, by (5.22) and the previous case we have

Ik,−ℓ(x = 0) = Ik,−1(x
ℓ = 0)⊗OC(x)

(ℓ−1)k = m
ℓ−1
x , whenever ℓ ∈ N≥2.

Using (5.13), it follows that Ik,−1(x = 0) = Ik,−2(x = 0)⊗OC(x) = OC. Therefore

Ik,−ℓ(x = 0) = m
ℓ−1
x , ∀ℓ ∈ N≥1.

This matches up with Proposition 6.12.

Example 6.19 (Node). Let D = div(x2+ y2) ⊆ C2 = X . Assume α ≥ −1, then one has

Ik,α(D) =
∑

a+b≥k−α−1

OX · xayb = m
⌈k−α−1⌉
x .

Therefore

Gk,α(D) =

{
0 if α 6∈ Z,

m
k−α−1
x /mk−α

x if α ∈ Z and α ≥ 0.
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The case of α < −1 can be easily deduced from (5.13). Let t = −⌊α⌋ − 1 so that
α + t ∈ [−1, 0). Then

Ik,α(D) = Ik,α+t(D)⊗OX(−tD)

= OX(⌊α + 1⌋D)⊗m
⌈k−(α+t)−1⌉
x

= OX(⌊α + 1⌋D)⊗m
⌈k−{α}⌉
x = OX(⌊α + 1⌋D)⊗m

k
x.

In particular,

I1,0(D) = OX , I1,<0(D) = mx, G1,0(D) = OX/mx.

Example 6.20 (Cusp). Let D = div(x2+ y3) ⊆ C2 = X be the cupsidal singularity. Set
z1 = x, z2 = y and we list ρ(µ) from (6.19) in an increasing order:

zµ y x, y2 xy,y3 xy2, x2 x2y x3

ρ(µ) 7/6 11/6 13/6 17/6 19/6 23/6

Then [40, Example 3.6(ii)] gives

Ṽ βOX =





OX if β ∈ (0, 5
6
]

(x, y) if β ∈ (5
6
, 7
6
]

(x, y2) if β ∈ (7
6
, 11

6
]

(x2, xy, y3) if β ∈ (11
6
, 13

6
].

Then we have

I0,α(D) =

{
OX if α ∈ [−5

6
, 0]

(x, y) if α ∈ [−1,−5
6
)
, I1,α(D) =





(x, y) if α ∈ [−1
6
, 0)

(x, y2) if α ∈ [−5
6
,−1

6
)

(x2, xy, y3) if α ∈ [−1,−5
6
)

.

I2,α(D) = (x2, xy, y3), if α ∈ [−1

6
, 0).

In the range above, we conclude that there is an equality

Ik,α(D) = Ik(−αD),

from the work of Mingyi Zhang [74, Example 3.5]. Furthermore, we can use (5.14) to
obtain

I1,0(D) = I0,−1(D) = (x, y), I2,0(D) = I1,−1(D) = (x2, xy, y3).

More generally, for weighted homogeneous isolated singularity, there is a precise conjec-
ture when the Hodge ideal equal to Saito’s microlocal multiplier ideal, see [74, Conjecture
E]. Using Corollary 5.16, this corresponds to a conjecture when Ik,α(D) = Ik(−αD) holds.

7. Local properties

In this section, we study the local properties of higher multiplier ideals and use Set-up
5.1 throughout.

7.1. Birational transformation formula. Let D be an effective divisor on a complex
manifold X of dimension n. Let π : X̃ → X be a log resolution of (X,D). The work of
Budur-Saito provides the following birational transformation formula

(7.1) I0,α(D) = π∗(ωX̃/X ⊗ I0,α(π
∗D)),

see [9, Remark 3.3]. Moreover, they also show that

(7.2) Riπ∗(ωX̃/X ⊗ I0,α(π
∗D)) = 0, whenever i > 0.
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Using (5.5), these statements are equivalent to the birational formula and local vanishing
for the usual multiplier ideals. We give a refinement of (7.1) for the weight filtration
WℓI0,α(D) as follows.

Proposition 7.1. With the notation above. For any α ∈ Q<0 and ℓ ∈ Z, one has

WℓI0,α(D) = π∗(ωX̃/X ⊗WℓI0,α(π
∗D)).

Proof. By Definition 5.8 and (7.1), it suffices to prove

WℓG0,α(D) = π∗(ωX̃/X ⊗WℓG0,α(π
∗D)).

The proof is similar to the ones of [9, Proposition 3.2]. Let M and M̃ be the D-modules
associated to D and π∗D. Since α < 0, by (2.7) one has

(grVα M, F•) = R0π+(gr
V
α M̃, F•).

Furthermore, since grVα M̃ underlies a mixed Hodge module, [62, Theorem 2.14] implies
that

Wℓ gr
V
α M = Im(R0π+(Wℓ gr

V
α M̃, F•) → R0π+(gr

V
α M̃, F•)).

Then we obtain the desired statement by taking the lowest pieces grF−n of both sides. �

For α ∈ [−1, 0), we have an explicit formula for the term WℓI0,α(π
∗D) in Proposition

7.1. Write
π∗D =

∑

i∈I
eiEi, KX̃/X =

∑

i∈I
kiEi.

Set Iα = {i ∈ I | α · ei ∈ Z} and

E =
∑

i∈Iα

Ei, Ek =
⋃

J⊆Iα,
|J |=k

EJ , and EJ =
⋂

j∈J
Ej.

Since π∗D is normal crossing and dimX = n, we have En+1 = ∅.

Proposition 7.2. With the notation above. For α ∈ [−1, 0) and ℓ ≥ −1, one has

WℓI0,α(D) = π∗(ωX̃/X ⊗ I0,α(π
∗D)⊗ IEℓ+2),

= π∗

(
OX̃(

∑

i∈I
(ki + ⌈(α + ǫ)ei⌉)Ei)⊗ IEℓ+2

)
.

In particular,
W−1I0,α(D) = I0,<α(D), Wn−1I0,α(D) = I0,α(D),

and

(7.3) max{ℓ : Eℓ+1 6= ∅} = min{ℓ : WℓI0,α(X) = I0,α(X)}.
Proof. Since π∗D is normal crossing, the formula for multiplier ideals implies that

I0,α(π
∗D) = OX̃

(
∑

i∈I
⌈(α + ǫ)ei⌉Ei

)
, I0,<α(π

∗D) = OX̃

(
∑

i∈I
⌈αei⌉Ei

)
.

Hence I0,<α(π
∗D) = I0,α(π

∗D)⊗OX̃(−E). By Proposition 7.1, it suffices to prove that

(7.4) WℓI0,α(π
∗D) = I0,α(π

∗D)⊗ IEℓ+2.

Note that I0,α(π
∗D) is a line bundle, we have

(7.5) G0,α(π
∗D) =

I0,α(π
∗D)

I0,<α(π∗D)
= I0,α(π

∗D)⊗OX̃
OE .
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Since the weight filtration on I0,α(π
∗D) is induced by the weight filtration on G0,α(π

∗D),
we reduce the proof of (7.4) to showing

(7.6) WℓG0,α(π
∗D) = (I0,α(π

∗D)⊗ IEℓ+2)⊗OX̃
OE.

Denote byMX̃ the D-module associated to the embedding of the divisor π∗D as in Set-up
5.1. Then by (5.7) one has

WℓG0,α(π
∗D)⊗ ωX̃ = Wℓ gr

F
−n gr

V
α MX̃ =WℓF−n gr

V
α MX̃ .

The last equality follows from that F−n gr
V
α MX̃ is the smallest non-zero piece in the

Hodge filtration. By (7.5) and (5.8), we can rewrite (7.6) as

(7.7) WℓF−n gr
V
α MX̃ = F−n gr

V
α MX̃ ⊗OX̃

IEℓ+2.

It remains to prove (7.7). As grVα MX̃ underlies a mixed Hodge module and W• is the
weight filtration determined by the nilpotent operator N , one has N is strict with respect
to the Hodge filtration F•. Together with the convolution formula Wℓ =

∑
i KerN i+1 ∩

ImN i−ℓ and F−n being the smallest piece, it follows that

WℓF−n gr
V
α MX̃ = Ker{N ℓ+1 : grVα MX̃ → grVα MX̃}.

In [13, Corollary 7.7] Chen computes KerN ℓ+1. Using Lemma (2.11) (translation between
Chen’s result and grVα MX̃), we know that WℓF−n gr

V
α MX̃ is generated by degree |Iα| −

1 − ℓ monomials dividing
∏

i∈Iα zi, where zi is the local equation of Ei. Note that these
monomials are also generators of IEℓ+2. We conclude that (7.7) holds and therefore we
finish the proof of the Proposition. �

Remark 7.3. If D is reduced and α = −1, the birational formula in Proposition 7.2
recovers Olano’s birational formula [51, Proposition 4.3 and Proposition 5.1] that

WℓI0,−1(D) = π∗(ωX̃/X ⊗ I0,−1(π
∗D)⊗ IEℓ+2).

This follows from (5.32) and E − π∗D = ⌊(1− ǫ)π∗D⌋ = I0,−1(π
∗D) for some 0 < ǫ≪ 1.

If α = −lct(D), where lct(D) is the log canonical threshold, then we can produce a
minimal log canonical center in the sense of Kawamata [28] and Kollár [32, §4] using
WℓI0,α(D) for certain ℓ. Consider the following set

Lct = {i ∈ I | ki + 1

ei
= lct(D)}, Iα = {i ∈ I | ei · α ∈ Z}.

It is clear that Lct ⊆ Iα but the latter can be strictly bigger, for example when lct(D) = 1.

Corollary 7.4. Let D be an effective divisor on a complex manifold X. Let α = −lct(D).
Assume Lct = Iα, i.e. every exceptional divisor with ei · lct(D) ∈ Z must compute
the log canonical threshold. Let ℓ be the largest integer such that Eℓ+1 6= ∅, where
Eℓ = ∪J⊆Iα

|J |=ℓ
∩j∈J Ej. Set

Y = Zero(Wℓ−1I0,α(D)).

Then Y is a minimal log canonical center of (X,D).

Proof. By Proposition 7.2 we have

Wℓ−1I0,α(D) = π∗(OX̃(
∑

i

(ki + ⌈(α + ǫ)ei⌉)Ei)⊗ IEℓ+1).

It is well-known that lct(D) = mini∈I
ki+1
ei

. Hence

α · ei ≥ −ki − 1, and ⌈(α + ǫ)ei⌉ ≥ −ki for all i ∈ I.
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Consequently, the term OX̃(
∑

i(ki+ ⌈(α+ ǫ)ei⌉)Ei) does not contribute under π∗ and we
have

Wℓ−1I0,α(D) = π∗(IEℓ+1),

which means that Y is the image of Eℓ+1 under π. Since every exceptional divisor in
Iα computes the log canonical threshold and ℓ is the largest number that Eℓ+1 6= ∅,
it follows that Y is minimal with respect to inclusion and therefore Y is a minimal log
canonical center of (X,D). �

Remark 7.5. For k ≥ 1, in general we have

π∗(ωX̃/X ⊗ Ik,α(π
∗D)) 6= Ik,α(D),

because the right hand side may involves direct images of lower order multiplier ideals.
For a concrete case, see Example 6.14. But it seems reasonable to guess that

π∗(ωX̃/X ⊗ Ik,α(π
∗D)) ⊆ Ik,α(D).

We leave this for future investigation.

7.2. Restriction and semicontinuity theorems. We analyze the behavior of higher
multiplier ideals under restriction and deformation.

7.2.1. Restriction theorem. We first prove the following result.

Theorem 7.6. Let D be an effective divisor on X and let i : H →֒ X be the closed
embedding of a smooth hypersurface that is not entirely contained in the support of D
so that the pullback DH = i∗D is defined. Then for any k ∈ N, α ∈ Q, there exists a
morphism

(7.8) Ik,α(DH) → Li∗Ik,α(D),

which commutes with the two natural morphisms to OH . In particular, one has an inclu-
sion

Ik,α(DH) ⊆ Ik,α(D) · OH ,

where the latter is defined as the image of {i∗Ik,α(D) → i∗OX = OH}. Moreover, if H is
sufficiently general, then

Ik,α(DH) = Ik,α(D) · OH = i∗Ik,α(D).

Proof. The inclusion H →֒ X induces a commutative diagram

LH L

H X

p

i

p

i

where LH is the total space of the pullback line bundle i∗L and p are projection maps.
Recall from Set-up 5.1 that the effective divisor D induces a closed embedding s : X → L
and a mixed Hodge module M = s∗Q

H
X [n] ∈ MHM(L); analogously, we define MH ∈

MHM(LH) using the divisor DH .
Let j : L \ LH →֒ L be the open embedding. The idea is that the morphism (7.8) will

be induced by the distinguished triangle from [62, (4.4.1)]:

i∗i
!M = i!i

!M →M → j∗j
∗M → i!i

!M [1].

Since LH is a smooth hypersurface in L, one has i!M [1] = MH(−1) with F•MH(−1) =
F•+1MH , where the shift comes from MH being the pushforward of the constant Hodge
module on H . This gives a short exact sequence of mixed Hodge modules

(7.9) 0 →M → j∗j
∗M → i∗MH(−1) → 0.
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Fix k ∈ N and α ∈ Q. Since both Hodge and V -filtration preserve exactness and commute
with the functor i∗, (7.9) induces a short exact sequence of coherent OX-modules

(7.10) 0 → grF−n+k VαM → grF−n+k Vα(j∗j
∗M) → i∗

(
grF−n+k+1 VαMH

)
→ 0.

This defines an element of

Ext1X
(
i∗(gr

F
−n+k+1 VαMH), gr

F
−n+k VαM

)
.

The right adjoint of the functor i∗ for coherent sheaves is the functor i
! = ωH/X⊗Li∗[−1],

hence (7.10) also determines in a natural way a morphism

(7.11) grF−(n−1)+k VαMH → i! grF−n+k VαM[1] ∼= ωH/X ⊗ Li∗ grF−n+k VαM.

Substituting in the definition of higher multiplier ideals (5.3), we arrive at

ωH ⊗ Lk
H ⊗ Ik,α(DH) → ωH/X ⊗ Li∗(ωX ⊗ Lk ⊗ Ik,α(D)),

which easily gives the desired morphism

(7.12) Ik,α(DH) → Li∗Ik,α(D).

Since grF−n+k M ∼= s∗(ωX ⊗ Lk) and grF−n+k+1MH
∼= (s ◦ i)∗(ωH ⊗ Lk

H) by Lemma 5.2,
it is easy to see that the morphism (7.12) commutes with the two obvious morphisms to
OH . In particular, one has a commutative diagram

Ik,α(DH) i∗Ik,α(D)

OH i∗OX

Since the image of i∗Ik,α(D) in i∗OX = OH is defined to be Ik,α(D) · OH , we conclude
that there is an injection Ik,α(DH) →֒ Ik,α(D) · OH .

Now suppose H is sufficiently transverse to D. To prove that Ik,α(DH) = Ik,α(D) ·OH ,
we need to show that the morphism (7.11) is an isomorphism. This is a local problem, and
so we may assume without loss of generality that D is defined, in the graph embedding,
by a holomorphic function t whose divisor is a smooth hypersurface. By passing to
subquotients, the morphism in (7.11) determines, for each α ∈ R, a morphism

(7.13) grF−(n−1)+k gr
V
α MH → ωH/X ⊗ i∗ grF−n+k gr

V
α M.

Here we are allowed to replace Li∗ by i∗ because H , being sufficiently transverse to D, is
noncharacteristic with respect to the mixed Hodge module grVα M for every α.

We claim that it is enough to prove that (7.13) is an isomorphism for every α. Indeed,
this implies that the kernel and cokernel of (7.11) are trivial modulo VαM (respectively
VαMH) for all α ≪ 0. But by the definition of mixed Hodge modules, multiplication by
t induces isomorphisms

t : grFp VαM → grFp Vα−1M and t : grFp VαMH → grFp Vα−1MH

for every α < 0. Since grFp VαM is a coherent OX-module, the result that we want now
follows from Krull’s intersection theorem (with respect to the ideals generated by the
powers of t) and Nakayama’s lemma.

Now the right-hand side of (7.13) is the noncharacteristic restriction of the mixed
Hodge module grVα M to the hypersurface H . Since morphisms of mixed Hodge modules
are strict with respect to the Hodge filtration, it is therefore enough to show that

(7.14) grVα MH → ωH/X ⊗ i∗ grVα M
is an isomorphism of mixed Hodge modules. But this follows from Corollary 2.7, again
due to the fact that H is sufficiently transverse to D. �
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Remark 7.7. One can use Theorem 7.6 to obtain similar statement for restriction to
smooth subvarieties of higher codimension as in [36, Corollary 9.5.6].

Corollary 7.8. Let X and T be complex manifolds, and

p : X → T

a smooth surjective morphism. Consider an effective Cartier divisor D on X whose
support does not contain any of the fibers Xt = p−1(t), so that for each t ∈ T the
restriction Dt = D|Xt is defined. Then there is a non-empty Zariski open set U ⊆ T such
that

Ik,α(Dt) = Ik,α(D) · OXt ,

for every α ≤ 0 and every t ∈ U , where Ik,α(D) · OXt denotes the restriction of the
indicated ideal to the fiber Xt.

Proof. We can choose hyperplanes H1, . . . , Hn on T such that Xt is a connected compo-
nent of f ∗(H1) ∩ . . . ∩ f ∗(Hn). By Theorem 7.6, “generically” higher multiplier ideals
commute with restriction. Apply this several times, we obtain the desired statement. �

Theorem 7.9 (Restriction theorem for graded pieces). With the same assumption in
Theorem 7.6. For any k ∈ N, α ∈ Q, ℓ ∈ Z, we have a natural morphism

WℓGk,α(DH) → Li∗WℓGk,α(D).

If H is sufficiently general, then it induces an isomorphism

WℓGk,α(DH) ∼= WℓGk,α(D)⊗OX
OH .

The same statements hold for WℓIk,α(D).

Proof. The proof is quite close to Theorem 7.6 and we just give a sketch. Using that the
weight filtration also preserves exactness, (7.9) induces a short exact sequence

0 →Wℓ gr
F
−n+k gr

V
α M →Wℓ gr

F
−n+k gr

V
α (j∗j

∗M) → i∗
(
Wℓ gr

F
−n+k+1 gr

V
α MH

)
→ 0.

As in the proof of Theorem 7.6, using Ext-group and i! = ωH/X ⊗ Li∗, this sequence
induces a natural morphism

Wℓ gr
F
−n+k+1 gr

V
α MH → ωH/X ⊗ Li∗Wℓ gr

F
−n+k gr

V
α M,

and hence the desired morphism.
If H is sufficiently general, the desired isomorphism follows from that fact that (7.14) is

an isomorphism of mixed Hodge modules. For WℓIk,α(D), the desired statements follow
from (5.9) and that the construction is functorial with respect to Li∗. �

Remark 7.10. After the first draft of this manuscript, Mustaţă suggests that the equality
case of Theorem 7.6 may also be proved using a different argument similar to [16, Lemma
4.2]; see also [65, (1.3.11)].

7.2.2. Semicontinuity Theorem. As in the theory of multiplier ideals, we can use the
Restriction Theorem 7.6 to study how higher multiplier ideals behave in families. One
can obtain the following semicontinuity theorems. Let p : X → T be a smooth morphism
of relative dimension n between arbitrary varieties X and T , and let s : T → X be a
morphism such that p ◦ s = idT . Suppose that D is an effective Cartier divisor on X ,
relative over T . For every t ∈ T , denote by Xt := p−1(t) the fiber over t and Dt the
restriction of D on Xt. For every x ∈ X , we denote by mx the ideal defining x in Xp(x).

Theorem 7.11 (Weaker verision of semicontinuity). With the notation above, if

s(t) ∈ Zeroes(Ik,α(Dt)) for all t 6= 0 ∈ T,

then s(0) ∈ Zeroes(Ik,α(D0)).
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Proof. Argue as in [36, Theorem 9.5.39] and use Theorem 7.6, Corollary 7.8. �

Theorem 7.12 (Stronger version of semicontinuity). With the notation above, for every
q ≥ 1, the set

Vq :=
{
t ∈ T | Ik,α(Dt) 6⊆ m

q
s(t)

}
,

is open in T .

Proof. Since we already have Theorem 7.6 and Corollary 7.8, the same proof of [44,
Theorem E] gives the desired statement. �

Remark 7.13. It is direct to generalize Theorem 7.6, Theorem 7.11 and Theorem 7.12
to Q-divisors for α ≤ 0.

7.3. Numerical criterion of nontriviality. We study how the presence of very singular
points contributes to the nontriviality of certain higher multiplier ideals. This recovers
and expands the corresponding phenomenon for usual multiplier ideals.

As a motivation, let us first review the related facts for multiplier ideals and later they
will be recovered using Theorem 7.17, see Remark 7.18. Let D =

∑
aiDi be an effective

Q-divisor on a complex manifold X of dimension n, and let x ∈ X be a fixed point. The
multiplicity multxD is the rational number

multxD :=
∑

ai ·multxDi.

More generally, given any irreducible subvariety Z ⊆ X , multZD =
∑
ai ·multZDi, where

multZDi denotes the multiplicity of Di at a generic point of Z. The pth symbolic power

I〈p〉
Z of IZ is the ideal sheaf consisting of germs of functions that have multiplicity ≥ p at

a general point of Z.

Proposition 7.14. [36, Proposition 9.5.13 and Example 9.3.5] The following holds.

• If multxD < 1, then J (X,D)x = OX,x.
• Let Z ⊆ X be an irreducible variety. If multZD ≥ codimX(Z), then J (D) 6= OX .
Moreover, let q ≥ 1 be an integer, then

J (D) ⊆ I〈q〉
Z , whenever multZD ≥ codimX(Z) + q − 1.

Using the relation I0,<α(D) = J (X,−αD) from (5.5), Proposition 7.14 implies the
following.

Corollary 7.15. Let D be an effective divisor on X.

• If D has multiplicity m ≥ 2 at x, then

(7.15) I0,<α(D)x = OX,x, whenver α > − 1

m
.

• Let Z ⊆ X be an irreducible variety such that multZD = m ≥ 2, then

(7.16) I0,<α(D) ⊆ I〈q〉
Z , whenever −1 < α ≤ −codimX(Z) + q − 1

m
for some q ≥ 1.

Remark 7.16. Note that I0,<−1(D) = OX(−D), so we need α > −1 in (7.16).

Now we prove the numerical criterion for higher multiplier ideals.

Theorem 7.17. Let D be an effective divisor on a complex manifold X of dimension n.
Suppose Z ⊆ Singm(D) is an irreducible component of dimension d. Write

n− d = km+ r, with k ∈ N and 0 ≤ r ≤ m− 1.

Then

(7.17) Ik,<α(D) 6= OX , for some α ≥ −r/m.
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Moreover, if α = − r+q−1
m

for some q ≥ 1, then

(7.18) Ik,<α(D) ⊆ I〈q〉
Z , if q ≤ max(m− r,m− 1),

where I〈q〉
Z = OX if q ≤ 0. For arbitrary integer ℓ ∈ N and α ≥ −1, we have

Iℓ,α(D) ⊆ I〈p〉
Z , where p = m(ℓ− α)− codimX(Z)− ⌊m(ℓ− α)− codimX(Z)

m
⌋.

(7.19)

Proof. The problem is local, and so we may assume that X is an open subset of Cn,
and that D is the zero locus of a holomorphic function f with f(0) = 0. By cutting
with d generic chosen hyperplanes and using the Restriction Theorem 7.6, we can assume
dimX = n − d, where d = dimZ and 0 ∈ D is an isolated singular point of multiplicity
m.

The idea is to deform to the case of ordinary singularities. Let AN be the affine space
parametrizing the coefficients of homogeneous polynomials of degree m, with coordinates
cv, for v = (v1, . . . , vn−d) ∈ Zn−d

≥0 , with |v| := ∑
i vi = m. Let us consider the effective

divisor F on X ×AN defined by f +
∑

|v|=m cvx
v. It is direct to see that there is an open

neighborhood U ⊆ AN of 0, consisting of those t ∈ AN such that

Dt := F ∩ (X × {t})
is a reduced divisor on X × {t} ∼= X and Dt has an isolated singularity at 0 with
nonsingular projective tangent cone for t 6= 0.

Now we can prove the desired statement. Let α = − r+q−1
m

for some 1 ≤ q ≤ max(m−
r,m− 1), since n− d = km+ r for k ∈ N and 0 ≤ r ≤ m− 1, then (6.17) gives

Ik,<α(Dt)0 = Ik,−(r+q)/m(Dt)0 = m
q
0.

The first equality uses that all jumping numbers of Ik,<α(Dt)0 satisfymα ∈ Z from (6.12).
By the semicontinuity Theorem 7.12 we must have

Ik,<−r/m(D)0 6= OX,0, Ik,<α(D)0 ⊆ m
q
0.

Thus, we have (7.17) and (7.18). A similar argument using (6.15) gives

Iℓ,α(D)0 ⊆ m
m(ℓ−α)−(n−d)−⌊m(ℓ−α)−(n−d)

m
⌋

0 ,

for any ℓ and α ≥ −1. This proves (7.19). �

Remark 7.18. Theorem 7.17 recovers the nontriviality statement (7.16) for multiplier
ideals. Let D be an effective divisor on X and let Z ⊆ X be an irreducible subvariety such
that codimX(Z) = r ≥ 1 and multZD = m. In particular, Z is an irreducible component
of Singm(D). Let α = − r+q−1

m
> −1 and q ≥ 1. The condition α > −1 implies that

m > r + (q − 1) ≥ r and so we can write

r = 0 ·m+ r.

Since r ≥ 1 and q ≤ min(m− 1, m− r), therefore I0,<α(D) ⊆ I〈q〉
Z by (7.18).

Remark 7.19. For k = 0, one can also recover the triviality statement (7.15) using the

Restriction Theorem 7.6 and the fact that I0,<α(D) = m
⌊−αm⌋
x for D = {xm = 0} ⊆ C.

However, for k ≥ 1, there is no such analogous statement in terms of multiplicities. Here
is the reason: from Example 6.18 one has

Ik,<α(x
m = 0) = m

k(m−1)+⌊−αm⌋
x , whenever α < 0.

But for α < 0, k ≥ 1 and m ≥ 2, we always have k(m− 1) + ⌊−αm⌋ ≥ k(m− 1) ≥ 1, so
Ik,<α(x

m = 0) 6= OX .
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Remark 7.20. For α = −1, from (7.19) one can deduce that

Iℓ,−1(D) ⊆ I〈p〉
Z , where p = min(m− 1, m(ℓ+ 1)− codimX(Z)).

This is because for any m ≥ 2, one has

m(ℓ+1)− codimX(Z)−⌊m(ℓ + 1)− codimX(Z)

m
⌋ ≥ min(m− 1, m(ℓ+1)− codimX(Z)).

Therefore we obtain a similar numeric bound with the ones of Hodge ideals [45, Theorem
E], in view of Iℓ,−1(D) ≡ Iℓ(D) modulo ID in (1.7). As an application, we can give
alternative proofs of several results on theta divisors in[45, §29-§30] obtained using higher
multiplier ideals, see §9.5.

Corollary 7.21. Let D be an effective divisor on X. Then

(7.20) α̃D ≤ min
codimX(Z)

m
,

where the minimum run through all m ≥ 2 and all irreducible components Z of Singm(D).

Proof. Write codimX(Z) = mk + r for k ∈ N and 0 ≤ r ≤ m− 1. Since Ik,<α(D) 6= OX

for α = −r/m ∈ (−1, 0], Lemma 5.26 implies that

α̃D ≤ k − α =
codimX(Z)

m
.

�

Corollary 7.22. Let D be an effective divisor on a complex manifold X. If Z is an
irreducible closed subset of X of codimension r such that m = multZ(D) ≥ 2, then

Ik,−1(D) ⊆ IZ , for all k ≥ r + 1− ⌈ r
m
⌉

m− 1
− 1.

Proof. By (7.19), one needs k such that

m(k + 1)− r − ⌊m(k + 1)− r

m
⌋ ≥ 1.

Using −⌊a⌋ = ⌈−a⌉ for any a ∈ Q, this is

m(k + 1)− r − (k + 1) + ⌈ r
m
⌉ ≥ 1,

which is equivalent to the desired bound. �

Remark 7.23. Our bound is comparable with the ones of [45, Corollary 21.3], where

Ik(D) ⊆ IZ , for all k ≥ r + 1

m
− 1,

assuming D is a reduced effective divisor. It gives better bounds when apply to singular-
ities of hypersurfaces in projective spaces, see §8.4.

7.3.1. Minimal exponents via log resolutions. Using Corollary 7.21, one can compute the
minimal exponent of a divisor D using a log resolution in some cases.

Proposition 7.24. Let D be an effective divisor on a complex manifold X. Assume there
exists a log resolution π : X̃ → X of (X,D) satisfying the following conditions:

• the proper transform D̃ is smooth, π∗D has simple normal crossing support,
• the morphism π is the iterated blow up of X along (the proper transform of) all
irreducible components of Singm(D) for all m ≥ 2, and all the blow-up centers are
smooth.
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Then

α̃D = min
codimX(Z)

m
,

where the minimum runs through allm ≥ 2 and all irreducible components Z of Singm(D).

Proof. Let us write

π∗D = D̃ +
∑

i∈I
aiDi, KX̃/X =

∑

i∈I
kiDi.

Then we have

(7.21) min
i∈I

ki + 1

ai
≤ α̃D ≤ min

m≥2

codimX(Singm(D))

m
.

The lower bound is a result of Mustaţă-Popa [47, Corollary D] (see also [18, Corollary
1.5]). The upper bound follows from (7.20).

Now by the assumption that one only blows up the proper transforms of irreducible
components of multiplicity loci Singm(D), then we can rearrange the index so that

km + 1

am
=

codimX(Singm(D))

m
, ∀m ∈ I.

Here we use the following fact: let π : Y → X be the blow-up of a smooth subvariety Z
inside a smooth variety X , then

KY = π∗KX + (codimX(Z)− 1)E.

Therefore by (7.21) we conclude the proof. �

Example 7.25. Let D ⊆ X be the generic determinantal hypersurface in the space of
n by n matrices, it is proved in [25, Chapter 4] (see also [72]) that one can obtain a log
resolution of (X,D) by successively blowing up Singm(D). Therefore we conclude that

α̃D = min
m≥2

codimX(Singm(D))

m
= min

m≥2

m2

m
= 2.

This can also be verified directly using the Bernstein-Sato polynomial.
On the other hand, let C be a smooth projective curve embedded inX = PH0(C,M) =

P2n+2 by a line bundle M and let D = Secn(C) be the n-th secant variety, which is also
a hypersurface in X . By the work of Bertram [4], one can also achieve a log resolution
by blowing up all Singm(D) and thus

α̃D = min
m≥2

2m− 1

m
=

3

2
.

This seems difficult to obtain directly using Bernstein-Sato polynomials. For the com-
putation related to theta divisors of curves of principally polarized abelian varieties, see
Theorem 9.6.

7.3.2. Dimension of multiplicity loci and projectivized tangent cone. Theorem 7.17 recov-
ers the following well-known inequality.

Corollary 7.26. Let D be an effective divisor on X. For any m ≥ 2 and x ∈ D, we
have

dimSingm(D)x ≤ dimP(CxD)Sing + 1,

where Singm(D)x = Singm(D)x ∩ U , U is a small open neighborhood of x in X and
P(CxD)Sing is the singular locus of the tangent cone of D at x.
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Proof. By Theorem 7.17 and [47, Theorem E], one has

n− dimP(CxD)Sing − 1

m
≤ α̃D,x ≤ n− dimZ

m
,

where Z is any irreducible component of Singm(D) containing x. �

7.4. The center of minimal exponent. Let D be an effective divisor on a complex
manifold X . We use Set-up 5.1. In the previous section, we see that higher multiplier
ideals lead to a better understanding of the minimal exponent α̃D (see Corollary 7.21).
In this section, we push this idea a bit further and construct several subschemes of D
associated to α̃D, which generalize the notion of log canonical centers and minimal log
canonical centers [32, §4]. Recall from Lemma 5.26 that

α̃D = min{k − α, k ∈ N, α ∈ (−1, 0] | Gk,α(D) 6= 0},
= min{k − α, k ∈ N, α ∈ (−1, 0] | Ik,<α(D) ( OX}.

Let us write

(7.22) α̃D = k − α, for a unique k ∈ N and a unique α ∈ (−1, 0].

Then

(7.23) Ik,<α(D) ( OX , Gk,α(D) 6= 0, and Gℓ,α(D) = 0 whenever ℓ < k.

Therefore Ik,<α(D) is the first non-trivial higher multiplier ideal, whose zero locus would
carry interesting information of (X,D).

7.4.1. The zero locus of Ik,<α(D). Let us first study Ik,<α(D).

Definition 7.27. With the notation above. Let Z ⊆ X be the subscheme such that
IZ = Ik,<α(D), or equivalently we have OZ = Gk,α(D).

Remark 7.28. By definition, we have

α̃D = min
x∈D

α̃D,x.

Therefore Lemma 5.26 implies the following set-theoretical equality

Z = {x ∈ D | α̃D,x = α̃D},
the locus where the global minimal exponent is achieved.

Remark 7.29. If α̃D ≤ 1, then the scheme Z recovers the notion of locus of log canonical
singularities. By assumption, lct(D) = min{1, α̃D} = α̃D, so in (7.22) one has

k = 0, and α = −α̃D = −lct(D).

Then (5.5) gives
IZ = I0,<α(D) = J (X, lct(D) ·D),

and thus Z is the locus of log canonical singularities of D (see [36, Definition 10.4.7]). In
[36, Example 9.3.18], it is shown that J (X, lct(D) · D) is radical, so Z is reduced. The
next lemma is a generalization of this fact to α̃D > 1.

Lemma 7.30. We have Z ⊆ Dsing and Z is reduced.

Proof. By (5.6), we have

ωX ⊗ Lk ⊗OZ = ωX ⊗ Lk ⊗ Gk,α(D) = grF−n+k gr
V
α M.

By (7.23) and (5.6) again, one has F−n+ℓ gr
V
α M = 0 for any ℓ < k. This means that OZ

is isomorphic to F−n+k gr
V
α M⊗ (ωX ⊗ L−k), which is locally the first step in the Hodge

filtration of a complex mixed Hodge module. It follows that Z is reduced: let h be a
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local holomorphic function vanishing on Z, then locally supp grVα M ⊆ h−1(0). By [61,
Lemme 3.2.6] (which also works for complex mixed Hodge modules), locally one has

OZ · h ∼= (F−n+k gr
V
α M) · h ⊆ F−n+(k−1) gr

V
α M = 0,

so Z is reduced.
Since we have shown that Z is reduced, then

Z = suppF−n+k gr
V
α M = supp grVα M.

Since α ∈ (−1, 0], by (2.2) one knows that locally the support of the vanishing cycle
D-module grVα M is contained in the singular locus of f , where D = div(f). Thus we
conclude that Z ⊆ Dsing.

�

Example 7.31 (Plane curves). If D = div(xy) ⊆ C2, then α̃D = 1 and G1,0(D) = Ox,
where x is the unique singularity of D. Therefore the corresponding Z is {x}. If D =
div(x2 + y3), then α̃D = 5/6 and Z is also equals to {x}, the unique singularity of D.

Example 7.32 (Generic determinantal hypersurface). Let X be the space of n by n
matrices and let D be the generic determinantal hypersurface, cut out by f = det.
Example 7.25 implies that α̃D = 2. It is proved in [37] that I2,<0(D) = IDSing

and so the
corresponding Z is the singular locus DSing, which consists of matrices of rank <= n− 2.

Example 7.33 (Theta divisors). Let C be a smooth projective curve and let Θ be the
theta divisor on Jac(C). If C is hyperelliptic, Theorem 9.6 says that α̃Θ = 3/2 and
Theorem 9.8 implies that the corresponding Z is ΘSing. If C is a Brill-Noether general
curve, then by a result of Budur and Doan [8, Theorem 1.6(iii)], one has α̃Θ = 2 and
Z = ΘSing.

7.4.2. The support of grWℓ Gk,α(D): the center of minimal exponent. Let D be an effective
divisor on a complex manifold X and write α̃D = k − α for unique k ∈ N and α ∈
(−1, 0]. In the previous section, we study the subscheme Z such that OZ = Gk,α(D) and
show it is reduced. Now we construct a subscheme of Z with better singularities. Let
W•Gk,α(D) be the weight filtration in Definition 5.7 and let ℓ be the largest integer such
that grWℓ Gk,α(D) 6= 0. Then there is a surjection

OZ = Gk,α(D) ։ grWℓ Gk,α(D).(7.24)

Definition 7.34. The center of minimal exponent of (X,D) is defined to be the sub-
scheme Y ⊆ X satisfying

grWℓ Gk,α(D) = OY ,

where ℓ, k, α are defined above.

We have Y ⊆ Z and the ideal sheaf of Y fits into the following short exact sequence

(7.25) 0 → Ik,<α(D) → IY → Wℓ−1Gk,α(D) → 0.

Remark 7.35. If α̃D ≤ 1, then in Corollary 7.42 we will show that Y is a minimal
log canonical center under additional assumptions. Therefore this notion of “center of
minimal exponent” is a generalization of minimal log canonical center.

The following result explains why Y has a better singularity compared to Z.

Theorem 7.36. Every connected component of Y is irreducible, reduced, normal and has
at worst rational singularities.
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Proof. The isomorphism (5.8) gives

ωX ⊗ Lk ⊗OY = ωX ⊗ Lk ⊗ grWℓ Gk,α(D) ∼= grF−n+k gr
W
ℓ grVα M.

By (7.23) and (5.8), we have

grF−n+k′ gr
W
ℓ grVα M ∼= grWℓ Gk′,α(D) = 0, ∀k′ < k.

Therefore we conclude that locally OY
∼= F−n+k gr

W
ℓ grVα M is the first step in the Hodge

filtration of a complex Hodge module. Then the desired properties of Y follow from
Proposition 7.37 below. �

Proposition 7.37. LetM be a complex Hodge module on a complex manifold X. Suppose
that the underlying filtered D-module M satisfies Fp−1M = 0. If FpM ∼= OY for a
connected closed subscheme Y , then Y is irreducible, reduced, normal and has at worst
rational singularities.

Proof. Being a Hodge module, M admits a decomposition by strict support. But since Y
is connected, OY is indecomposable, and so Y must be irreducible and there is a unique
summand of M that has strict support equal to Y such that its lowest piece is OY .
Without loss of generality, we can assume M has strict support equal to Y . As in the
proof of Lemma 7.30, we also find that Y must be reduced, because it is the first step
in the Hodge filtration of a complex mixed Hodge module. By the structure theorem
for complex Hodge modules, M is generically a variation of complex polarized Hodge
structure V on Y . Let µ : Ỹ → Y be a resolution of singularities that makes the singular
locus of the CVHS V into a normal crossing divisor D. On Ỹ , we then get a complex
Hodge module M̃ by uniquely extending V from Ỹ \ D to Ỹ such that FpM̃ is a line
bundle. The direct image theorem for complex Hodge modules implies that

OY = FpM ∼−→ Rµ∗FpM̃.

By adjunction we get a morphism OỸ → FpM̃. Taking direct image gives

Rµ∗OỸ → Rµ∗FpM̃ ∼−→ FpM = OY ,

which is a splitting of the natural morphism OY → Rµ∗OỸ . By a result of Kovács [34,
Theorem 1], this implies that Y is normal with at worst rational singularities. �

Remark 7.38. The essential difference between Z and Y is that Z is the support of the
first step of Hodge filtration in a mixed Hodge module; by passing to the highest weight,
one obtains a pure Hodge module, where we have much better Hodge theory results (e.g.
decomposition Theorem).

Example 7.39. Let X be the space of n by n matrices and let D be the generic deter-
minantal hypersurface. It is proved in [37] that the center of minimal exponent of (X,D)
is DSing. Compared to Example 7.32, we do not obtain a smaller subscheme compared to
Z. By [8, Theorem 1.4 and Theorem 1.5], the same statement then holds for the theta
divisor of a generic curve C, i.e. the center of minimal exponent of (Jac(C),Θ) is ΘSing.
Note that both DSing and ΘSing are normal and with at worst rational singularities, due
to a result of Kempf [2].

7.5. Rationality and normality criterions. We use Proposition 7.37 to recover several
well-known results in birational geometry about rationality and normality criterion, due
to Ein-Lazarsfeld and Kawamata. Let us first deduce a useful lemma, which will be used
several times.
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Lemma 7.40. Let D be an effective divisor on a complex manifold X. Suppose there
exists ℓ ∈ Z, α ∈ Q and a subscheme Z ⊆ X such that

grWℓ G0,α(D) = OZ .

Then every connected component of Z is reduced, irreducible, normal and has at worst
rational singularities.

Proof. Let M be the D-module associated to D in Set-up 5.1. By construction

F−n−1 gr
W
ℓ grVα M = 0,

therefore by (5.8) OZ is locally isomorphic to the first step of the complex Hodge module
grWℓ grVα M. Then one can apply Proposition 7.37 to obtain the desired results. �

We first recover the criterion of rationality and normality via adjoint ideals, see [36,
Proposition 9.3.48] or [19, Proposition 3.1].

Corollary 7.41 (Ein-Lazarsfeld). Let D be a reduced effective divisor on a complex
manifold X. If the adjoint ideal adj(D) is trivial, i.e. adj(D) = OX , then D is normal
and has at worst rational singularities.

Proof. By Corollary 5.24 one has

W−1G0,−1(D) = 0, W0G0,−1(D) = adj(D)/OX(−D) = OX/OX(−D).

This implies that

grW0 G0,−1(D) = OD.

Since D is connected, we get the desired statement by Lemma 7.40. �

The second corollary concerns Kawamata’s subadjunction theorem [28] on the singular-
ity property of minimal log canonical centers. Let D be an effective divisor on a complex
manifold X . Let π : X̃ → X be a log resolution of (X,D). Write

π∗D =
∑

i∈I
eiEi, KX̃/X =

∑

i∈I
kiEi.

Let α = −lct(D) and we have

I0,α(D) = J ((−α− ǫ)D) = OX .

We show that one can construct a minimal log canonical center using the weight filtration
on the multiplier ideal I0,α(D) and recover partially Kawamata’s theorem.

Corollary 7.42. Assume every exceptional divisor Ei with ei · lct(D) ∈ Z must compute
the log canonical threshold, i.e. (ki + 1)/ei = lct(D). Let ℓ be the smallest number such
that WℓI0,α(D) = I0,α(D) and set

Y = Zero(Wℓ−1I0,α(D)).

Then Y is a minimal log canonical center of (X,D) and every connected component of
Y is irreducible, reduced, normal and has at worst rational singularities.

Proof. Let Iα = {i ∈ I | ei · α ∈ Z} and let

Ek =
⋃

J⊆Iα
|J |=k

⋂

j∈J
Ej
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be the union of all k-fold intersection of components of
∑

i∈Iα Ei. By (7.3) in Proposition

7.2, we know that ℓ is also the largest number such that Eℓ+1 6= ∅. Our assumption says
that

{i ∈ I | ki + 1

ei
= lct(D)} = Iα,

thus Corollary 7.4 implies that Y is a minimal log canonical center. On the other hand,

OY = OX/IY =
WℓI0,α(D)

Wℓ−1I0,α(D)
= grWℓ G0,α(D),

so the singularity properties of Y follow from Lemma 7.40. �

8. Global properties

In this section, we study the global perspective of higher multiplier ideals and prove
several Nadel-type vanishing theorems. Throughout this section, we use Set-up 5.1 and
notations in §5.

8.1. Vanishing for higher multiplier ideals. We deduce some vanishing results con-
cerning the sheaf Gk,α(D). In this section, we let D be an effective divisor on a projective
complex manifold X of dimension n and let k ∈ N, ℓ ∈ Z, α ∈ Q. We use Set-up 5.1: M
is the D-module associated to the total embedding of D and L = OX(D). Recall from
(5.6) and (5.8) we have

ωX ⊗ Lk ⊗ Gk,α(D) = grF−n+k gr
V
α M, ωX ⊗ Lk ⊗ grWℓ Gk,α(D) = grF−n+k gr

W
ℓ grVα M.

(8.1)

Theorem 8.1. With the notation above and assume α ∈ [−1, 0]. Let B be an effective
divisor such that the Q-divisor B + αD is ample. Then

H i
(
X, grF−n+k DR(grWℓ grVα M)⊗OX(B)

)
= 0, for every i > 0.

If Ω1
X is trivial, then

H i(X, grF−n+k gr
W
ℓ grVα M⊗OX(B)) = 0, for every i > 0.

Proof. Proposition 3.12 implies that the pair

(grWℓ grVα M, F•+⌊α⌋ gr
W
ℓ grVα M)

is the filtered αL-twisted D-module that underlies an αL-twisted polarizable Hodge mod-
ule. Therefore, we can apply the vanishing Theorem 4.7 to get the desired statement. �

Corollary 8.2. With the same assumption of Proposition 8.1. In addition, assume that

Gℓ,α(D) = 0, for all 0 ≤ ℓ ≤ k − 1.

Then

(8.2) H i(X,ωX ⊗ grWℓ Gk,α(D)⊗ Lk ⊗OX(B)) = 0, for all i > 0, ℓ ∈ Z.

In particular, if we write
α̃D = k − α

for unique k ∈ N and α ∈ (−1, 0], then (8.2) holds.

Proof. By (8.1), the assumption implies that

grFℓ grVα M = 0, for all ℓ < k.

Then grF−n+k DRX(gr
W
ℓ grVα M) ∼= grF−n+k gr

W
ℓ grVα M and the desired vanishing follows

from Theorem 8.1.
If α̃D = k − α, then Lemma 5.26 implies that Gℓ,α(D) = 0 for all 0 ≤ ℓ ≤ k − 1. �
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Corollary 8.3. Let D be an effective divisor on a projective complex manifold X of
dimension n. Assume α ∈ [−1, 0]. Let B be an effective divisor such that B + βD is
ample for any β ∈ (α, α+ 1] and B + kL is big and nef. Assume

(8.3) I0,α(D) = I1,α(D) = · · · = Ik−1,α(D) = OX ,

then

(8.4) H i(X,ωX ⊗ Lk ⊗ Ik,α(D)⊗OX(B)) = 0, for all i ≥ 2.

Moreover

(8.5) H1(X,ωX ⊗ Lk ⊗ Ik,α(D)⊗OX(B)) = 0

holds if Ik−1,−1(D) = OX , D is reduced, B+ pD is ample for all integers −1 ≤ p ≤ k− 1
and rational numbers p ∈ (−1, α] and

Hk−p(X,Ω
n−(k−p)
X ⊗ Lp ⊗OX(B)) = 0, for all 0 ≤ p ≤ k − 1.

Proof. First we claim that the assumption (8.3) implies that

(8.6) Iℓ,−1(D) = 0, for all 0 ≤ ℓ ≤ k − 2.

This is because the property of (5.14) and the assumption (8.3) give

Iℓ,−1(D) = Iℓ+1,0(D) ⊇ Iℓ+1,α(D) = OX , for any ℓ+ 1 ≤ k − 1.

For the vanishing of degree i ≥ 2, we look at the short exact sequence

0 → Ik,α(D) → Ik,α+1(D) = OX → Ik,α+1(D)/Ik,α(D) → 0,

where the property of (5.14) implies that Ik,α+1(D) = Ik−1,α(D) = OX . Since B + kL is
big and nef, we have

H i(X,ωX ⊗ Lk ⊗OX(B)) = 0, for all i ≥ 1,

by Kawamata-Viehweg vanishing. To prove (8.4), it suffices to prove

(8.7) H i(X,ωX ⊗ Lk ⊗ Ik,α+1(D)/Ik,α(D)⊗OX(B)) = 0, for i ≥ 1.

Note that Ik,α+1(D)/Ik,α(D) is a finite extension of Gk,β(D) for β ∈ (α, α+1]. There are
two cases.

(1) If β ∈ (α, 0], then the assumption (8.3) implies that

Gℓ,β(D) = 0, for all 0 ≤ ℓ ≤ k − 1.

Since B + βD is ample, Corollary 8.2 gives

H i(X,ωX ⊗ Gk,β(D)⊗ Lk ⊗OX(B)) = 0, for all i ≥ 1.

(2) If β ∈ (0, α + 1], then

Gℓ,β−1(D) = 0, whenever 0 ≤ ℓ ≤ k − 2,

as a consequence of (8.6) and β − 1 > −1. Since (B +D) + (β − 1)D = B + βD
is ample for all β ∈ (0, α+ 1] ⊆ (α, α+ 1], Corollary 8.2 implies that

H i(X,ωX ⊗ Gk,β(D)⊗ Lk ⊗OX(B))

∼=H i(X,ωX ⊗ Gk−1,β−1(D)⊗ Lk−1 ⊗OX(B +D)) = 0, for i ≥ 1.

Here we use the property of (5.15) to obtain Gk,β(D) = Gk−1,β−1(D)⊗OX(D).
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Hence we obtain the vanishing (8.7) and thus the vanishing (8.4).
For the vanishing (8.5), the plan is to use the short exact sequence (5.16) to reduce to

the vanishing theorems of Hodge ideals. Consider the following exact sequence

0 → Ik,−1(D) → Ik,α(D) → Ik,α(D)/Ik,−1(D) → 0.

We reduce (8.5) to the vanishings involving the first term and third term. First, let us
show that

(8.8) H1(X,ωX ⊗ Lk ⊗ Ik,α(D)/Ik,−1(D)⊗OX(B)) = 0.

By (8.6) and the extra assumption Ik−1,−1(D) = OX , one has

(8.9) Iℓ,−1(D) = OX , whenever 0 ≤ ℓ ≤ k − 1,

and

(8.10) Gℓ,β(D) = 0, for all 0 ≤ ℓ ≤ k − 1 and β > −1.

Now note that Ik,α(D)/Ik,−1(D) is a finite extension of Gk,β(D) for β ∈ (−1, α], thus (8.8)
holds by Corollary 8.2 and the extra assumption that B + βD is ample for β ∈ (−1, α].

To deal with the term Ik,−1(D), consider the short exact sequence from (5.16):

0 → ωX ⊗ Lk−1 ⊗ Ik,0(D) → ωX ⊗ Lk ⊗ Ik,−1(D) → grF−n+k ωX(∗D)⊗ L−1 → 0.

The first term above has no first cohomology because Ik,0(D) = Ik−1,−1(D) = OX by the
property of (5.14) and B+(k−1)D is ample, so that one can use Kodaira vanishing. On
the other hand, note that grF−n+k ωX(∗D)⊗ L−1 fits into another short exact sequence

0 → ωX ⊗ Lk−1 ⊗ Ik−1(D) → ωX ⊗ Lk ⊗ Ik(D) → grF−n+k ωX(∗D)⊗ L−1 → 0,

where Iℓ(D) is the ℓ-th Hodge ideal of the reduced divisor D. Lemma 5.18 implies that
Iℓ(D) = OX if and only if Iℓ,−1(D) = OX . Thus (8.9) gives

I0(D) = I1(D) = · · · = Ik−1(D) = OX .

Then [12, Theorem 1.1] (by setting L = OX(B)) gives

H1(X,ωX ⊗ Lk ⊗ Ik(D)⊗OX(B)) = 0.

Finally, H2(X,ωX ⊗ Lk−1 ⊗ Ik−1(D) ⊗ OX(B)) = 0 because Ik−1(D) = OX so we can
use Kodaira vanishing. We conclude that grF−n+k ωX(∗D) ⊗ L−1 ⊗ OX(B) has no first
cohomology and hence (8.5) follows. �

Remark 8.4. The statement of Corollary 8.3 is similar to the vanishing theorem of
Hodge ideals for Q-divisors, which is first proved in [46, Theorem 12.1] with a global
assumption and later removed by Bingyi Chen in [12, Theorem 1.1].

Corollary 8.5. Let D be an effective divisor on a projective complex manifold X. Let
α ∈ [−1, 0], k ∈ N and let B be an effective divisor such that B + βD is ample for any
β ∈ (α, 1) and B + kD is big and nef. Assume that

I0,α(D) = I1,α(D) = · · · = Ik−1,α(D) = OX .

Then for any γ ∈ (α, 0] and any ℓ ∈ Z, we have

H i(X,ωX ⊗ Lk ⊗WℓIk,γ(D)⊗OX(B)) = 0, for all i ≥ 2.

Proof. Fix γ ∈ (α, 0]. Recall the short exact sequence (5.9)

0 → Ik,<γ(D) →WℓIk,γ(D) →WℓGk,γ(D) → 0.

The vanishing assumption implies that Gℓ,γ(D) = 0 for all 0 ≤ ℓ ≤ k − 1, thus

H i(X,ωX ⊗ Lk ⊗WℓIk,γ(D)⊗OX(B)) = 0, for i ≥ 2
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by Corollary 8.2. On the other hand, note that Ik,<γ(D) = Ik,γ−ǫ(D) for some 0 < ǫ≪ 1.
As (γ − ǫ) + 1 < 1, we have B + βD is ample for any (γ − ǫ, γ − ǫ+ 1]. Hence it follows
from Corollary 8.3 that

H i(X,ωX ⊗ Lk ⊗ Ik,<γ(D)⊗OX(B)) = 0, for all i ≥ 2.

These two statements imply the desired vanishing. �

Remark 8.6. One can give a similar vanishing for H1 with extra Nakano-type vanishing
assumptions as in Corollary 8.3, and we leave the details to interested readers. There
are vanishing theorems for weighted Hodge ideals for divisors with isolated singularities,
see [51, Theorem E] and [52, Theorem C]. It is not clear to us how to obtain a similar
statement for γ = −1.

8.2. Vanishing on abelian varieties. On abelian varieties, we have a much better
vanishing theorem.

Theorem 8.7. Let D be an effective divisor on an abelian variety A such that the line
bundle L = OA(D) is ample. For any line bundle ρ ∈ Pic0(A) and i ≥ 1, we have

(1) H i
(
A,Lk+1 ⊗WℓGk,α(D)⊗ ρ

)
= 0 for k ∈ N, ℓ ∈ Z and α ∈ (−1, 0].

(2) H i(A,Lk ⊗ Ik,0(D)⊗ ρ) = 0 for k ≥ 1.
(3) H i(A,Lk+1 ⊗ Ik,α(D)⊗ ρ) = 0 for k ∈ N and α ∈ [−1, 0).

Proof. Since ωA = OA, by (5.8), we have

Lk+1 ⊗ grWℓ Gk,α(D)⊗ ρ ∼= grF−n+k gr
W
ℓ grVα M⊗ (L⊗ ρ).

Since (L⊗ ρ)⊗OA(αD) is ample for any α ∈ (−1, 0] and ρ ∈ Pic0(A), also Ω1
A is trivial,

Theorem 8.1 implies that

H i(A,Lk+1 ⊗ grWℓ Gk,α(D)⊗ ρ) = 0, for all i ≥ 1.

Then the first statement follows because the weight filtration is finite. In particular, we
have

(8.11) H i(A,Lk+1 ⊗ Gk,α(D)⊗ ρ) = 0, whenever α ∈ (−1, 0], i ≥ 0.

For the vanishing of Ik,α(D), let us treat the cases α = −1 and α = 0 together, by
induction on k ≥ 0. The base case is k = 0, we have I0,−1(D) = J (A, (1 − ǫ)D) by
(5.5) for some 0 < ǫ ≪ 1. So the desired vanishing is a consequence of Nadel vanishing
theorem (see [36, Theorem 9.4.8]). There is nothing to prove for α = 0. Assume the
vanishing holds for some k − 1 with k ≥ 1. By (5.14), one has

Ik,0(D) ∼= Ik−1,−1(D).

Consequently, the vanishing for Lk ⊗ Ik,0(D)⊗ ρ follows from the induction hypothesis.
Now consider the short exact sequence from Proposition 5.10

0 → Lk ⊗ Ik,0(D) → Lk+1 ⊗ Ik,−1(D) → grF−n+k ωA(∗D) → 0.

Since A \D is affine and Ω1
A, it is direct to deduce that H i(A, grF−n+k ωA(∗D) ⊗ ρ) = 0

for any i ≥ 1 and any ρ ∈ Pic0(A) (see [45, Theorem 28.2]). Therefore we conclude that
Lk+1 ⊗Ik,−1(D)⊗ ρ has no higher cohomology as well and this finish the inductive proof
for α = −1 and α = 0.

It is then deal with the remaining case α ∈ (−1, 0). Indeed, (8.11) implies that Lk+1⊗
Gk,β(D)⊗ ρ has no higher cohomology for β ∈ (−1, α); this suffices, because we already
know the result in the case α = −1 and Ik,α(D)/Ik,−1(D) is a finite extension of Gk,β(D)
for β ∈ (−1, α).

�
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8.3. Vanishing on projective spaces. First, we give a refinement of Theorem 4.7 in
the case of projective spaces.

Theorem 8.8. Let L = OPn(d) be a line bundle on Pn. Let α ∈ Q and let M be an
αL-twisted polarizable Hodge module on X. If m is an integer such that m + αd > 0,
then for any k ∈ Z, we have

H i(Pn, grFk M⊗OPn(m)) = 0, for every i > 0.

Proof. Consider the complex grFk DR(M)⊗OPn(m), which is denoted by

F• =

[
grFk−nM⊗

n∧
TPn → · · · → grFk−1M⊗ TPn → grFk M

]
[n]⊗OPn(m),

concentrated in degree −n up to 0. Consider the hypercohomology spectral sequence
such that

Ep,q
1 = Hq(Pn,Fp) =⇒ Hp+q(Pn,F•).

Fix i ≥ 1. Since m + αd > 0, Theorem 4.7 implies that H i(Pn,F•) = 0, and hence
E0,i

∞ = 0. The vanishing we want is equivalent to E0,i
1 = 0. Since F j = 0 for all j ≥ 1, it

suffices to prove that E−r,i+r−1
1 = 0 for all r ≥ 1, which is equivalent to

(8.12) H i+r−1(Pn, grFk−r M⊗
r∧

TPn ⊗OPn(m)) = 0, for all r, i ≥ 1.

We induct on k. If k is the lowest weight in the Hodge filtration, then grFk DR(M) =
grFk M, and therefore the vanishing follows from Theorem 4.7.

For k general, assume the vanishing holds for all k′ < k. From the analysis above, it
suffices to prove (8.12) for all r, i ≥ 1. There is a Koszul resolution

0 →
⊕

OPn →
⊕

OPn(1) → · · · →
⊕

OPn(r) →
r∧

TPn → 0.

By the inductive assumption, for r, i, j ≥ 1 we have

H i+r−1+j(Pn, grFk−r M⊗OPn(j +m)) = 0.

Using the Koszul resolution, this implies (8.12). �

Theorem 8.9. Let D be a reduced hypersurface of degree d in Pn. For k ∈ N and i ≥ 1,
we have

(1) H i (Pn,OPn(m)⊗WℓGk,α(D)) = 0 for α ∈ (−1, 0], ℓ ∈ Z andm > d(k−α)−n−1.
(2) H i (Pn,OPn(m)⊗ Ik,0(D)) = 0 for k ≥ 1 and m ≥ kd− n− 1.
(3) H i (Pn,OPn(m)⊗ Ik,α(D)) = 0 for α ∈ [−1, 0) and m ≥ (k + 1)d− n− 1.

Proof. Let L = OPn(D). The first statement follows from Theorem 8.8 and Proposition
1.8 that grWℓ grVα M is an αL-twisted Hodge module on Pn. In particular, we have
(8.13)
H i(Pn,OPn(m)⊗ Gk,α(D)) = 0, for i > 0, α ∈ (−1, 0] and m > d(k − α)− n− 1.

The vanishing theorem for Ik,α(D) is proved in a similar way as the proof of Theorem
8.7. We first prove the cases α = −1 and α = 0 together, and then deal with α ∈ (−1, 0).
The base case is k = 0: the vanishing for α = −1 follows from Nadel’s vanishing, since
I0,−1(D) = J (Pn, (1− ǫ)D) and m− (1− ǫ)d+n+1 ≥ ǫd > 0. There is nothing to prove
for α = 0.

Assume the vanishing hold for some k − 1 and k ≥ 1. By (5.14) and the induction
hypothesis, one has

H i(Pn,OPm(m)⊗ Ik,0(D)) ∼= H i(Pn,OPm(m)⊗ Ik−1,−1(D)) = 0.
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for i ≥ 1 and m ≥ kd− n− 1 = (k − 1 + 1)d− n− 1. For α = −1, set

m0 = m− (d(k + 1)− n− 1)

and consider the short exact sequence from Proposition 5.10 twisted by OPn(m0):

0 → OPn(m− d)⊗ Ik,0(D) → OPn(m)⊗ Ik,−1(D) → grF−n+k ωPn(∗D)⊗OPn(m0) → 0.

Since m− d ≥ dk − n− 1, OPn(m− d)⊗ Ik,0(D) has no higher cohomology by what we
just proved. On the other hand, because m0 ≥ 0, grF−n+k ωPn(∗D)⊗OPn(m0) also has no
higher cohomology. This follows from [45, Theorem 25.3] and the short exact sequence
from the proof of [45, Theorem 25.3]:

0 → ωPn⊗OPn(kd)⊗Ik−1(D) → 0 → ωPn⊗OPn((k+1)d)⊗Ik(D) → grF−n+k ωPn(∗D) → 0,

where Ik(D) is the k-th Hodge ideal of D and note that the last term is isomorphic to
ωPn ⊗ grFk OPn(∗D). This finishes the inductive proof for the case of α = −1 and α = 0.

Finally, the case α ∈ (−1, 0) follows from the case α = −1 and (8.13). �

Remark 8.10 (Toric varieties). One can obtain a simple vanishing statement of higher
multiplier ideals on smooth projective toric varieties as in [45, Corollary 25.1]. We leave
the details to interested readers.

8.4. Application to hypersurfaces in projective spaces.

Proof of Corollary 1.13. Denote by S the set of isolated singularities of D of multiplicity
m. We know from Corollary 7.22 that

Ik,−1(D) ⊆ IS, where k = ⌈n+ 1− ⌈ n
m
⌉

m
⌉ − 1.

Then the result follows from Theorem 1.6, which gives a surjection

H0(Pn,OPn((k + 1)d− n− 1)) ։ OW ,

where W is the 0-dimensional part of the zero locus of Ik,−1(D). �

Remark 8.11. Our bound ⌈n+1−⌈n/m⌉
m

⌉d−n−1 is better than the bound (⌊ n
m
⌋+1)d−n−1

from [45, Corollary H]: write n = pm+ r for p ∈ N and 0 ≤ r ≤ m− 1, then we have

⌈n + 1− ⌈n/m⌉
m− 1

⌉ =
{
p+ 1

m−1
if r = 0,

p+ r
m−1

if r > 0.

In both cases, it is smaller than ⌊ n
m
⌋+ 1 = p+ 1. When m = 2, our bound coincide with

theirs and give (⌊n
2
+1)⌋d−n− 1, thus is still not the best bound n

2
d−n for even n from

[17, Corollary 2.2].

9. Application: singularities of theta divisors

In this section, we give some applications of higher multiplier ideals to the singularities
of theta divisors on principally polarized abelian varieties. Let A be a principally polarized
abelian variety (p.p.a.v.) of dimension g ≥ 1, and let Θ be a symmetric theta divisor.
We assume that Θ is irreducible, or equivalently, that (A,Θ) is indecomposable. By the
work of Kollár [30, Theorem 17.13] and Ein-Lazarsfeld [19], it is known that Θ is normal
with at worst rational singularities; moreover, if we define

Singm(Θ) = {x ∈ Θ | multxΘ ≥ m},
then

(9.1) dimSingm(Θ) ≤ g −m− 1, ∀m ≥ 2,
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where for a scheme Z, we define dimZ to be the dimension of the largest component of
Z.

We are interested in the following conjecture by Casalaina-Martin [10, Question 4.7].

Conjecture 9.1. If (A,Θ) is an indecomposable p.p.a.v., then

dimSingm(Θ) ≤ g − 2m+ 1

for every m ≥ 2.

This conjecture holds for theta divisors on the Jacobians of smooth projective curves
(Marten’s theorem [2]) and Prym theta divisors associated to etale double covers by the
work of Casalaina-Martin [11]. In particular, it holds when dimA ≤ 5. The only known
cases where equality holds in Conjecture 9.1 are Jacobians of hyperelliptic curves, and
intermediate Jacobians of cubic threefolds (where g = 5 and Θ has a unique singular point
of multiplicity 3). This leads to the following stronger conjecture, which characterizes
the boundary cases in Conjecture 9.1 and would give a solution to the Riemann-Schottky
problem.

Conjecture 9.2. If (A,Θ) is an indecomposable p.p.a.v. and is not a hyperelliptic
Jacobian or the intermediate Jacobian of a smooth cubic threefold, then

dimSingm(Θ) ≤ g − 2m

for every m ≥ 2.

When m = 2, Conjecture 9.2 is due to Debarre [15], proposed by Grushevsky [23,
Conjecture 5.5], which says that any indecomposable p.p.a.v. (A,Θ) whose theta divisor
has codimension 3 singularity in A must be a hyperelliptic Jacobian. Conjecture 9.1
implies the following conjecture by Grushevsky [23, Conjecture 5.12].

Conjecture 9.3 (Grushevsky). Let (A,Θ) be an indecomposable p.p.a.v. and let x ∈ Θ
be any point, then

multxΘ ≤ g + 1

2
.

Assuming Θ has only isolated singularities, Conjecture 9.3 is proved by Mustaţă and
Popa [45, Theorem I] using the theory of Hodge ideals. We give an alternative proof
of their result using higher multiplier ideals in §9.5. Our main result provides the first
instance of Conjecture 9.2 for non-isolated singularities.

Theorem 9.4. Let (A,Θ) be an indecomposable principally polarized abelian variety.
Assume the center of minimal exponent Y of (A,Θ) in the sense of Definition 7.34 is a
one dimension scheme, then Conjecture 9.1 holds and Y must be a smooth hyperelliptic
curve. Moreover, if there exists m ≥ 2 such that

dimSingm(Θ) = g − 1− 2m,

then one of the following holds

(1) either (A,Θ) = (Jac(Y ),ΘJac(Y )),
(2) or g(Y ) = 2m, dimA = 2m− 1, the minimal exponent of Θ is 2m−1

m
and Θ has a

unique singular point of multiplicity m.

In §9.4, we also prove the following general statement, due to Popa [55].

Proposition 9.5. A modified version of the Conjecture A of Pareschi and Popa [53]
implies Conjecture 9.2.
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9.1. Minimal exponents of theta divisors. Before the proof of Theorem 9.4, let
us make some preliminary discussion on minimal exponents of theta divisors. Ein and
Lazarsfeld [19, Theorem 1] show that if (A,Θ) is indecomposable, then Θ is rational. By
[63, Theorem 0.4], Θ has rational singularities is equivalent to

(9.2) α̃Θ > 1.

Since the minimal exponent provide new information compared to the log canonical
threshold, it will be instructive to compute the minimal exponent of theta divisors ap-
pearing in the boundary case of Conjecture 9.2. We would like to thank Mircea Mustaţă
for the discussion of this point.

Theorem 9.6. Let (A,Θ) be a principally polarized abelian variety.

(1) If A = Jac(C) where C is an arbitrary smooth projective curve, then 1 < α̃Θ ≤ 2.
• (Budur-Doan) If C is a Brill-Noether general curve, then α̃Θ = 2.
• If C is a smooth hyperelliptic curve, then α̃Θ = 3

2
.

(2) If A is the intermediate Jacobian of a smooth cubic threefold, then α̃Θ = 5
3
.

Remark 9.7. This provides some numerical evidences for Conjecture 9.2: assume there
exists a m ≥ 2 such that dim Singm(Θ) ≥ g − 2m+ 1, then Theorem 7.17 implies that

α̃Θ ≤ 2m− 1

m
< 2,

which is indeed satisfied by all the boundary examples. This is the starting point of our
proof of Theorem 9.4.

Proof of Theorem 9.6. If C is a smooth projective curve of genus g and A = Jac(C), by
the Riemann Singularity Theorem we have

Singm(Θ) ∼= Wm−1
g−1 (C), ∀m ≥ 2.

Since m−1 ≥ (g−1)−g, by [2, Chapter IV, Lemma (3.3)] we know that every component
of Singm(Θ) has dimension greater or equal to the Brill-Noether number

ρ = g − (m− 1 + 1)(g − (g − 1) +m− 1) = g −m2.

Therefore Theorem 7.17 implies that

α̃Θ ≤ min
m≥2

m2

m
= 2.

If A is the intermediate Jacobian of a smooth cubic threefold, Mumford [43, p. 348]
proved that Θ has a unique isolated singular point of multiplicity 3 (see also [3]), whose
projectivized tangent is smooth is the original cubic threefold. Therefore one can blow
up the unique singular point along A to obtain a log resolution of (A,Θ). By Proposition
7.24, one has

α̃Θ =
codimA(Sing3(Θ))

3
=

5

3
.

In fact, the same argument works for any isolated ordinary singularities of multiplicity
m in a smooth n-dimensional space so that the minimal exponent is n/m.

If A = Jac(C) for a smooth hyperelliptic curve, then by [2, Chapter IV, Theorem 5.1]
one has Singm(Θ) is an irreducible variety of dimension g − 2m+ 1 for each m ≥ 2. By
[70] there exists a log resolution of (A,Θ) such that one can do an iterative blow up of
(the proper transform of) Singm(Θ) from m = ⌊g+1

2
⌋ to m = 2. Then by Proposition

7.24, one has

α̃Θ = min
m≥2

codimA(Singm(Θ))

m
= min

m≥2

2m− 1

m
=

3

2
.
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If C is a Brill-Noether general curve, in [70, Problem 9.2] we predicted that there exists
a log resolution for (A,Θ) by iteratively blowing up all Brill-Noether subvarieties of Θ
starting from the deepest stratum. This is recently confirmed by Budur and Doan [8,
Theorem 1.6]. In this case, the Brill-Noether number gives

codimASingm(Θ) = m2, ∀m ≥ 2,

then Proposition 7.24 implies that

α̃Θ = min
m≥2

m2

m
= 2.

�

For hyperelliptic curves, one can obtain a stronger result.

Theorem 9.8. Let C be a smooth hyperelliptic curve and (A,Θ) = (Jac(C),ΘJac(C)),
then

α̃Θ,x =
3

2
, ∀x ∈ ΘSing,

where α̃Θ,x is the minimal exponent of the local defining equation of Θ near x and ΘSing

denotes the singular locus of Θ, which is also Sing2(Θ).
Therefore we have

(9.3) I1,<−1/2(Θ) = IΘSing
and G1,−1/2(Θ) = OΘSing

.

Remark 9.9. In general, the minimal exponent of an effective divisor D with nonempty
singular locus on a complex manifold X satisfies

α̃D := min
x∈D

α̃D,x = min
x∈DSing

α̃D,x.

This is because if x is a smooth point of D, then α̃D,x = +∞. Theorem 9.8 means that in
the case of hyperelliptic theta divisors, this minimum is actually achieved at every point
in the singular locus of Θ. If C is Brill-Noether general, this is also true by [8, Theorem
1.6].

Proof. First, we claim that it suffices to prove

(9.4) α̃Θ,x =
3

2
, ∀x ∈ Sing2(Θ)− Sing3(Θ).

Grant (9.4) for now. Let g be the genus of C, using the isomorphism Singm(Θ) ∼=
Wm−1

g−1 (Θ) and W r
d (C)

∼= W r−1
d−2 (C) because C is hyperelliptic, we have the following

commutative diagram

Sing3(Θ) W 2
g−1(C) W 1

g−3(C)

ΘSing = Sing2(Θ) W 1
g−1(C) Wg−3(C)

∼ ∼

∼ ∼

By [2, Chapter IV, Corollary 4.5] Sing3(Θ) ∼= W 1
g−3(C) is exactly the singular locus of

Wg−3(C) ∼= Sing2(Θ). Theorem 9.6 implies that

3

2
= α̃Θ = min

x∈ΘSing

α̃Θ,x.

Then (9.4) implies that α̃Θ = 3
2
is achieved by a Zariski open subset of ΘSing. Therefore

the lower semicontinuity of minimal exponent α̃Θ,x with respect to x [47, Theorem E(2)]
gives

α̃Θ,x =
3

2
, ∀x ∈ ΘSing.
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To prove (9.3), let Z be the subscheme such that G1,−1/2(Θ) = OZ . Lemma 7.30 implies
that Z must be reduced and Z ⊆ ΘSing. Since α̃Θ,x = 3

2
, ∀x ∈ ΘSing and ΘSing

∼= W 1
g−1(C)

is reduced by [2, Chapter IV, Corollary 4.5], Lemma 5.26 implies that

ΘSing ⊆ supp G1,−1/2(Θ) = Z.

We conclude that Z = ΘSing and hence (9.3) holds.
It remains to prove (9.4). The theta divisor of Jac(C) has the following chain of

multiplicity loci

(9.5) Jac(C) ⊇ Θ ⊇ ΘSing = Sing2(Θ) ⊇ · · · ⊇ Singℓ(Θ) ⊇ Singℓ+1(Θ) = ∅,

where ℓ = ⌊g+1
2
⌋. Since C is hyperelliptic, we know Singm(Θ) = Wm−1

g−1 (C) is irreducible,

codimJac(C) Singm(Θ) = 2m− 1, m ≥ 2,

and the singular locus of Singm(Θ) is exactly Singm+1(Θ). By Theorem 7.17 one has

α̃Θ,x ≤ 3

2
, ∀x ∈ Sing2(Θ)− Sing3(Θ).(9.6)

Now the plan is to apply Proposition 7.24 where we need to argue that there exists a log
resolution of

(Jac(C)− Sing3(Θ),Θ− Sing3(Θ))

which only blows up Sing2(Θ)− Sing3(Θ).
The log resolution of (Jac(C),Θ) in [70] is achieved by the following procedure. Note

that in (9.5) the deepest strata Singℓ(Θ) is either the hyperelliptic curve or a point, hence
is always smooth.

Step 1: Blow up Jac(C) along the deepest strata Singℓ(Θ), then the proper transform
of Singℓ−1(Θ) becomes smooth and is transverse to the exceptional divisor denoted by
Eℓ−1.

Step 2: Blow up along the proper transform of Singℓ−1(Θ), then the proper transform
of Singℓ−2(Θ) becomes smooth and is transverse to the exceptional divisor Eℓ−2 and
(proper transform of) Eℓ−1.

Step ℓ−1: Blow up along the proper transform of Sing2(Θ), then the proper transform
of Θ becomes smooth and is transverse to the exceptional divisor E1, . . . , Eℓ−1.

The conclusion is the we have a proper birational map π : Ã→ A = Jac(C) with

π∗Θ = Θ̃ + 2E1 + 3E2 + . . .+ ℓEℓ−1.(9.7)

is a divisor with normal crossing support and

KÃ/A = 2E1 + 4E2 + . . .+ (2ℓ− 2)Eℓ−1.

Note that because the singular locus of Singm(Θ) is exactly Singm+1(Θ) for any m ≥ 2,
the procedure above actually produces a log resolution

πm : Ãm → Jac(C)− Singm+1(Θ)

for the pair (
Jac(C)− Singm+1(Θ),Θ− Singm+1(Θ)

)

by iterated blowing up of Singj(Θ)− Singm+1(Θ) from j = m to j = 2. The data of log
resolution is

π∗
m(Θ− Singm+1(Θ)) = Θ̃ + 2E1 + 3E2 + . . .+mEm−1,

KÃm/Jac(C)−Singm+1(Θ) = 2E1 + 4E2 + . . .+ (2m− 2)Em−1.
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Then we can apply Proposition 7.24 to show that

min
x∈Sing2(Θ)−Sing3(Θ)

α̃Θ,x = α̃Θ−Sing3(Θ) =
3

2
.

By (9.6) we conclude that

α̃Θ,x =
3

2
, ∀x ∈ Sing2(Θ)− Sing3(Θ),

which is what we want. �

9.2. Properties of the center of minimal exponent. Let (A,Θ) be an indecom-
posable principally polarized abelian variety. In this section, we deduce some special
properties of the higher multiplier ideal sheaf for I1,α(Θ) for α ∈ [−1, 0). We start
by reinterpreting the work of Kollár and Ein-Lazarsfeld discussed in §9.1 in our lan-
guage. Using the relation I0,α(Θ) = J ((−α − ǫ)Θ), Kollár’s result [30, Theorem 17.13]
J ((1− ǫ)Θ) = OA can be translated to

(9.8) I0,−1(Θ) = OA, G0,α(Θ) = 0, ∀ − 1 < α ≤ 0, G0,−1(Θ) = OΘ.

Lemma 9.10. We have N acts trivally on G0,−1(Θ), and G1,0(Θ) = 0. Therefore, the
weight filtration on G0,−1(Θ) is trivial.

Proof. By Corollary 5.24, we have

W0(G0,−1(Θ)) = adj(Θ)/OA(−Θ), W−1(G0,−1(Θ)) = 0,

where adj(Θ) is the adjoint ideal. By [19, Theroem 3.3] we know adj(Θ) = OA. Therefore

W0(G0,−1(Θ)) = OA/OA(−Θ) = G0,−1(Θ),

which implies that N acts trivially on G0,1(Θ).
Now let us prove G1,0(Θ) = 0. Note that on G0,−1(Θ) ∼= grF0 grV−1M, where M is the

D-module associated to the graph embedding A →֒ L, we have locally N = t∂t+1 = ∂tt.
This gives the following diagram

G0,−1(Θ) G1,0(Θ) G1,−1(Θ)

grF0 grV−1M grF1 grV0 M grF1 grV−1M
∂t

N

t

We represent the bottom arrows locally by ∂t and t. Since M has strict support, ∂t is
surjective and t is injective. By the discussion above, we also know that N = ∂tt acts
trivially on grF0 grV−1M. This implies that

(grF1 grV0 M) · t = (grF0 grV−1M) · ∂tt = 0.

The injectivity of t means that grF0 grV0 M = 0.
Here is another way of deducing G1,0(Θ) = 0. Lemma 5.26 and (9.2) give

min{k − α, k ∈ N, α ∈ (−1, 0] | Gk,α(Θ) 6= 0} = α̃Θ > 1.

This implies that G1,0(Θ) = 0.
�

In view of (9.8) and Lemma 9.10, we see that there is no interesting information left in
the usual multiplier ideals of Θ and G1,0(Θ). The idea is to use the first higher multiplier
ideal I1,α(Θ) to get more information on the singularities of the theta divisor.
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Lemma 9.11. We have I1,<0(Θ) = OA and I1,<−1(Θ) = OA(−Θ).

Proof. By (5.15) in Proposition 5.10, G0,α−1(Θ) → G1,α(Θ) is an isomorphism for α > 0.
Using (9.8) and Lemma 9.10, we have

G1,α(Θ) = 0, ∀α ∈ [0, 1).

Since I1,<1(Θ) = OA by Proposition 5.10, this gives I1,<0(Θ) = OA. By (5.13) in Propo-
sition 5.10, one also has

I1,<−1(Θ) = I1,<0(Θ)⊗OA(−Θ) = OA(−Θ).

�

It follows that the chain of coherent sheaves

I1,α(Θ)⊗OA(2Θ), for α ∈ [−1, 0),

interpolates between OA(Θ) and OA(2Θ). They also satisfy the following vanishing the-
orem from Theorem 8.7.

Lemma 9.12. For α ∈ [−1, 0), we have

H i (A, I1,α(Θ)⊗OA(2Θ)⊗ ρ) = 0, ∀i > 0, ρ ∈ Pic0(A).

Now we analyze the subscheme Z from §7.4 and the center of minimal exponent of
(A,Θ) under the extra assumption that 1 < α̃Θ < 2. The left inequality automatically
holds by (9.2) and the right inequality will be satisfied if the assumption of Conjecture
9.1 does not hold.

Lemma 9.13. Assume α̃Θ < 2 and write

α̃Θ = 1− α, for some α ∈ (−1, 0).

Let Z be the closed subscheme defined by the ideal I1,<α(Θ). Then the subvariety Z is
reduced, connected and generates A as an abelian variety. The line bundle OZ(2Θ|Z) is
base-point-free and not very ample. The map induced by |2Θ|Z|

Z → PH0(Z, 2Θ|Z)
is two to one and the image of Z is non-degenerate.

Proof. The reducedness of Z follows from Lemma 7.30. For the connectedness, let us
study the properties of 2Θ|Z first. Since α ∈ (−1, 0), we can exploit the vanising theorem
from Lemma 9.12, which implies that

(9.9) H0 (A,OA(2Θ)⊗ L) ։ H0 (Z, (OA(2Θ)⊗ L)|Z)
is surjective for every L ∈ Pic0(A). It is known that |2Θ| is base-point-free; moreover,
when (A,Θ) is indecomposable, the resulting morphism

A→ P2g−1 = PH0(A, 2Θ)

factors through the quotient of A by the involution x 7→ −x and thus is a 2 : 1 map.
Then (9.9) implies that the linear system |2Θ|Z| is also base-point-free, and the resulting
map is two to one and the image of Z is non-degenerate.

Now suppose Z is not connected. Since we have the equality of sets

{OA(2Θ)⊗ L | L ∈ Pic0(A)} = {t∗aOA(2Θ) | a ∈ A, ta denotes the translation by a},
we could translate Z so that one connected component contains a point x0 and another
point −x0, and (9.9) gives

H0(A,OA(2Θ)) ։ H0(Z,OA(2Θ)|Z).
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This would then contradict the fact that |2Θ| does not separate these two points.
Finally let us prove the generation statement. Let B be the subtorus generated by

Z. We first claim that 2Θ|Z is not very ample: the argument above shows that 2Θ|Z
cannot separate x0 and −x0, thus not very ample; an alternative argument is we assume
Θ is symmetric in the beginning of §9 and thus Z ⊆ ΘSing must be symmetric as well.
Therefore 2Θ|Z cannot separate x0 and −x0 for some x0 ∈ Z. By the surjectivity in (9.9),
we conclude that 2Θ|B is also not very ample. In [50, Theorem A], Ohbuchi showed that
if 2Θ|B is not very ample for some sub abelian variety B ⊆ A, then B is isomorphic to a
product of polarized abelian varieties with at least one positive dimensional principally
polarized factor. It follows that B = A because (A,Θ) is indecomposable as principally
polarized abelian varieties.

For a slightly different argument of B = A, one can use [49, Theorem 1] as follows:
assume B is a proper subtorus of A. Since (A,Θ) is indecomposable as p.p.a.v., then
we must have h0(B,Θ|B) ≥ 2 and (B,Θ|B) cannot have nontrivial principally polarized
factor. Then [49, Theorem 1] implies that 2Θ|B is very ample, which is a contradiction.
Therefore B = A and Z generates A. �

We still assume 1 < α̃Θ < 2. Let Y be the center of minimal exponent for (A,Θ) in
the sense of Definition 7.34, i.e. write α̃Θ = 1−α for some α ∈ (−1, 0). Let ℓ ≥ 0 be the
maximal integer such that grWℓ G1,α(Θ) 6= 0, then

OY = grWℓ G1,α(Θ).

Lemma 9.14. Assume 1 < α̃Θ < 2 and let Y be the center of minimal exponent for
(A,Θ). Then Y is reduced, connected and generates A as an abelian variety. The line
bundle OY (2Θ|Y ) is base-point-free, but cannot separate x and −x for some x ∈ Y ,
therefore not very ample. The map induced by |2Θ|Y |

Y → PH0(Y, 2Θ|Y )
is two to one and the image of Y is non-degenerate. Moreover, Y is irreducible and
normal with at worst rational singularities.

Proof. We use the notation above. By (7.25), there is a short exact sequence

0 → IZ = I1,<α(Θ) → IY → Wℓ−1G1,α(Θ) → 0.

Since α ∈ (−1, 0), Theorem 8.7 also gives

H i(A,OA(2Θ)⊗Wℓ−1G1,α(Θ)⊗ L) = 0, ∀i > 0, L ∈ Pic0(A).

Then combined with Lemma 9.12, we have H i(A, IY ⊗OA(2Θ)⊗L) = 0 for all i > 0 and
L ∈ Pic0(A). Therefore we still have

H0 (A,OA(2Θ)⊗ L) ։ H0 (Y, (OA(2Θ)⊗ L)|Y )
is surjective for any L ∈ Pic0(A). Moreover Y must be symmetric because Θ is symmetric.
These properties are good enough to ensure the proof of Lemma 9.13 works and we obtain
the properties of Y except for the irreducibility, normality and rationality, which follows
from Y being the center of minimal exponent of (A,Θ), connected and Theorem 7.36. �

Lemma 9.15. With the same assumption as in Lemma 9.14, then we have

H i(Y,OA(2Θ)|Y ⊗ L) = 0, ∀i > 0, L ∈ Pic0(A).

Moreover, if Y is smooth, then 2Θ|Y is the smallest piece of the Hodge filtration in a
(1 + α)Θ|Y -twisted Hodge module on Y and

H i(Y,OA(2Θ)|Y ⊗ LY ) = 0, ∀i > 0,

and for all line bundle LY on Y such that OA((1 + α)Θ)|Y ⊗ LY is ample on Y .
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Proof. By the construction of Y as OY = grWℓ G1,α(Θ), ωA = OA and (5.8), we have

OA(Θ)⊗OY = grF−g+1 gr
W
ℓ grVα M.

By construction, grFk grWℓ grVα M = 0 for all k ≤ −g − 1. On the other hand, since
α ∈ (−1, 0), using (5.8) and (9.8) one has

grF−g gr
W
ℓ grVα M = OA(Θ)⊗ G0,α(Θ) = 0.

Therefore OA(Θ) ⊗ OY is the smallest piece in the Hodge filtration of the αΘ-twisted
Hodge module grWℓ grVα M (c.f. Proposition 3.12). Since twisting by OA(Θ) changes a
βΘ-twisted Hodge module into a (β + 1)Θ-twisted Hodge module (see Remark 3.3 and
Lemma 3.14), we have

OA(2Θ)⊗OY = grF−g+1((gr
W
k grVα M)⊗OA(Θ))

is the smallest piece in the Hodge filtration of a (1+α)Θ-twisted Hodge module. Because
α > −1, the Q-divisor (1+α)Θ+L is ample on A for all L ∈ Pic0(A). Since Ω1

A is trivial,
the vanishing Theorem 4.7 implies that

H i(Y,OA(2Θ)|Y ⊗ L) = H i(A,OA(2Θ)⊗OY ⊗ L) = 0,

for all i > 0 and L ∈ Pic0(A).
Assume Y is smooth. We go further by exploiting the fact that OA(2Θ)|Y is the first

step in the Hodge filtration of an (1+α)Θ-twisted Hodge module supported on Y . Since
Y is smooth, the twisted form of Kashiwara’s equivalence (Theorem 3.10) shows that

OA(2Θ)|Y
is the direct image of the first step in the Hodge filtration of an (1+α)Θ|Y -twisted Hodge
module on Y . Therefore Theorem 4.7 implies that

H i(Y,OA(2Θ)|Y ⊗ LY ) = 0

for every line bundle LY on Y such that LY ⊗OA((1 + α)Θ)|Y is ample on Y . �

9.3. The case of one dimensional center. Now we give the proof of Theorem 9.4. By
the way of contradiction, suppose that for some m ≥ 2, we have

(9.10) d := dimSingm(Θ) ≥ g − 2m+ 1.

The Ein-Lazarsfeld bound (9.1) gives d ≤ g − m − 1, thus we get g − d = m + r for a
unique

(9.11) 1 ≤ r ≤ m− 1.

According to Theorem 7.17, we can conclude that

I1,<β(Θ) ( OA, for some β ≥ −r/m > −1.

So one of the higher multiplier ideals I1,<α(Θ) in the range α ∈ (−1, 0) must be nontrivial;
moreover, a greater defect in (9.10) means a smaller value of r, and hence a jump in
I1,<α(Θ) for a larger value of α.

Let α be the maximal value for which I1,<α(Θ) ( OA. Lemma 9.11 gives I1,<0(Θ) =
OA. Then we have

(9.12) −1 < −r/m ≤ α < 0.

Equivalently, let α̃Θ be the minimal exponent of Θ. Corollary 7.21 implies that

α̃Θ ≤ codimA(Singm(Θ))

m
≤ 2m− 1

m
< 2.
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Thus Lemma 5.26 implies that α̃Θ = 1− α, and together with (9.2) one has

(9.13) 1 < α̃Θ ≤ g − d

m
< 2.

Recall that Y is the center of minimal exponent of (A,Θ). As 1 < α̃Θ < 2, one can
apply Lemma 9.14 to conclude that Y is irreducible and normal. Since we assume that
dimY = 1, hence Y must be a smooth projective curve. For the rest of the proof, set

C := Y, e := Θ · C = degC(Θ|C), g(C) := genus of C.

Proposition 9.16. The curve C must be hyperelliptic and e = g(C).

Proof. Since 1 < α̃Θ < 2, Lemma 9.15 gives H1(C,OA(2Θ)|C) = 0. Therefore by
Riemann-Roch we have

dimH0(C,OA(2Θ)|C) = 2e− g(C) + 1.

It follows from Lemma 9.14 that the morphism defined by |2Θ|C| maps C two-to-one to
a non-degenerate curve of degree e in P2e−g(C). By Castelnuovo’s theorem on degrees of
non-degenerate curves, this gives us the degree bound

(9.14) e ≥ 2e− g(C), or equivalently g(C) ≥ e.

On the other hand, for any LC ∈ Pic0(C), we have (1 + α)Θ|C ⊗ LC is ample on C,
because α > −1 by (9.12). Hence Theorem 4.7 gives

H1(C,OA(2Θ)|C ⊗ LC) = 0, ∀LC ∈ Pic0(C).

By Serre duality, this is equivalent to

H0(C, ωC ⊗OA(−2Θ)|C ⊗ LC) = 0, ∀LC ∈ Pic0(C).

By Lemma 9.17 below, we deduce that

2e = degC(2Θ|C) > degC(ωC) = 2g(C)− 2,

and hence that e ≥ g(C). We therefore have equality in the Castelnuovo bound (9.14),
and so the image of C in P2e−g(C) = Pe must be a rational normal curve. We conclude
that C must be hyperelliptic, as a 2:1 cover of a rational normal curve. �

Lemma 9.17. Let C be a smooth projective curve, if P is a line bundle on C such that
H0(C, P ⊗ L) = 0 for all L ∈ Pic0(C), then deg P < 0.

Proof. Assume degP > g(C), one can choose a L ∈ Pic0(C) such that P ⊗L is effective.
Then by geometric Riemann-Roch one has dimH0(C, P ⊗ L) = deg P − g(C) + 1 > 1,
which is a contradiction.

Assume 0 ≤ d = degP ≤ g(C), then by [2, Chapter IV, Lemma (3.3)], the dimension
of the Brill-Noether variety W 0

d (C) is at least g − (g − d) = d ≥ 0. Hence there exists
at least one L ∈ Pic0(C) so that dimH0(C, P ⊗ C) ≥ 1, which is also a contradiction.
Therefore we finish the proof. �

The next proposition finishes the proof of Theorem 9.4.

Proposition 9.18. With the notation above, the following hold.

(1) The inequality dimSingm(Θ) ≤ g − 2m+ 1 holds for every m ≥ 2.
(2) Moreover, dimSingm(Θ) = g − 2m + 1 can only happen if either A = J(C) is

the Jacobian of the hyperelliptic curve C, or if g = 2m − 1, g(C) = 2m,α =
−(m − 1)/m, α̃Θ = 2m−1

m
and Θ has a unique singular point of multiplicity m;

moreover m ≥ 4.
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Proof. Since C = Y is smooth, Lemma 9.15 implies that OA(2Θ)|C is the smallest piece
in the Hodge filtration of a (1 + α)Θ|C-twisted Hodge module on C. Then the twisted
version of the Arakelov inequalities for variation of Hodge structure (see Corollary 9.20)
implies that

2e = degC(OA(2Θ)|C) ≥ deg ωC + (1 + α) degC(OA(Θ)|C) = 2e− 2 + (1 + α)e.

Here we use Lemma 9.16 to get deg ωC = 2g(C)− 2 = 2e− 2. This implies that

(9.15) (1 + α)e ≤ 2.

On the other hand, Lemma 9.14 says that C generates A (as an effective 1-cycle). Then
the Matsusaka-Ran theorem [57] gives e = Θ · C ≥ dimA = g, with equality if and only
if A = Jac(C). Recall that d = dimSingm(Θ) ≥ 0 and r = g − d −m. Then (9.11) and
(9.12) give

α ≥ −r/m, 1 ≤ r ≤ m− 1.

Combining with the inequality (9.15), we see that

(9.16) m+ r ≤ m+ r + d = g ≤ e ≤ 2

1 + α
≤ 2m

m− r
.

This implies that

m2 − 2m ≤ r2.

Suppose r ≤ m− 2, then

m2 − 2m ≤ m2 − 4m+ 4.

Therefore, we have m ≤ 2 and r ≤ 0, which contradicts with 1 ≤ r ≤ m−1. In particular,
we conclude that

r = m− 1.

Plugging r = m− 1 back to (9.16), we see that

2m+ d− 1 ≤ 2m.

Therefore d = 0 or d = 1, and e = g or e = g + 1.

• If e = g, then we see that the abelian variety A contains a curve C generating A
with

C ·Θ = e = g = dimA.

By the Matsusaka-Ran criterion for Jacobians [57], we conclude that

A = Jac(C),

i.e. A is the Jacobian of a hyperelliptic curve.
• If e = g+ 1, then d = 0, g = 2m− 1, g(C) = e = 2m, α = −m−1

m
and α̃Θ = 2m−1

m
.

In this case, Θ has a singular point with multiplicity m. Finally, let us rule
out the case where m = 3. If m = 3, then by Casalaina-Martin’s result [10,
Proposition 3.5], either A is the intermediate Jacobian of a cubic threefold or A
is the Jacobian of a hyperelliptic curve. The first case is impossible because then
ΘSing ⊇ C, which contradicts with the known result that the theta divisor on the
intermediate Jacobian of a cubic threefold has only one isolated singularity. The
second case is also impossible because on the one hand α̃Θ = (2×3−1)/3, on the
other hand α̃Θ = 3/2 by Theorem 9.6, which causes a contradiction! We conclude
that m ≥ 4.

�
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Lemma 9.19 ([54]). Let C be a smooth projective curve of genus g(C) and let M be a
D-module underlying a polarized complex Hodge module with strict support C. Let p be
the smallest integer such that FpM 6= 0. Then

degFpM ≥ 2g(C)− 2.

Proof. Let V be the polarized CVHS on some open subset C0. Then

degFpM ≥ 2g(C)− 2 + degF−pV ≥ 2g(C)− 2.

�

Corollary 9.20. Let C be a smooth projective curve of genus g(C). Let D be an effective
divisor on C and set L = OC(D). Let M be a αL-twisted Hodge module with strict
support C. Let p be the smallest integer such that FpM 6= 0, where M is the underlying
twisted D-module. Then

deg FpM ≥ 2g(C)− 2 + α · degD.
Proof. If α ∈ Z, then M⊗ L−α underlies a polarized complex Hodge module by Lemma
3.14 and then apply Lemma 9.19. �

Remark 9.21. Using Reider’s theorem on Fujita conjecture for surfaces [58], one can
deduce some partial results when the center of minimal exponent is two dimensional. But
we will leave this for future investigation.

9.4. General case. In this section, we relate [53, Conjecture A] with Conjecture 9.2.
We need to modify this conjecture slightly: let (A,Θ) be an indecomposable p.p.a.v.
and let Y ⊆ A be a closed reduced subscheme of A of pure dimension d ≤ g − 2 which
generates A as an abelian variety. If IY (2Θ) satisfies the IT0-property, then (A,Θ) must
be a Jacobian of curve or a Jacobian of a smooth cubic threefold. The original conjecture
assumes Y is geometrically non-degenerate instead of the generation condition, the latter
condition is a priori weaker.

Proof of Proposition 9.5. We prove by contradiction. Let (A,Θ) be an indecomposable
p.p.a.v. so that it is not a hyperelliptic Jacobian or the Jacobian of a smooth cubic
threefold. Assume there exists m ≥ 2 so that

dimSingm(Θ) ≥ g − 2m+ 1.

Then by (9.2) and Corollary 7.21, we must have

1 < α̃Θ ≤ codimASingm(Θ)

m
≤ 2m− 1

m
< 2.

Let Y be the center of minimal exponent of (A,Θ). By Lemma 9.14, Y is a closed,
reduced and irreducible subscheme of A and Y generates A. In particular, Y is of pure
dimension. Lemma 9.15 implies that the sheaf IY (2Θ) has the IT0-property in the sense
of Pareschi-Popa [53]. Since dimY ≤ dimΘSing ≤ g− 2, then the modified version of [53,
Conjecture A] (see above) implies that (A,Θ) must be a Jacobian of curve or a Jacobian
of a smooth cubic threefold. By a result of Martens, for any non-hyperelliptic curve, one
must have

dimSingk(Θ) ≤ g − 2k, ∀k ≥ 2.

Therefore (A,Θ) must be a hyperelliptic Jacobian or a Jacobian of a smooth cubic three-
fold. This causes a contradiction! We conclude that Conjecture 9.2 holds. �
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9.5. Theta divisors with isolated singularities. In this section, we give different
proofs of some results obtained by Mustaţă-Popa [45], not using Hodge ideals.

Theorem 9.22. [45, Theorem I] Let (A,Θ) be an indecomposable p.p.a.v. of dimension
g such that Θ has isolated singularities. Then

(1) For every x ∈ Θ we have multx(Θ) ≤ g+1
2
.

(2) Moreover, there is at most one point x ∈ Θ with multx(Θ) = g+1
2
.

Proof. Assume m = multx(Θ) ≥ g+2
2
, then (7.19) implies that

I1,−1(Θ) ⊆ m
2m−g−⌊ 2m−g

m
⌋

x ⊆ m
2
x.

This is because the Ein-Lazarsfeld bound (9.1) implies that m ≥ g − 1, so 2 ≤ 2m− g ≤
m− 1. Consider the short exact sequence

0 → OA(2Θ)⊗ I1,−1(Θ) → OA(2Θ)⊗m
2
x → OA(2Θ)⊗m

2
x/I1,−1(Θ) → 0.

Note that suppm2
x/I1,−1(Θ) ⊆ {x}, so OA(2Θ) ⊗ m

2
x/I1,−1(Θ) ⊗ ρ has no higher coho-

mology for any ρ ∈ Pic0(A). Combining with Lemma 9.12, one has

H i(A,OA(2Θ)⊗m
2
x ⊗ ρ) = 0, for all i > 0.

Then one can argue as in the proof of [45, Theorem I] to obtain a contradiction with the
fact that |2Θ| is 2 : 1 and ramified at 2-torsion points. Therefore multx(Θ) ≤ g+1

2
.

Assume there are two points x, y such that m = multx(Θ) = multy(Θ) = g+1
2
, then

(7.19) gives
I1,−1(Θ) ⊆ mx ⊗my,

because 2m− g − ⌊(2m− g)/m⌋ = 1. Then a similar argument as above will contradict
that fact that |2Θ| does not separate z and −z for z 6= 0. �

We can obtain similar bounds of multiplicities in terms of jet separation, as in [45,
Theorem 29.5]. Following [45], we denote by s(ℓ, x) the largest integer s such that the
linear system |ℓΘ| separates s-jets at x and we denote

sℓ = min{s(ℓ, x) | x ∈ A}.
Let ǫ(Θ) be the Seshadri constant.

Theorem 9.23. Let (A,Θ) be a p.p.a.v. of dimension g such that Θ has isolated singu-
larities. Then for every x ∈ Θ and every k ≥ 1, we have

(9.17) multx(Θ) <
sk+1 + g + k + 3 +

√
(sk+1 + g + k + 3)2 − 4g(k + 1)

2(k + 1)
.

In particular, for every x ∈ Θ we have

multx(Θ) ≤ ǫ(Θ) + 1 ≤ g
√
g! + 1.

Proof. Assume (9.17) does not hold, then using the elementary fact that if a > 0 and

m ≥ −b+
√
b2−4ac
2a

, then am2 + bm+ c ≥ 0, we have

(k + 1)m2 − (k + g + sk+1 + 3)m+ g ≥ 0,

which can be rearranged as

m(k + 1)− g − (
m(k + 1)− g

m
+ 1) ≥ sk+1 + 2.

Since ⌊m(k + 1)− gm⌋ ≤ (m(k+1)−g
m

+ 1, according to (7.19) it follows that

Ik,−1(Θ) ⊆ m
2+sk+1
x .
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Using Theorem 8.7, one then argue as in the proof of [45, Theorem 29.5] to derive a
contradiction. �

Remark 9.24. Our precise bound (9.17) is better than those of [45, Theorem 29.5], but
asymptotically is only 1 better.

Remark 9.25. One can apply similar arguments to recover results in [45, §30] for singular
points on ample divisors on abelian varieties, using Theorem 8.7. We leave the details to
interested readers.

10. Questions and open problems

We finish this work with some questions and open problems. Let D be an effective
divisor on a complex manifold X .

Question 10.1. Let π : X̃ → X be a log resolution of (X,D). Is it true that

π∗(ωX̃/X ⊗ Ik,α(π
∗D)) ⊆ Ik,α(D)?

See Remark 7.5 and Example 6.14.

Problem 10.2. Does there exist a simple formula for Ik,α(D) in terms of some log
resolution of (X,D)?

Question 10.3. Let D1, D2 are two effective divisors. Assume D1 ≥ D2, i.e. D1 −D2 is
effective. For k = 0, one has

I0,α(D1) ⊆ I0,α(D2).

Is there any similar relation between Ik,α(D1) and Ik,α(D2) for k ≥ 1?

Problem 10.4. The equality (5.22) expresses Ik,α(mD) in terms of Ik,α(D). Find a
relation between Ik,α(D1 + D2) and Ik,•(D1), Ik,•(D2) in the spirit of the subaddivity
theorem for usual multiplier ideals.

For any p.p.a.v (A,Θ), the work of Kollár [30] implies that the minimal exponent
satisfies α̃Θ ≥ 1. Furthermore, if (A,Θ) is indecomposable, one has α̃Θ > 1 by the work
of Ein-Lazarsfeld [19], see (9.2). Inspired by Conjecture 9.2 and Theorem 9.6, we ask

Question 10.5. Let (A,Θ) be an indecomposable principally polarized abelian variety.
Does one always have

α̃Θ ≥ 3

2
?

If it is true, do hyperelliptic Jacobians characterize the equality case?
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[48] M. Mustaţǎ. The multiplier ideals of a sum of ideals. Trans. Amer. Math. Soc., 354(1):205–217,
2002.

[49] A. Ohbuchi. Some remarks on ample line bundles on abelian varieties. Manuscripta Math., 57(2):225–
238, 1987.

[50] A. Ohbuchi. A note on the normal generation of ample line bundles on abelian varieties. Proc. Japan
Acad. Ser. A Math. Sci., 64(4):119–120, 1988.

[51] S. Olano. Weighted multiplier ideals of reduced divisors. Mathematische Annalen, pages 1–36, 2021.
[52] S. Olano. Weighted Hodge ideals of reduced divisors. arXiv:2208.03271, to appear in Forum of

Mathematics, Sigma, 2022.
[53] G. Pareschi and M. Popa. Generic vanishing and minimal cohomology classes on abelian varieties.

Math. Ann., 340(1):209–222, 2008.
[54] C. Peters. Arakelov-type inequalities for hodge bundles. math/0007102, 2000.
[55] M. Popa. Connections betweens some conjectures on subvarieties of abelian varieties. Oberwolfach

report, 2018.
[56] M. Popa and C. Schnell. Generic vanishing theory via mixed Hodge modules. Forum Math. Sigma,

1:Paper No. e1, 60, 2013.
[57] Z. Ran. On subvarieties of abelian varieties. Invent. Math., 62(3):459–479, 1981.
[58] I. Reider. Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. of Math. (2),

127(2):309–316, 1988.
[59] C. Sabbah. Polarizable twistor D-modules. Astérisque, (300):vi+208, 2005.
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