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Abstract: It is well understood — through string dualities — that there are 20 massless

vector fields in the spectrum of eight-dimensional F-theory compactifications on smooth

elliptically fibered K3 surfaces at a generic point in the K3 moduli space. Such F-theory

vacua, which do not have any enhanced gauge symmetries, can be thought of as supersym-

metric type IIB compactifications on P1 with 24 (p, q) seven-branes. Naively, one might

expect there to be 24 massless vector fields in the eight-dimensional effective theory coming

from world-volume gauge fields of the 24 branes. In this paper, we show how the vector

field spectrum of the eight-dimensional effective theory can be obtained from the point of

view of type IIB supergravity coupled to the world-volume theory of the seven-branes. In

particular, we first show that the two-forms of the type IIB theory absorb the seven-brane

world-volume gauge fields via the Cremmer-Scherk mechanism. We then proceed to show

that the massless vector fields of the eight-dimensional theory come from KK-reducing the

SL(2,Z) doublet two-forms of type IIB theory along SL(2,Z) doublet one-forms on the

P1. We also discuss the relation between these vector fields and the “eaten” world-volume

vector fields of the seven-branes.
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1 Introduction and summary

Ever since its discovery, F-theory [1–3] has played a prominent role in understanding the

landscape of string vacua. F-theory provides a very rich, if not the richest, range of

string vacua in various dimensions.1 This “versatility” comes from the fact that F-theory

provides a framework to work with strongly coupled string — or to be exact, type IIB —

backgrounds. An F-theory vacuum can be thought of as a compactification of a twelve-

dimensional theory on an elliptically fibered manifold M̄ over some base S̄. What this

background is actually describing is a type IIB compactification on the manifold S̄ with

a varying axio-dilaton profile — the value of the axio-dilaton is encoded in the complex

structure of the elliptic fiber.

The strongly coupled nature of F-theory, however, makes it difficult to study global

F-theory backgrounds directly from the point of view of type IIB string theory. There

1See, for example, [4].

– 1 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
5

are many different approaches to understand these vacua. One approach is to use string

dualities with M-theory or heterotic string theory [1–3]. Another is to study weakly coupled

“orientifold” limits [5–7] of F-theory vacua. Yet another is to study local backgrounds to

gain insight into global backgrounds [8–11]. By now there are many aspects of F-theory that

are well understood based on these approaches. Some features, however, remain unclarified

from the point of view of type IIB string theory.

A subject that begs for better understanding is abelian gauge symmetry. For example,

the abelian gauge symmetry of eight-dimensional or six-dimensional F-theory backgrounds

can be deduced using F-theory/M-theory duality. Its interpretation in the original type

IIB framework, however, has not been explored extensively. Let us elaborate the issue with

K3 compactifications of F-theory, which is the subject of this paper.

The simplest F-theory backgrounds are eight-dimensional — they come from com-

pactifying the theory on an elliptically fibered K3 manifold with a section. When the K3

manifold only has I1 singularities, these backgrounds describe type IIB compactifications

on P1 with 24 (p, q) seven-branes. K3 compactifications of F-theory were thoroughly in-

vestigated from — and arguably even before [12] — the birth of F-theory [1, 5, 13–18]

and are very well understood based on the aforementioned methods. In particular, these

compactifications are dual to T 2 compactifications of heterotic string theory, which are

perturbative string vacua. The eight-dimensional F-theory compactification has 20 vector

fields in its massless spectrum at a generic point in the F-theory moduli space, 18 of which

belong to the vector multiplets. It is understood that these vector fields are related to the

world-volume vector fields of the 24 seven-branes present in the background. The precise

relation between the massless vector fields of the 8D theory and the vector fields living on

the world-volume of the seven-branes, however, has not been explored further. For exam-

ple, while qualitative explanations on the discrepancy between the number of the branes

and the number of vector fields in the eight-dimensional theory have been given [1, 13],

these arguments have not been made very sharp. In this paper, we expand on the idea

of [13] on how the vector field spectrum of F-theory compactified on K3 can be obtained.

In particular, we take the point of view that these backgrounds are type IIB supergrav-

ity compactifications on a P1 with seven-branes in it.2,3 We focus on the interaction of

the bulk two-form fields of the type IIB theory and the world-volume gauge fields, ulti-

mately showing that the gauge degrees of freedom are eaten by the tensor fields through

the Cremmer-Scherk (CS) mechanism4 [23].

The Cremmer-Scherk mechanism is a generalized version of the Stückelberg mechanism

to the tensor/vector field pair. Let us first review the Stückelberg mechanism before we

describe its generalized version. An abelian vector field Aµ can become massive by coupling

2This approach to F-theory backgrounds has been utilized for different purposes before, for example, in

the works [19, 20].
3A similar approach to obtaining matter spectra of F-theory compactifications on Calabi-Yau manifolds

has been taken in [21, 22].
4Incidentally, the initials of Cremmer-Scherk coincide with those of Chern-Simons. Throughout this

paper, the acronym CS is exclusively used to refer to the former combination.
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to a scalar Stückelberg field φ by

1

2
(∂µφ−Aµ)

2 . (1.1)

The gauge symmetry of the theory is given by

Aµ → Aµ + ∂µΛ, φ→ φ+ Λ , (1.2)

and hence the Stückelberg field can be gauged away. In the end, the degrees of freedom of

the scalar field are eaten by the gauge field — one is left with one massive vector field in

the theory.

One can readily generalize this mechanism for tensor-vector interactions. That is,

given a two-form field Bµν and vector field Aµ, the two-form field becomes massive by the

covariant coupling
1

2
(∂µAν − ∂νAµ −Bµν)

2 , (1.3)

given the gauge symmetry

Bµν → Bµν + ∂µVν − ∂νVµ, Aµ → Aµ + Vµ . (1.4)

Now the vector is “eaten” by the tensor field — this is the Cremmer-Scherk mechanism.

The tensor-vector interaction (1.3) and the gauge symmetry (1.4) is a familiar one — it

is precisely the way gauge fields living on branes interact with bulk tensor fields. The

two-forms of the type IIB theory, which form a doublet under the global SL(2,Z) action of

the theory, couple to world-volume gauge fields in this way. In this paper, we show that for

F-theory K3 compactifications — type IIB compactifications on P1 with 24 seven-branes

— all the 24 world-volume gauge fields are “eaten” by the two-form fields. More precisely,

we find 24 linearly independent SL(2,Z) doublet gauge transformations

BI
MN → BI

MN + d(φI
a(z, z̄)Λ

a
ν), Ai

µ → Ai
µ − (piφ

1
a(zi, z̄i) + qiφ

2
a(zi, z̄i))Λ

a
µ (1.5)

where a = 1, · · · , 24. Here, M,N/µ, ν are ten/eight-dimensional indices, respectively, while

z and z̄ denote the coordinates on the internal P1 manifold. The I is an SL(2,Z) index. We

have used i = 1, · · · , 24 to index the branes, while using (zi, z̄i) and (pi, qi) to denote their

positions and brane charges, respectively. Ai is the gauge field living on the i-th brane.

Hence due to the CS gauge symmetry of the system, we can work in a “unitary gauge”

where the vector degrees of freedom are pulled from the branes into the “bulk.”

Although the world-volume gauge fields are eaten by the tensor fields through the CS

mechanism, it turns out that there are still massless vector fields — in fact, 20 of them —

in the eight-dimensional effective theory. These vector fields come from KK-reducing the

SL(2,Z) doublet two-form along SL(2,Z) doublet one-form zero modes on the compact P1:

BI
mµ =

20
∑

k=1

ξk,Im akµ . (1.6)
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Here, m is the two-dimensional index along the compact P1 direction, while we have used

k to enumerate the zero modes. These zero modes are harmonic along the compact direc-

tions, i.e.,

dξk,I = 0 , d ∗MIJξ
k,J = 0 , (1.7)

while they must exhibit certain monodromies around seven-brane loci. Here, ∗ denotes

the Hodge dual with respect to the metric of the base manifold, while MIJ is a SL(2,Z)

covariant Hermitian metric which depends on the axio-dilaton. We count the number of

these zero-modes by relating them to elements of the cohomology group of a certain sheaf

living on the base S̄ of the elliptic fibration.

To introduce this sheaf, let us review the F-theory backgrounds at hand in more detail.

As before, let us denote the 24 seven-branes as Bi with i = 1, · · · , 24. From the point of

view of the K3 geometry, these branes sit at the loci of the base P1 where the elliptic fiber

degenerates. Picking an “A-cycle” α and a “B-cycle” β along the fiber, we can determine

the type of brane sitting at Bi.
5 Bi is a (pi, qi) seven-brane when the cycle piα + qiβ

degenerates at the brane locus. Now the A and B-cycle exhibit monodromies around the

brane locus — these are precisely the monodromies that SL(2,Z) covariant fields must

exhibit around the branes in order for the field values to be well-defined.

We see that one way to view the K3 manifold is to see it as a family of elliptic curves

parametrized by the base manifold S̄. From this point of view, the harmonic one-forms (1.7)

represent elements of the first cohomology group of “the sheaf of local invariant one-cycles”6

living on S. Hence, the dimension of this cohomology group, h1(S̄, j∗HQ), can be identified

with the number of linearly independent doublet harmonic one-forms. Cohomology groups

of such sheaves have been examined systematically in the mathematics literature [30], and

have been shown to have Hodge structures compatible with that of the elliptically fibered

manifold itself. We use the results of [30] to show that h1(S̄, j∗HQ) = 20 (proposition B.1).

In this paper, we further relate the SL(2,Z) doublet harmonic one-forms with the

cohomology of the K3 manifold in the following way. We show that the doublet one-

forms can be constructed by integrating certain closed two-forms of the underlying K3

manifold along the A and B-cycles of the fiber. Let us be more precise. There exists a

20-dimensional subspace of the second cohomology of the elliptically fibered K3 manifold

— which we denote H2(M̄)⊥ — that is transverse to the fiber and the base. For each

element of H2(M̄)⊥, we show that there exists a certain two-form Ξk in the class whose

projection to the zero section and to every fiber vanishes, i.e.,

Ξk|Fiber = Ξk|Base = 0 . (1.8)

In fact, we can choose Ξk to be harmonic with respect to the “semi-flat metric” [33] of

elliptically fibered K3 manifolds constructed in [12]. In this case, a doublet of one-forms

5Such a choice can always be made in a dense open patch of the base of the fibration.
6Given the elliptic fibration f̄ : M̄ → S̄, this sheaf is obtained by pushing forward a certain sheaf living

in a dense open subset S of S̄ with respect to the inclusion map j : S →֒ S̄. S is obtained by excising the

points on S̄ where the fiber degenerates. Then one can consider the elliptic fibration f : M → S over S.

The sheaf living on S is denoted by HQ = R1f∗Q for the locally constant sheaf Q on M . The cohomology

group of interest is H1(S̄, j∗HQ) [30]. Explanation of the notation we use can be found in standard texts

on Hodge theory such as [31, 32].
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on the base manifold
(

ξk,1

ξk,2

)

=





∫

α Ξ
k

∫

β Ξ
k



 (1.9)

can be defined. Note that these doublets automatically exhibit the required monodromies

around each brane locus due to the behavior of the cycles around these points. Also,

these one-forms can be shown to be harmonic as defined in (1.7). A more mathematical

formulation, as well as a proof of these facts are presented in appendix E.

The massless vector field excitations are equivalent to a collective excitation of seven-

brane vector fields and bulk fields by CS gauge transformations. A particularly useful

gauge is one in which the tensor field components are turned on along directions transverse

to the compact space. In such a gauge, the tensor field excitations decouple from the

string junctions [17, 24–29] — which are webs of (p, q) strings ending on the various seven-

branes — stretching between the seven-branes, as the junctions lie along the compact P1.

Therefore, in this gauge, one can identify the linear combinations of the seven-brane vector

fields that reproduce the charges of the string junctions under a particular vector field ak.

In this sense, there is a correspondence between the massless vector fields constructed

by KK-reduction and the world-volume vector fields living on the seven-branes. To be

more precise, it can be shown that turning on an eight-dimensional vector field ak, i.e.,

turning on the ten-dimensional tensor field

BI = ξk,I ∧ ak , (1.10)

is gauge equivalent to turning on some linear combination of seven-brane vector fields

Ai = Φi
ka

k ≡ (piϕ
k,1(zi, z̄i) + qiϕ

k,2(zi, z̄i))a
k , (1.11)

along with a tensor field transverse to the compact directions:

BI = −ϕk,Idak . (1.12)

Here, ϕk,I is a doublet scalar living on the P1 that satisfies

dϕk,I = ξk,l . (1.13)

Hence the tensor field background (1.10) is equivalent to turning on the background gauge

fields (1.11) from the point of view of the string junctions. With further “CS gauge fixing,”

we can in fact show that there is a invertible linear map between the vector fields ak and

a moduli-independent 20-dimensional linear subspace L of the seven-brane vector fields.

This paper is organized as follows. In section 2, we review basic facts about K3 com-

pactifications of F-theory and show how they can be described from the type IIB point of

view. In section 3, we show that all the seven-brane world-volume vector fields are eaten

by the type IIB tensor fields through the Cremmer-Scherk mechanism, and identify the

responsible gauge transformations. In section 4, we find the 20 SL(2,Z) doublet harmonic

one-forms of the type IIB geometry. We relate these one-forms to the elements of the

cohomology group H1(S̄, j∗HQ), as well as H2(M̄). We show that the type IIB doublet

– 5 –
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two-forms can be reduced along these one-forms to yield 20 massless vector fields in the

8D effective theory. We proceed to establish the aforementioned correspondence between

these harmonic one-forms and world-volume vector fields. Further discussions and future

directions are presented in section 5. In particular, we discuss the possibility of develop-

ing our approach further towards understanding more general F-theory backgrounds. We

elaborate on some technical details that we have omitted in the main text in the appendix.

2 Review of F-theory compactifications on smooth K3 surfaces

In this section, we review eight-dimensional backgrounds coming from compactifying F-

theory on a smooth generic elliptically fibered K3 manifold with a section.7 We we take

the point of view that these backgrounds are supersymmetric solutions of type IIB theory,

that is, as a type IIB compactification on P1 with 24 (p, q) seven-branes. We first review its

massless matter content using F-theory/heterotic duality, focusing on the gauge fields, and

proceed to describe the supergravity solution in more detail. The content of this section is

a reorganization of facts presented in [1, 4, 12, 15, 17, 18, 24–29], among other places. A

great review of K3 geometry in the context of string theory is given in [34].

Eight-dimensional F-theory backgrounds with minimal supersymmetry come from

compactifying F-theory on an elliptically fibered K3 manifold f̄ : M̄ → S̄ with a sec-

tion. We denote the K3 manifold by M̄ and the base manifold by S̄ throughout this paper.

The base S̄ of the fibration is a P1, and the manifold is parametrized by the Weierstrass

equation

Y 2 = X3 + F8XW 4 +G12W
6 . (2.1)

Here F8 and G12 are sections of 8H and 12H, where H is the hyperplane line bundle of

the base P1 manifold. In this paper, we assume that the complex structure of M̄ is at a

generic point in the moduli space. We therefore assume generic values for the coefficients

of F8 and G12. When this is the case, the manifold is smooth and the elliptic fibration has

24 I1 singularities at the loci

∆ = 4F 3
8 + 27G2

12 = 0 . (2.2)

∆ is the discriminant of the elliptic curve; the locus ∆ = 0 is called the discriminant locus.

Throughout this paper, we often choose work in a local patch of the ambient toric manifold,

in which case the equation (2.1) can be written as

y2 = x3 + f8(z)x+ g12(z) , (2.3)

where z is the local coordinate on the base manifold. f8 and g12 are polynomials in z with

degree ≤8 and ≤12, respectively. There are thirty-seven moduli in the eight-dimensional

theory — 18 complex moduli parametrizing the complex structure of the elliptic fibra-

tion (2.1) and one real modulus that parametrizes the size of the base.

These eight-dimensional theories are dual to E8×E8 heterotic string compactifications

on a two-torus. The complex structure moduli of the elliptically fibered K3 manifold map

7By smooth and generic, we mean that the elliptic fibration has 24 I1 singularities. We note that smooth

K3 manifolds can have type II singularities at special points in the moduli space.
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to the complex and Kähler moduli of the torus and the Wilson lines along the two T 2

directions. The modulus that parametrizes the size of the base of the K3 manifold maps

to the value of the dilaton of the heterotic theory. At a generic point in the complex

structure moduli space, the dual heterotic background has generic Wilson lines turned on.

The massless spectrum of the heterotic background can be easily obtained by standard

methods. In particular, the theory at such a point has 20 gauge fields in the massless

spectrum. Sixteen of these gauge fields come from the Cartan subgroup of the E8 × E8

gauge group, while four — two of which are graviphotons — come from reducing the

ten-dimensional graviton and tensor along the two “legs” of the torus.

The elliptic fibration (2.1) describes a supersymmetric background of type IIB string

theory. Before we see how, let us first describe the low-energy effective theory of type IIB in

more detail. The massless bosonic degrees of freedom are given by the graviton, a complex

scalar, two two-forms, and one self-dual four form. Type IIB string theory is covariant

under a global SL(2,Z) group. Following the conventions of [35], the bosonic part of the

type IIB action can be written in an SL(2,Z) covariant way in Einstein frame:

SIIB =
1

2κ210

∫

d10x
√−g

(

R−∂µτ∂
µτ̄

2τ22
−MIJF

I
3 ·F J

3 −
1

4
|F̃ 2

5 |
)

− ǫIJ
8κ210

∫

C4∧F I
3 ∧F J

3 . (2.4)

Here, τ = τ1 + iτ2 is the axio-dilaton, while F I
3 is the two-from field strength doublet:

(

F 1
3

F 2
3

)

=

(

dB

dC

)

. (2.5)

The SL(2,Z) group acts on these fields as

τ → aτ + b

cτ + d
(2.6)

F I
3 → ΛI

JF
J
3 , ΛI

J =

(

d c

b a

)

(2.7)

where a, b, c and d are integers satisfying ad− bc = 1. We note that the dual six-form fields

of B and C transform in the same way as the two-form fields under the SL(2,Z) action.

The matrixMIJ is given by

MIJ =
1

τ2

(

|τ |2 −τ1
−τ1 1

)

. (2.8)

F̃5 is the SL(2,Z) neutral four-form field strength. Using the transformation rules, it can

be checked that the action (2.4) is invariant under SL(2,Z) transformations.

From the point of view of the type IIB theory, the elliptic fibration (2.1) parametrizes

a supersymmetric solution to the equations of motion. To be more precise, it describes a

compactification of type IIB theory on a P1 with a varying axio-dilaton. Taking the base

of the elliptic fibration (2.1) to be the compact P1, the axio-dilaton value at a point z in

the base is related to the complex structure τ(z) of the fiber at the given point by [12]

j(τ) = 1728× 4F 3
8

4F 3
8 + 27G2

12

. (2.9)
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Figure 1. A depiction of the P1 base of an elliptically fibered K3 manifold. The marked points

denote the seven-brane loci at which the fiber degenerates. The cycles of the elliptic fiber undergo

monodromies around these points, and hence a global definition of an A-cycle and a B-cycle of

a fiber does not exist. We can, however, define A and B cycles when we exclude branch cuts

— depicted as wavy lines — emanating from the seven-brane loci, i.e., when outside the region

encircled by the dotted lines. The A and B cycles are well defined in this dense open subset, which

we denote S̃.

j is Klein’s j-invariant. The metric on the P1 can also be computed from the elliptic

fibration [12]

ds2 =
τ2|η(τ)|4
|∆|1/6 dzdz̄ , (2.10)

where z is the complex coordinate along the base P1.8 The 24 loci where the fiber degen-

erates can be thought of as seven-brane loci. Let us denote these branes as B1, · · ·B24.

Now the j-invariant (2.9) is not a one-to-one function from the upper-half complex

plane to the complex plane. In order to describe the F-theory vacuum from the point of

view of type IIB, one must also choose two one-cycles — the A-cycle α and the B-cycle β

— of the elliptic fiber that satisfy

α ∩ α = β ∩ β = 0, α ∩ β = −β ∩ α = 1 (2.11)

and to compute

τ =

∫

β λ
∫

α λ
, (2.12)

where λ is the unique holomorphic one-form on the elliptic fiber.9 The choice of different

pairs of cycles that satisfy the conditions (2.11) result in different type IIB backgrounds re-

lated by SL(2,Z) transformations. The group of global SL(2,Z) transformations is nothing

but the group of maps between different choices of cycles.

The cycles of the elliptic fiber undergo monodromies as they go around the seven-

brane loci — the value of the axio-dilaton transforms under the corresponding monodromies

8Throughout this paper, we use z and z̄ to denote the internal coordinates of the type IIB compactifi-

cation. The coordinates along the non-compact direction is denoted by xµ.
9An A-cycle and B-cycle of an elliptic curve are, in fact, defined to be a pair of one-cycles that satisfy

the very relations (2.11).
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accordingly. Therefore the axio-dilaton profile of a non-trivial F-theory background cannot

be defined globally on the base manifold — in fact, there are branch cuts emanating from

the seven-brane loci. In the case the elliptically fibered manifold is a K3 manifold, the

overall monodromy is trivial. Therefore we can “join” the 24 branch cuts emanating from

each brane. We can then define the A-cycle α and B-cycle β of the elliptic fibration

unambiguously in the dense open subset S̃ of the base P1 manifold obtained by excluding

these branch cuts. We note that the monodromy around each brane — and hence the type

of each brane — depends on how one chooses these branch cuts [25].10 Unless an F-theory

background has an orientifold limit, we must always pick such a patch to describe the

backgrounds in the type IIB framework. In this sense, a useful way to view these F-theory

backgrounds is to interpret them as type IIB compactifications on a dense open subset of

P1 rather than the full P1. We have depicted the situation in figure 1.

We note that regardless of the way one chooses the cuts, the physics of the eight-

dimensional effective theory stays the same. Now the type IIB description of a given

compactification can alter under drastic shifting of these cuts. For example, when one

moves a cut through a brane locus so that their relative positions change, the (p, q) charge

of the brane typically jumps. Under local variations of the cut, however, where no such

“singular” shifts are made, the description of the background in terms of type IIB the-

ory should remain invariant. This point turns out to be important in determining the

monodromies of various fields of the type IIB theory.

It is worth noting that a choice of cuts defines an SL(2,Z) bundle on another dense

open set S of the base, where

S = P1 \ {B1, · · · , B24} . (2.13)

The way to construct the bundle is the following. Let us choose to join branch cuts so

that the tree of branch cuts only has trivalent vertices. Each edge of the tree has an

assigned element of SL(2,Z) that corresponds to the “monodromy” that would occur from

crossing that cut in a designated direction. For every vertex of the tree of branch cuts,

the clockwise “monodromies” mi (i = 1, 2, 3) of the three cuts joining at the vertex must

satisfy the condition

m1m2m3 = id . (2.14)

This data corresponds to the transition functions of a principal SL(2,Z) bundle of the

24-punctured sphere S. We study the sheaf associated to this bundle in detail later on.

As noted before, choosing the cycles on the open set S̃ corresponds to fixing a type

IIB frame. Once the frame is fixed, the types of the seven-branes at each degeneration

point can be determined. The seven-brane sitting at the point where an irreducible cycle

pα + qβ is shrinking is defined to be a (p, q) brane — p and q must be mutually prime.

10In fact, one can only make sense of the monodromies as being an element of SL(2,Z) when A and

B-cycles can be defined. Therefore a set of branes can have many different representations as (p, q)-branes

depending on how one decides to “join” the cuts emanating from them. It is useful to note that two

different (p, q) brane configurations obtained by choosing different ways of joining cuts are not in general

related to each other by a global SL(2,Z) transformation. Such equivalences between different (p, q)-brane

configurations have been extensively studied from the point of view of string junctions.
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Figure 2. An example of a two-cycle in an elliptically fibered manifold ending at seven-brane loci,

for a system of three seven-branes B1, B2 and B3. The three branes are are of type (1, 0), (0, 1) and

(1, 1) respectively. At these branes, the cycles α, β and α + β of the elliptic fiber degenerate. As

(1, 0)+(0, 1)− (1, 1) = (0, 0), there is a two-cycle Cσ ending at the three branes with σ = (1, 1,−1).
The cycle starts off at B3 where the degenerate cycle (α + β) shrinks to a point. As we trace the

cycle (α + β) through the manifold starting from B3, the cycle eventually splits into cycles α and

β, which each shrink to a point where the branes B1 and B2 are located — the two-dimensional

surface traced out in the process defines a closed two-cycle in the elliptically fibered manifold. The

contours near each brane depict the cycles that shrink at the corresponding brane.

The monodromy around a (p, q) brane is given in the following way. The cycle xα + yβ

transforms as
(

x

y

)

→
(

1− pq p2

−q2 1 + pq

)(

x

y

)

, (2.15)

upon rotating the elliptic fiber a full cycle in the counter-clockwise direction around the

(p, q) brane. Note that the vector (p, q)t — representing the shrinking cycle at the seven-

brane locus — is left invariant by this monodromy. The (1, 0) brane is a D7-brane where

a fundamental string can end at, while D1-strings can end at (0, 1) branes. In fact, (p, q)

seven-branes are defined to be seven-branes at which (p, q) string can end. Let us denote

the brane charge of each seven-brane Bi as (pi, qi).

Let us denote a 24 dimensional vector σ = (σ1, · · · , σ24) ∈ Z24 with

∑

i

σi(pi, qi) = (0, 0) (2.16)

a “charge vector”.11 We note that the vector space of charge vectors is a 22 dimensional

subspace of Z24 due to the two constraints. For any charge vector σ, there is an oriented

two-cycle that begins at the branes with σi < 0 and ends at branes with σi > 0. The end

points of the cycle can be identified to be the singular point of the fiber at the seven-brane

locus, where a cycle of the fiber is shrunk to a point. As we move along the open patch

11To use string junction terminology, the Z24 lattice is the “junction lattice” while our charge vectors are

“charge vectors of localized junctions”.
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Figure 3. When |σi| > 1, multiple points of Cσ end or begin at the brane locus Bi. This image

depicts Cσ for σ = (1,−2, 1) for the system of branes B1, B2 and B3 with branes charges (1,−1),
(1, 0) and (1, 1) respectively.

of the base manifold, we can trace the trajectory of such a one-cycle. As we do so, the

cycles split and merge, thereby tracing the locus of the corresponding two-cycle inside the

elliptically fibered manifold. σ uniquely determines a homology class of a two-cycle. Let

us denote this cycle Cσ. Note that Cσ is defined such that |σi| points of the cycle either

end at (σi > 0) or begin at (σi < 0) the degenerate point of the fiber above brane Bi when

σi 6= 0. Examples of Cσ for two different σ are given in figures 2 and 3.

Let us note that

Cσ + Cσ′ = Cσ′′ when σ + σ′ = σ′′ (2.17)

where the former equality means that the cycles are equal as homology classes. This can

be easily confirmed, as Cσ + Cσ′ can be smoothly deformed into Cσ′′ when σ + σ′ = σ′′.

The inverse statement, however, is not true. This is because two non-trivial charge vectors

correspond to trivial homology classes.12

The homology group of two-cycles Cσ — i.e., cycles that interpolate between seven-

brane loci — is in fact generated by 20 elements C1, · · · , C20. This is because the second

homology group of a K3 manifold, when viewed as a vector space, is 22 dimensional — one

of which corresponds to the class of the fiber and one of which corresponds to the class

of the base.13 The two-cycles we are interested in are generated by the elements that are

orthogonal — with respect to the intersection product — to the base and fiber classes. Let

us denote this 20-dimensional space as H2(M̄)⊥. The complex structure of an elliptically

fibered K3 manifold is determined by the ray of the complex vector
(∫

C1

Ω, · · · ,
∫

C20

Ω

)

(2.18)

where Ω is the holomorphic two-form of the K3 manifold that is unique (up to a factor).

Using the local coordinates (2.3), Ω can be explicitly written as

Ω =
dxdz

y
. (2.19)

12These charge vectors are referred to as “zero” or “null vectors” in the string junction literature.
13By “class of the base” we are actually referring to the “class of the section.” Since we always assume

the existence of a section, we do not make the effort of distinguishing the terminology.
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Figure 4. Correspondence between string junctions and two-cycles in the elliptically fibered man-

ifold. On the left side, we have depicted a string junction meeting at junction point P and ending

at three seven-branes, each of type (1, 0), (0, 1) and (1, 1). One can “fatten” this junction to obtain

an oriented two-cycle inside the elliptically fibered manifold in the F-theory picture.

The complex structure of a generic K3 manifold — one without the restriction of being ellip-

tically fibered or having a section — is parametrized by a 22 dimensional projective vector,

obtained by integrating the complex two-form over all generators of the homology group.

The K3 manifolds used for F-theory compactifications, however, can be parametrized by

the 20 dimensional projective vector (2.18) due to the fact that Ω is orthogonal to the fiber

and base directions, i.e.,
∫

Base
Ω =

∫

Fiber
Ω = 0 . (2.20)

Despite that we have parameterized the complex structure of an elliptically fibered K3

manifold by 20 projective coordinates, its moduli space is 18-dimensional. This follows

from the fact that the vector (2.18) also satisfies the constraint [34]
∫

K3
Ω ∧ Ω = 0 . (2.21)

The cycles Cσ, as in figure 4, can be “thinned down” to a linear combination of string

junctions — a collection of directed (p, q) string segments connected to each other at nodes

— stretched between the seven-branes with net charge vector σ. Massive states of the

eight-dimensional theory can be obtained by quantizing modes of these string junctions

and linear combinations thereof. The correspondence between homologically non-trivial

two-cycles of the K3 manifold and string junctions therefore implies the correspondence

between the two-cycles and the massive particles of the 8D effective theory.

Let us end this section by commenting on the world-volume theory living on a seven-

brane. A seven-brane contains a dynamical gauge field coming from quantizing strings

with both ends ending on that brane. The (p, q) seven-brane action can be written by first

writing the D7-brane action in Einstein frame and performing an SL(2,Z) transformation.

The linear terms relevant to investigating lifting of gauge fields come from the kinetic term.

Being careful with the dilaton coupling, one can show that the gauge kinetic term for a

(p, q) brane is given by

− µ8

4

∫

d8x
√−g(Fµν + pBµν + qCµν)

2 (2.22)

where we have set 2πα′ = 1 [13, 35]. µ8 does not depend on the (p, q) charge or the

dynamical axio-dilaton in Einstein frame. From this, we see that the gauge coupling of the
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seven-branes are independent of (p, q) charge in Einstein frame — one could have already

expected this, as type IIB theory in Einstein frame is SL(2,Z) covariant. Therefore the

ten-dimensional type IIB action corresponding to the F-theory compactification on K3 has

24 gauge fields Ai
µ living on the world volume of seven-branes Bi with the kinetic term

− µ8

4

24
∑

i=1

∫

d8x
√−g(F i

µν + piBµν + qiCµν)
2 . (2.23)

In the next section, we proceed to show how these vector fields are absorbed by the tensor

fields by the Cremmer-Scherk mechanism.

3 The Cremmer-Scherk mechanism

In this section, we show that the vector fields living on the world-volume of the seven-

branes of the F-theory background are “eaten” by the type IIB tensor fields through the

Cremmer-Scherk mechanism. We first review the Cremmer-Scherk gauge transformations

of F-theory compactifications on K3. We proceed to identify the 24 gauge transformations

responsible for absorbing the vector fields into the tensor degrees of freedom.

As can be seen from the previous section, type IIB backgrounds with seven-branes are

invariant under the local symmetry

BI → BI + dΓI , Ai
µ → Ai

µ − πi
∗(piΓ

1(zi, z̄i) + qiΓ
2(zi, z̄i)) (3.1)

where ΓI is a doublet of one-forms. As before, I is the SL(2,Z) index and i indexes

the branes. Also, πi
∗ is the push-forward of the projection map to the i’th brane. In

order for (3.1) to make sense, a constraint on the doublet one-form ΓI must be imposed.

The value

πi
∗(piΓ

1(zi, z̄i) + qiΓ
2(zi, z̄i)) (3.2)

must be unambiguously defined, i.e., it must be monodromy invariant at each brane locus.

We stress that while the two-form field strength must exhibit certain monodromies,

ΓI need not show such behavior. Upon investigation of the Lagrangian of the theory,

one can verify that the field strengths of the two-form fields F I = dBI are required to

undergo monodromies
(

dB

dC

)

→
(

1− pq −q2
p2 1 + pq

)(

dB

dC

)

(3.3)

upon counter-clockwise rotation around — or, equivalently, crossing the branch cut in

clockwise direction — a (p, q) brane. Note that this is the transpose of the monodromy

(2.15). Such monodromies are imposed since we do not want the action to vary upon

shifting the position of the branch cuts. The only other requirement the two-form field

values themselves must satisfy is that

piBµν + qiCµν (3.4)

be well-defined at brane loci Bi. Any gauge transformation with well-defined values of (3.2)

at Bi preserve both requirements.
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Figure 5. A zoom-in on a small neighborhood of a brane locus. The curvy line denotes the branch-

cut around the brane. The concentric circles of radius d/2 and d are chosen to be small enough so

that they do not intersect any other branch cuts.

Now let us find a gauge transformation that can be used to gauge away vector degrees

of freedom living on a particular brane Bi0 . Let us assume a given seven-brane is a Dirichlet

brane — i.e., a (1, 0) brane — and consider the gauge transformations of the form

ΓI = φI(z, z̄)Λ(xµ) (3.5)

where φI is a doublet scalar dependent on the internal coordinates while Λ is an eight-

dimensional one-form. Taking the local holomorphic coordinate around the brane locus

w = 0 to be w, one can find some d such that the open neighborhood |w| < d of the brane

does not include any other branch cut. Then one can find a real “bump function” f(w)

that satisfies the following conditions:

1. 0 ≤ f(w) ≤ 1 for all w, while f(0) = 1.

2. f(w) > 0 for |w| < d/2.

3. f(w) = 0 for |w| > 3d/4.

4. f(w) is C∞ for |w| < d and hence so on the full manifold.

Then, for
(

Γ1

Γ2

)

=

(

φ1

φ2

)

Λ =

(

f(w)

0

)

Λ , (3.6)

the gauge transformation (3.5) is well-defined on the full base manifold. In particular, the

value (3.2) is well defined at each brane locus unambiguously. In fact, for each brane Bi,

Ai
µ →

{

Ai
µ when i 6= i0

Ai
µ − Λµ when i = i0

. (3.7)
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The vector field Ai0 is thereby eaten by the two-form doublet by this CS gauge transforma-

tion by setting Λµ = Ai0
µ . Likewise, for each brane Bi of charge (pi, qi), we can construct

a gauge transformation
(

Γ1

Γ2

)

=
fi

p2i + q2i

(

pi
qi

)

Λ , (3.8)

with an appropriate bump function fi to absorb Ai.

Hence, in “unitary gauge” where all the gauge fields living on the world-volume of the

seven-branes are eaten, the term (2.23) of the Lagrangian becomes

− µ8

4

24
∑

i=1

∫

d8x
√−g(piBµν + qiCµν)

2 . (3.9)

Regardless of this term, which looks like an eight-dimensional mass term for the tensor

fields, we still find modes of the tensor fields responsible for massless degrees of freedom

of the 8D effective theory. These come from modes with components transverse to the

seven-branes. We proceed to examine these modes in the next section.

4 SL(2,Z) doublet harmonic one-forms

In this section, we show how 20 massless vector fields arise in F-theory compactifications

on K3 from the type IIB perspective. In section 4.1, we define what we mean by SL(2,Z)

doublet harmonic one-forms and show that the doublet two-form of type IIB theory can

be reduced along these one-forms to yield massless vectors in the eight-dimensional theory.

In the following two sections, we study these zero modes from two different points of

view. In section 4.2, we show that these harmonic forms represent elements of the first

cohomology group of a certain sheaf living on the base manifold S̄. We also derive that the

dimension of this cohomology group is 20. In section 4.3, we establish the correspondence

between doublet harmonic one-forms and certain closed two-forms — namely, the “semi-

flat harmonic two-forms” — living inside the underlying K3 manifold M̄ . We end by

showing how other particles and fields of the 8D theory couple to the vectors obtained by

reducing along these one-forms in section 4.4. The various couplings are shown to encode

the geometric data of M̄ .

4.1 Definition

In this section, we show how massless vectors arise in F-theory compactifications on K3.

These are obtained upon KK-reduction of the SL(2,Z) doublet two-forms of the type

IIB theory along doublet one-form zero modes. In particular, we derive the “zero mode

condition” or the “harmonicity condition” (1.7) a SL(2,Z) doublet one-form ξI living in

the compactification manifold S must satisfy.

Let us consider the KK-reduction of the doublet two-form fields in the F-theory back-

ground along some doublet zero-mode. The KK-reduction ansatz is given as

BI = φI(z, z̄) ∧ b (4.1)
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where φ is some doublet k-form aligned along the internal direction and b is an eight-

dimensional (2− k)-form field. In order for b to be massless, φ must be closed:

dφI = 0 . (4.2)

At the same time, φI must respect the monodromies defined by the background, i.e., it

must exhibit the same SL(2,Z) transformations that the field strengths experience as they

cross the branch cuts. In particular, upon counter-clockwise rotation around a brane locus

Bi, φ
I must transform as

(

φ1

φ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

φ1

φ2

)

≡Mi

(

φ1

φ2

)

. (4.3)

There are two ways of seeing why such behavior should be imposed on φI . The first

way is by examining the field strength of the doublet two-form — as explained in the

previous section, in order for the action of the type IIB theory to be invariant under moving

branch cuts, the field strength-doublet (dB, dC) must exhibit the monodromies (3.3). The

constraint on φI follows by applying this condition to the ansatz (4.1). Another way of

seeing this constraint is to consider the normalization of the mode φI , which is given by

∫

S̃
MIJφ

I ∧ ∗φJ . (4.4)

Unless φI exhibits the correct monodromies, the normalization (4.4) is not well defined —

in fact, it would vary as one moves the branch cuts around. On the other hand, when φI

exhibit the desired monodromies, we can define the norm

∫

S̄
MIJφ

I ∧ ∗φJ ≡
∫

S̃
MIJφ

I ∧ ∗φJ . (4.5)

It was pointed out in [1] that there is no way of turning on the two-form fields along

the internal directions and also satisfying the required monodromies. Also, it is clear

that there does not exist any non-zero closed zero-forms — i.e., constant scalars — that

exhibit monodromic behavior. The interesting closed forms that yield massless particles in

eight-dimensions are the one-forms, which we denote by

ξk =

(

ξk,1

ξk,2

)

. (4.6)

Hence we wish to find closed doublet one-forms living in the base manifold S̄.

These one-forms must be normalizable with respect to the Hermitian inner-product

〈ξk, ξl〉 ≡
∫

S̃
MIJξ

k,I ∧ ∗ξl,J (4.7)

defined by the Lagrangian, i.e.,

〈ξk, ξk〉 <∞ . (4.8)
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Note that since ξk have monodromies around the brane loci, their components exhibit

logarithmic behavior at these points. Despite such singular behavior, the modes can nev-

ertheless be normalizable. For example, when the singularities of ξk are logarithmic, the

integral near the brane loci

∝
∫ ǫ

0
drr(ln r)k (4.9)

is convergent.

As with KK-reduction of any p-form, the closed one-forms ξk we reduce along are

defined up to an exact form dϕ, where ϕ is a doublet of zero-forms. This freedom comes as

a remnant of the “CS gauge symmetry” of the type IIB background. Such an ambiguity

is fixed by demanding that ξk is harmonic with respect to the Hermitian inner-product

defined by the Lagrangian, i.e.,

d ∗MIJξ
k,J = 0 . (4.10)

A simple computation shows that imposing this condition assures that ξk has minimum

norm given the “cohomology class” of ξk is fixed. In other words,

〈ξk, ξk〉 < 〈ξk, ξk〉+ 〈dϕ, dϕ〉 = 〈ξk + dϕ, ξk + dϕ〉 (4.11)

for any non-trivial CS gauge transformation dϕ 6= 0 when ξk satisfies (4.10). Hence,

the condition (4.10) singles out elements of a certain cohomology class, just as the usual

harmonicity condition singles out a harmonic form in a given de Rham cohomology class.

We describe this cohomology in more detail in the following section.

A source of worry for equation (4.11) is that integration by parts has been used in

obtaining the equality — for the most general CS gauge transformation ϕ, the cross terms

in the integral of interest may have boundary terms. Such boundary terms arise in the case

that ϕ exhibit monodromic behavior that is affine rather than linear. To be more precise,

let us first examine how ϕ is allowed to behave as we rotate around a brane locus. In order

for the ξk + dϕ to have a well defined norm, dϕ must exhibit the monodromy
(

dϕ1

dϕ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

dϕ1

dϕ2

)

(4.12)

around brane Bi. ϕ itself, however, does not have to display this monodromy — in fact, it

is allowed to shift:
(

ϕ1

ϕ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

ϕ1

ϕ2

)

+ Ci

(

−qi
pi

)

. (4.13)

Note that the shift must be in the direction (−qi, pi)t, as the values piϕ
1 + qiϕ

2 must be

well-defined at the brane locus. In the event that Ci 6= 0, the integration by parts we

have used in (4.11) is no longer valid, as there would exist boundary terms living on ∂S̃

— a contour encircling the “cuts” we have used to define a type IIB frame — that do not

cancel out.

What makes the equality of (4.11) work is that we only allow gauge transformations

such that

piϕ
1(zi, z̄i) + qiϕ

2(zi, z̄i) = 0 (4.14)
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at seven-brane loci (zi, z̄i). This is because we are computing the eight-dimensional massless

spectrum in a “unitary gauge” where all the seven-brane world-volume vector fields are

eaten by tensor degrees of freedom. The condition (4.14) ensures that the fluctuations we

consider still satisfy the unitary gauge condition. In appendix A, we show that Ci = 0 for

gauge transformations ϕ that do not excite seven-brane vector fields and keep the mode

ξk + dϕ normalizable.

Let us conclude this section by summarizing the definition of a SL(2,Z) doublet har-

monic one-form ξ:

1. ξ is doublet of one-forms exhibiting the monodromy (4.3);
(

ξ1

ξ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

ξ1

ξ2

)

around brane locus Bi.

2. It must satisfy the defining equations (1.7):

dξI = 0 , d ∗MIJξ
J = 0 .

3. It must be normalizable with respect to the inner-product (4.7):

〈ξ, η〉 ≡
∫

S̃
MIJξ

I ∧ ∗ηJ .

In the subsequent sections, we go on to count and construct such harmonic one-forms.

4.2 Coordinate-free description of doublet one-forms

In this section, we give a coordinate-free description of SL(2,Z) doublet one-forms on S in

terms of certain sheaves. We also show that the dimension of the space of doublet harmonic

one-forms is equal to 20, by applying results by Zucker [30] about polarized variations of

Hodge structure on curves.

Recall that f̄ : M̄ → S̄ is an elliptically fibered K3-surface with a section; here S̄ is the

complex projective line. We assume that there are exactly 24 singular fibers, each with a

single ordinary double point — for degree reasons, the section cannot pass through any of

the 24 special points. If we denote by S ⊆ S̄ the complement of the 24 singular values, and

by M = f̄−1(S) the open surface obtained by removing the singular fibers from M̄ , then

the restriction f : M → S is a smooth family of elliptic curves.

Sheaf theory allows us to make some of the constructions coordinate free. Instead of

choosing A-cycles and B-cycles over a dense open subset S̃ of S, we can directly obtain

the corresponding fiber bundle with fiber Z2 by defining

HZ = R1f∗Z

as the first higher direct image sheaf of the constant sheaf Z on M .14 At each point

s ∈ S, the stalk of the sheaf HZ is equal to the first cohomology group H1(Es,Z) of the

14We use similar notation for other coefficient rings such as Q or C. Note that HQ, HR, and HC are

basically interchangeable, as they all contain the same information.
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corresponding elliptic curve Es = f−1(s). Making a choice of A-cycle and B-cycle over a

simply-connected open subset of S is the same thing as choosing a local trivialization of

the sheaf HZ.

Now the first cohomology group H1(E,Z) carries a polarized Hodge structure of

weight 1. The Hodge structure is given by the decomposition

H1(E,C) ≃ H1(E,Z)⊗Z C = H1,0(E)⊕H0,1(E)

according to type; the polarization is given by the intersection form

Q(α, β) =

∫

E
α ∧ β.

It is a polarization because of the Riemann bilinear relations: the Hermitian form α 7→
ip−qQ(α, α) is positive-definite on the subspace Hp,q(E), and the above decomposition is

orthogonal with respect to the resulting Hermitian inner product on H1(E,C).

Because the same is true at every point of S, the locally constant sheaf HZ is part of

a polarized variation of Hodge structure H on S. Let us briefly explain what this means.

The holomorphic vector bundle H = HZ ⊗Z OS has a natural flat connection

∇ : H → Ω1
S ⊗OS

H,

with the property that the sheaf of flat sections is isomorphic to HC. Both H and ∇
can also be constructed geometrically, and are known as a Gauss-Manin system. The

additional data coming from the polarized Hodge structures on the cohomology of the fibers

are a holomorphic subbundle F 1H, corresponding to the subspace H1,0(Es) in the above

decomposition, and a flat pairing HZ⊗ZHZ → Z, corresponding to the intersection pairing.

Because the locally constant sheaf HZ contains the information about the monodromy

of A-cycles and B-cycles, and because H = HZ⊗Z OS , an SL(2,Z) doublet k-form is easily

seen to be the same thing as a smooth k-form on S with coefficients in the vector bundle

H. We denote the space of all such forms by the symbol

Ak(S,H).

The connection ∇ can be extended to an operator from doublet k-forms to doublet (k+1)-

forms, and the resulting complex

0 // A0(S,H) ∇
// A1(S,H) ∇

// A2(S,H) // 0

computes the cohomology groups Hk(S,HC) of the locally constant sheaf HC, by a version

of the Poincaré lemma.

One might expect naively that the number of zero-modes defined in the previous section

can be obtained by computing the dimension of the cohomology group H1(S,HQ). This is

not true, since elements of this cohomology group can exhibit singular behavior near the

discriminant locus, and may therefore not be normalizable with respect to the inner-product
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defined in the previous section. In fact, the dimension can be shown to be 20 + 24 = 44.

Instead, the correct cohomology group to consider is

H1
(

S̄, j∗HQ

)

,

where j : S →֒ S̄ denotes the inclusion map of S into S̄. In appendix B, we use some

theorems by Zucker [30] to prove that Hk
(

S̄, j∗HQ

)

= 0 for k 6= 1, and that

dimH1
(

S̄, j∗HQ

)

= 20,

as expected. Moreover, it is shown in [30] that the first cohomology group is isomorphic to

the subspace of A1(S,H) consisting of forms that are square-integrable and harmonic (with

respect to the Hodge metric on H and the Poincaré metric on S). These two conditions are

exactly the same as in the previous section, and so we deduce that the space of SL(2,Z)

doublet harmonic one-forms is indeed 20-dimensional.

The work of Zucker also endows H1
(

S̄, j∗HQ

)

with a polarized Hodge structure of

weight 2. This Hodge structure is compatible with that on H2(M̄,Q); more precisely,

there is a natural morphism

H2(M̄,Q)⊥ → H1
(

S̄, j∗HQ

)

,

and this morphism is an isomorphism of polarized Hodge structures. We will see below

how this statement about cohomology groups can be sharpened to a result about spaces of

harmonic forms.

4.3 Construction from harmonic two-forms on M

In this section, we explain how to construct the doublet harmonic one-forms from the point

of view of the K3 manifold M̄ . To be more precise, we show that there is a correspon-

dence between the doublet harmonic one-forms and two-forms of the K3 manifold that are

harmonic with respect to the semi-flat metric [12]. We conjecture that these “semi-flat

harmonic two-forms” can be obtained as a limit of harmonic two-forms of the K3 manifold

with respect to the Calabi-Yau metric.

Let us begin by noting that a natural way to obtain a doublet of closed one-forms on

the base manifold S of the elliptic fibration, that displays the monodromies of the cycles

of the fiber, is by using two-forms of the underlying K3 geometry. Consider a smooth

closed two-form Ξ living inside the M obtained by excising the 24 singular fibers of the K3

manifold M̄ . Now for each point z on the base manifold, let us define a doublet of forms

ξ =





∫

α Ξ
∫

β Ξ



 (4.15)

where the integration cycles are taken to lie within the holomorphic fiber above the point

z. α and β are the A and B-cycle of the fibration used to define the type IIB frame. If ξ

is “well defined,” it is a doublet of one-forms that exhibit the correct monodromies. It is

also closed due to the closedness of Ξ.

– 20 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
5

In order for ξ to be well defined, the projection of Ξ to each fiber must vanish. Mean-

while, components of Ξ with both legs parallel to the base would not affect ξ and should be

“gauged away” if one wishes to establish a one-to-one correspondence between one-forms

on the base and two-forms in the full manifold. Let us hence assume the components of Ξ

with both legs along either the fiber or the base direction vanish. A better presentation of

this condition is given shortly.

For ξ to be harmonic as defined in (1.7), an additional condition on Ξ must be imposed.

It is in fact that Ξ should be harmonic with respect to the semi-flat metric constructed

in [12]. More precisely, we consider the family of semi-flat metrics whose Kähler form Jt is

given by

Jt/i =
W (z, z̄)

t
θz ∧ θz̄ +

t

W (z, z̄)
θw ∧ θw̄ (4.16)

for some function W [33]. The one forms θz and θz̄ are defined to as

θz = dz, θz̄ = dz̄ , (4.17)

where z is the holomorphic coordinate on the base. θw and θw̄, which we define shortly

after, are one-forms aligned along the fiber direction.

The semi-flat metric is a Ricci-flat Kähler metric on the K3 manifold, which is locally

defined by the hypersurface equation

y2 = x3 + f8(z)x+ g12(z) . (4.18)

W is given by (2.10) — we can in fact use the Thomae formula to obtain the expression

W (z, z̄) =
4π2

21/6
τ2|η(τ)|4
|∆|1/6 = −i

∫

λ̄ ∧ λ . (4.19)

λ = dx/y here is the unique holomorphic one-form of the fiber while the integral is taken to

be along the elliptic fiber at z. This relation is derived in appendix C — the normalization

constant is added for aesthetic reasons. The one-form θw can be expressed using the

canonical holomorphic coordinate

ζ(x) =

∫ x

λ (4.20)

— where the starting point of the integral is the locus of the zero section on the fiber — by

θw = dζ − (∂λ, λ̄)ζ − (∂λ, λ)ζ̄

(λ, λ̄)
dz . (4.21)

The one-form ∂λ living on the fiber can be explicitly written as

∂λ = −f ′8(z)x+ g′12(z)

2y3
dx. (4.22)

While ∂λ shows singular behavior at certain points on the elliptic curve, it is a “differential

of the third kind,” i.e., its integral over closed cycles of the elliptic curve are nevertheless

well-defined. Hence the values (∂λ, λ̄) and (∂λ, λ) are well-defined for the inner-product

(κ, λ) ≡
∫

α
κ

∫

β
λ−

∫

β
κ

∫

α
λ . (4.23)
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The one form θw may at first sight look rather peculiar — it, however, can be re-written

in a simple way, using the coordinates x1 and x2 which parametrize the flat elliptic fiber

such that

x1 ∼= x1 + 1, x1 + ix2 ∼= x1 + ix2 + τ(z) . (4.24)

Upon acknowledging that
(∫

α
λ

)

x1 +

(∫

β
λ

)

x2 = ζ , (4.25)

it can be shown that

1

W (z, z̄)
θw ∧ θw̄ =

1

2τ2
(dx1 + τdx2) ∧ (dx1 + τ̄ dx2) . (4.26)

We hence see that Jt is aligned in the base and fiber directions — it is orthogonal to cycles

of the manifold that are orthogonal to the class of the fiber and the base. Despite the

nice properties of the semi-flat metric, it fails to be a smooth Calabi-Yau metric, as it

degenerates at the discriminant locus of the elliptic fibration. It has, however, been shown

that it is a good approximation to the Calabi-Yau metric on the K3 manifold with fiber

size t as t approaches zero [33]. It also is a smooth, non-degenerate Calabi-Yau metric of

the open manifold M .

In order for a doublet one-form ξ constructed from a two-form Ξ living inside this

manifold to be well defined, Ξzz̄ = Ξww̄ = 0, as discussed at the beginning of this section.

This condition can be expressed using the following harmonic two-forms with respect to Jt:

B ≡W (z, z̄)θz ∧ θz̄, F ≡ 1

W (z, z̄)
θw ∧ θw̄ , (4.27)

as

Ξ ∧B = Ξ ∧ F = 0 . (4.28)

Although B and F behave singularly at discriminant loci, they nevertheless represent coho-

mology classes of the manifold M̄ . While de Rham cohomology is defined by using smooth

differential forms, a form Ξ that is not necessarily smooth still represents a cohomology

class as long as its integrals along homology classes are well-defined.15 In this case, the

cohomology class of Ξ can is given by the dual cohomology class of

(∫

Ci

Ξ

)

[Ci] , (4.29)

with respect to the canonical pairing

〈C, ω〉 =
∫

C
ω (4.30)

15A representative example of non-smooth forms with a well-defined cohomology class is a differential

form of the third kind on a algebraic curve. Such one-forms are singular, but have only higher order poles

and no residues. Hence the integrals of such a form along closed cycles of an algebraic curve are well-defined.
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between forms and cycles.16 Here Ci is the basis of the homology group of the manifold.

The forms B and F are in fact dual to the base and the fiber class of M̄ . In particular, it

can be shown that
∫

Base
B =

∫

M̄
Ω ∧ Ω̄,

∫

Fiber
F = 1 ,

∫

Base
F =

∫

Fiber
B = 0 , (4.31)

while the integrals of B and F over cycles orthogonal to the base and fiber vanish. It is

worth noting that the forms B and F are normalizable with respect to the semi-flat metric

at finite t;
1

t2

∫

M̄
B ∧ ∗sfB = t2

∫

M̄
F ∧ ∗sfF =

∫

M̄
Ω ∧ Ω̄ . (4.32)

Here, ∗sf denotes the Hodge dual with respect to the semi-flat metric while Ω is the

holomorphic two-form.

In appendix D, we show that when Ξ is harmonic with respect to the semi-flat metric,

and its components Ξzz̄ and Ξww̄ vanish,

∗MIJξ
J =

( ∫

β ∗sfΞ

−
∫

α ∗sfΞ

)

(4.33)

for ξ constructed by (4.15). In this case, the condition

d ∗MIJξ
J = 0 (4.34)

is satisfied since ∗sfΞ is also closed. Given this result, it is straightforward to obtain the

inner-product (4.7) of harmonic one-form doublets ξ and η constructed from harmonic

two-forms Ξ and H as an integral on M . It is a simple exercise to show in fact that

〈ξ, η〉 ≡
∫

S
MIJξ

I ∧ ∗ηJ =

∫

S

(∫

α
Ξ

∫

β
∗sf H −

∫

α
∗sf H

∫

β
Ξ

)

=

∫

M
Ξ ∧ ∗sfH ≡

∫

M̄
Ξ ∧ ∗sfH ,

(4.35)

using properties of harmonic forms of the semi-flat metric derived in appendix D. Hence in

order for ξ to be normalizable as defined in section 4.3, Ξ must also be normalizable with

respect to the canonical inner-product defined by the semi-flat metric.

Before we carry further on, let us sum up the properties of the two-forms Ξ that

produce doublet harmonic one-forms upon integrating along cycles of the fiber:

1. Ξ is harmonic with respect to the semi-flat metric, i.e., both Ξ and ∗sfΞ are closed.

2. Ξ satisfies

Ξ ∧B = Ξ ∧ F = 0 , (4.36)

for the two-forms B and F defined in equation (4.27).

16When we say a cycle and a closed form are “dual” in this paper, we always mean that it is dual with

respect to the pairing (4.30).
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3. Ξ is normalizable with respect to the inner-product

〈Ξ, H〉 ≡
∫

M̄
Ξ ∧ ∗sfH . (4.37)

Let us denote such harmonic two-forms, “semi-flat harmonic two-forms.” It is worth com-

menting that the definition of semi-flat harmonic forms is independent of the parameter

t. This is because the Hodge dual ∗sf acting on a two-form Ξ is independent of t when Ξ

satisfies (4.36). This, in particular, implies that these harmonic forms can be defined at

the singular point t = 0.

So far, we have shown that there is a map from semi-flat harmonic two-forms of a dense

open subset M of the K3 manifold M̄ to doublet harmonic one-forms on the base S̄. We

show that this map is actually bijective in appendix D. This implies that the 20-dimensional

space of doublet one-forms H1(S̄, j∗HR) can be lifted to a 20-dimensional space of semi-flat

harmonic two-forms. These two-forms are a priori defined only on M .

A natural question to ask is whether these 20 semi-flat harmonic two-forms are related

to cohomology classes of the K3 manifold H2(M̄). In appendix E we show that this is

in fact the case. To be more precise, let us first describe the cohomology group of the

open manifold M . The dual homology group of M is generated by 21 elements inherited

from M̄ — the class of the section becomes trivial in M — and 24 cycles attached to

each degenerate fiber. The 24 cycles are represented by tori Ti constructed by rotating

an invariant cycle around a degeneration locus Bi. In proposition E.1, we prove that the

20 semi-flat harmonic two-forms {Ξk} span the subgroup of H2(M) obtained from pulling

backH2(M̄)⊥ via the inclusion mapM →֒ M̄ . A more practical way to say this is that {Ξk}
can be extended to the manifold M̄ , and that it represents a basis of the cohomology group

H2(M̄)⊥. Recall that H2(M̄)⊥ is defined to be the orthogonal space to the cohomology

classes [B] and [F ], by which we denote the duals of the homology classes of the base and

fiber, respectively.

Let us provide an intuitive sketch of why the dual homology elements of {Ξk} must lie

within the image of H2(M̄)⊥ in H2(M). This turns out to be a consequence of imposing

normalizability on Ξk. We note that since the semi-flat harmonic two-forms are orthogonal

to the base and fiber directions, it is enough to show that {Ξk} are orthogonal to the cycles

Ti described in the preceding paragraph. To show this, let us assume that a semi-flat

harmonic two-form Ξ has a non-trivial integral over some cycle Ti, i.e.,

∫

Ti

Ξ = Ci . (4.38)

Recall that Ti is constructed by rotating the invariant cycle (piα+ qiβ) around the degen-

eration locus Bi. Denoting the doublet harmonic one-form constructed from Ξ as ξ, this

implies that
∮

c
(piξ

1 + qiξ
2) = Ci (4.39)

for a contour c surrounding Bi. Following the latter part of appendix A, it can then be

shown that such ξ cannot be normalizable with respect to the norm defined for doublet
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one-forms, due to the divergent behavior of ξ near Bi. It follows that Ξ is not normalizable

with respect to the semi-flat metric, hence concluding the proof.

The fact that the semi-flat harmonic two-forms form a basis for H2(M̄)⊥ suggests that

they can be related to harmonic forms of the K3 manifold with respect to a class of smooth

Calabi-Yau metrics in the following way. Let us consider a class of smooth, non-degenerate

Ricci flat metrics with Kähler form Kt that satisfies the following conditions:

1. The dual homology class of Kt is aligned in the direction of the class of the base and

the fiber.

2. Kt ∧Kt = 2Ω ∧ Ω̄ for the holomorphic two-form Ω of the K3 manifold. In terms of

the one-form λ we have been using, this condition can be re-expressed as

Kt ∧Kt = 2Ω ∧ Ω̄ = 2λ ∧ dz ∧ λ̄ ∧ dz̄ . (4.40)

3.
∫

f̄−1(z)Kt = t for any point z in the base, i.e., the fiber size with respect to this

metric is given by t. Recall that f̄ is the projection map of the fibration.

The semi-flat metric is also a Ricci flat metric whose Kähler form Jt satisfies these condi-

tions. While Jt is degenerate at the discriminant locus, Jt and Kt are closely related — in

fact, tJt and tKt have been shown to coincide in the limit t→ 0 [33]. Since Jt approximates

Kt well in the small-t limit, we can expect that there is a one-to-one correspondence be-

tween the semi-flat harmonic two forms and harmonic two-forms of the Calabi-Yau metric

in the subspace H2(M̄)⊥. More precisely, we can put forth the following

Proposal: for the stated class of Calabi-Yau metrics Kt, let {ω1, · · · , ω20} denote the

linearly independent harmonic forms spanning the 20-dimensional subspace H2(M̄)⊥ of the

cohomology group spanned by elements orthogonal to the classes [B] and [F ]. In the limit

t → 0, these 20 harmonic forms stay linearly independent and form a basis {Ξ1, · · · ,Ξ20}
of the semi-flat harmonic two-forms.

Given that the forms {ω1, · · · , ω20} do not develop singularities that obstruct the

normalizability condition, it can be shown that ωk stay linearly independent. This is done

by examining the duals of the cohomology classes of ωk. Since the duals of {ωk} are linearly
independent in the homology group, {ωk} also remain linearly independent as two-forms.

A crucial test for the validity of the proposal would be to verify that the limits of

ωk satisfy the orthogonality condition (4.36). This is because orthogonality at the level

of cohomology does not guarantee orthogonality at the level of forms. Let us consider

harmonic two-forms ωk with respect to the Calabi-Yau metric whose cohomology class are

orthogonal to [B] and [F ], i.e.,

∫

M̄
ωk ∧ Bt =

∫

M̄
ωk ∧ Ft = 0 , (4.41)

where Bt and Ft are harmonic forms in the cohomology classes [B] and [F ]. We have added

the subscripts to emphasize that while the cohomology classes are defined irrespective of

the metric, the harmonic forms have a metric dependence. While the conditions (4.41) do
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not imply that the two integrands vanish at every point, they imply “half” of these two

conditions. Since the Kähler form Kt of the metric — which is harmonic — is given by a

linear combination of Bt and Ft by assumption, and since the Lefschetz action commutes

with the Laplacian operator, it follows that

ωk ∧Kt = 0 . (4.42)

It would be interesting to verify that the other half of the constraint is satisfied as the fiber

size is taken to zero.

A natural way to map the semi-flat harmonic forms {Ξk} to the corresponding har-

monic forms {ωk} at finite t is provided by M-theory/F-theory duality [1]. Let us consider

the eight-dimensional theory obtained by compactifying F-theory on K3 manifold M̄ , and

let ak be the massless vector fields obtained by KK-reducing the doublet two-form fields of

type IIB along one-forms ξk constructed from Ξk. The seven-dimensional effective theory

obtained upon further compactification on a S1 of radius ∼ α′/t−1/2 — where α′ is the

Regge slope of the type II string — is dual to M-theory compactified on M̄ with Calabi-Yau

metric Kt. The seven-dimensional vector fields ã′k — which are modes of ak constant along

the S1 — are obtained by KK-reducing the M-theory three-form along harmonic forms ωk.

The inverse coupling of the vector fields of the 8D theory are given by the inner-products of

the semi-flat harmonic forms Ξk (4.37). Meanwhile, upon reduction on a circle, the corre-

sponding 7D couplings receive quantum corrections from charged particles winding around

the compactification circle. The quantum corrected inverse couplings can be computed by

the inner-product of the harmonic forms ωk with respect to the Calabi-Yau metric. Hence,

in this sense, ωk can be thought of as a “quantum corrected” version of Ξk.

In the next subsection, we investigate various properties of the vector fields of the

8D theory whose construction we have been studying up to this point. Let us conclude

this section by summarizing what we have learned so far about the massless vector field

spectrum of the effective 8D theory of the F-theory compactification on M̄ , and setting

the conventions for the next section:

1. The massless vector spectrum comes from reducing the type IIB doublet two-forms

along doublet harmonic one-forms. We denote the massless vectors ak and the one-

forms ξk.

2. There are 20 linearly independent ξk.

3. The components of ξk can be obtained by integrating the “semi-flat harmonic two-

forms” Ξk of M̄ along the A and B-cycles of the elliptic fiber.

4. {Ξ1, · · · ,Ξ20} are closed two-forms whose dual two-cycles span H2(M̄)⊥.

4.4 Properties of KK-reduced vector fields

In this section, we explore the properties of the massless vector fields of the 8D theory

obtained by KK-reduction. We first compute the charges of string junctions under these

vector fields. We go on to relate the vector fields to seven-brane world-volume vector fields
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through a particular CS gauge transformation. We conclude the section by computing the

Chern-Simons couplings of the 8D effective theory involving the massless vector fields.

The massive charged states of the 8D theory come from string junctions stretching

inside of the base manifold S̃ and ending on the seven-branes. Any junction with charge

vector σ can be represented by a tree of directed segments {sl} of nl(pl, ql) strings —

where pl and ql are mutually prime — that either begin/end at (pl, ql) branes or junction

points. The segments {sli} meeting at the junction points Pi must satisfy the charge

conservation condition

∑

li→Pi

nli(pli , qli)−
∑

li←Pi

nli(pli , qli) = 0 , (4.43)

where the notation l → P (l ← P ) is used to denote that the segment l is ending at

(emanating from) the point P , respectively. The charge of any such a junction under the

8D vector field ak is given by

qσ,k =
∑

l

nl

∫

sl

(plξ
k,1 + qlξ

k,2) (4.44)

as a (p, q) string couples to the doublet two-form fields

∫

Σ
(pπ∗B + qπ∗C) (4.45)

along its world-sheet Σ. π is the embedding of the world-sheet in space-time. The charge

qσ,k can be expressed in terms of Ξk as

qσ,k =
∑

l

∫

sl

∫

nlplα+nlqlβ
Ξk =

∫

Cσ

Ξk , (4.46)

where Cσ is the two-cycle of the K3 manifold that is obtained by “fattening” the junction.

Hence the electric charge of a junction with charge vector σ under the 8D gauge field ak

is given by the topological pairing between the cycle Cσ ∈ H2(M̄)⊥ and the cohomology

class [Ξk] ∈ H2(M̄)⊥.

There is a correspondence between these vector fields and world-volume vector fields

Ai living on the seven-branes Bi. This correspondence can be established by “pushing” the

eight-dimensional massless vector modes coming from exciting the two-form tensor ξk ∧ ak
back into the branes via a CS gauge transformation. The gauge transformation we use is

given by Λ = −ϕkak where ϕk is a “doublet” one-form such that

dϕk = ξk . (4.47)

The two-form fluctuation

B = ξk ∧ ak, Ai = 0 , (4.48)

is then gauge equivalent to

B = −ϕkdak, Ai = (piϕ
k,1(zi, z̄i) + qiϕ

k,2(zi, z̄i))a
k . (4.49)
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This particular gauge transformation is implemented so that B does not have components

tangent to the internal directions, so that none of the string junctions are charged under

the B components.

Now the map from ak to Ai defined by (4.49) can be expressed in terms of the topolog-

ical charges (4.46) either by using Stokes’ theorem or by the following observation. Given

that the fields (4.49) are turned on, a massive state of the 8D theory coming from quantiz-

ing a string junction with charge vector σ is coupled to the fields via σiA
i. Meanwhile, this

is gauge equivalent to turning only B = ξk ∧ ak on. Under this field configuration, the 8D

state is coupled to ak via qσ,ka
k. Since the two field configurations are gauge equivalent,

the following identity holds:
(∫

Cσ

Ξk

)

ak = σiA
i . (4.50)

This identity clearly cannot define a one-to-one mapping between the gauge fields, as there

are 20 of the vector fields ak, while there are 24 seven-brane vector fields Ai. There is,

however, a linear subspace of all the vector fields Ai that one can identify with the space

of physical massless vector fields of the eight-dimensional theory.

To identify this subspace, we first observe that there is an ambiguity in defining the

gauge transformations ϕk in (4.47) — it is defined up to a constant. As noted in section 3,

a CS gauge transformation Λ is allowed as long as the values (piΛ
1 + qiΛ

2) at the branes

are well defined — this allows gauge transformations constant in the internal directions.

Using this, we can gauge away two linear combinations of Ai, namely piΛ and qiΛ
′ without

affecting charges of string junctions. We can therefore project away the linear combinations

piA
i and qiA

i, i.e., impose

piA
i = qiA

i = 0 . (4.51)

Next, we recall that among the remaining 22 linearly independent charge vectors, there

exist two charge vectors Z1 and Z2 whose corresponding cycles are trivial homologically.

These two vectors are the charge vectors of “null junctions.” Hence, for these vectors,

Cσ
∼= Cσ+Z1

∼= Cσ+Z2 . (4.52)

Hence for Ai satisfying (4.50), it must be that

Z1
i A

i = Z2
i A

i = 0 . (4.53)

Since the cohomology classes of Ξk are linearly independent and span the full space

H2(M̄)⊥, equation (4.50) defines a bijective linear map between the vector space spanned

by ak and a subspace

L = {ciAi : pici = qici = Z1
i ci = Z2

i ci = 0} (4.54)

of the 24-dimensional space spanned by Ai. We note that the usual SO(24) invariant

Euclidean inner-product is used in defining this subspace, as it is inherited from the kinetic

term of the gauge fields (2.23). This is the advertised correspondence between bulk and

brane vector fields.

– 28 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
5

Let us end the section with computing the Chern-Simons couplings of the eight-

dimensional theory

klmdal ∧ dam ∧ C̃4 , (4.55)

where C̃ is the 8D four-form, which is the mode of the type IIB self-dual four-form C4

that is constant along the internal direction. This term comes from reducing the type IIB

Chern-Simons term written in equation (2.4). klm is then given by

klm =

∫

S̄
ǫIJξ

l,I ∧ ξm,J

=

∫

S̄

(∫

α
Ξl ∧

∫

β
Ξm −

∫

β
Ξl ∧

∫

α
Ξm

)

=

∫

M̄
Ξl ∧ Ξm ,

(4.56)

which is a topological intersection number of the cohomology classes [Ξl] and [Ξm]. This is

consistent with the picture of F-theory/M-theory duality presented in the previous subsec-

tion. Upon reduction along a circle of radius r, one can consider the Chern-Simons coupling

klmdãl ∧ dãm ∧ C̃3 , (4.57)

where C̃3 is obtained by reducing C̃4 with one leg around the circle, and the gauge fields

ãl are modes of al constant around the compact circle. There are no KK-modes of the 8D

fields that correct this term in obtaining the 7D effective action — hence the couplings

klm remain the same as in the 8D theory.17 This is dual to the Chern-Simons coupling of

M-theory compactified on M̄ — the couplings from this point of view are given by

klm =

∫

M̄
ωl ∧ ωm , (4.58)

where ωl are harmonic forms with respect to the Calabi-Yau metric on M̄ with fiber size ∼
α′2/r2. While the semi-flat harmonic forms Ξl become “quantum corrected” into harmonic

forms ωl, the Chern-Simons couplings klm are still given by the topological intersection

numbers of the cohomology classes [Ξl] = [ωl], and thus remain the same.

5 Future directions

In this paper, we have examined a thoroughly studied F-theory background through a

rather uncommon approach. Namely, we have examined K3 compactifications directly

from the point of view of type IIB string theory, only focusing on the degrees of freedom

present there. While this approach did not reveal anything we did not know about K3

compactifications, we have demonstrated that much that we know about them can be

recovered without referring to any dualities. Hopefully, the methods employed in this paper

can be expanded to more complicated backgrounds to address problems that are hard to

resolve by using other techniques. Let us conclude this paper by discussing directions in

which to improve and expand our results.

17Although absent in our case, such corrections to topological terms must be accounted for in general.

Such issues are addressed in [36, 37]. These corrections have also recently been discussed in the context of

string compactifications in [38–42].
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Further study of semi-flat harmonic forms. In section 4.3, we have conjectured

that harmonic forms of an elliptically fibered K3 manifold M̄ sitting inside the subspace

H2(M̄)⊥ of the second cohomology group behave “nicely” in the semi-flat limit, i.e., the

limit the fiber size of the manifold shrinks to zero. We have further proposed that, in this

limit, they become harmonic forms with respect to the semi-flat metric [12]. Although this

proposal is quite natural from the point of view of string theory, it seems quite non-trivial

from the perspective of geometry. It would be interesting to see if this proposal can be

proved with mathematical rigor.

Another interesting direction of research would be to approach the semi-flat harmonic

forms numerically. The physical quantities associated to massless modes of F-theory back-

grounds are, at least classically, computed by using semi-flat harmonic forms. As we have

demonstrated in this paper, these harmonic forms are much simpler beasts than the forms

that are harmonic with respect to the Calabi-Yau metric. For example, our analysis shows

that the Hodge duals and the norms of the semi-flat harmonic two-forms are “well-behaved”

in the case of the K3 manifold. It would be interesting to compute these quantities explic-

itly using numerical methods. Hopefully, these methods can be developed further to apply

to more complicated backgrounds, which we now discuss.

Backgrounds constructed from higher dimensional Calabi-Yau manifolds. We

have dealt with the simplest non-trivial F-theory compactification in this paper. Gener-

alizing our approach to more complicated backgrounds would be interesting. An imme-

diate generalization would be to understand F-theory compactified on elliptically fibered

Calabi-Yau threefolds [2, 3]. In this case, the base of the elliptic fibration f : M̄ → S̄

is two-complex-dimensional. Although these backgrounds are very well understood, the

abelian gauge symmetry of the low-energy effective theories of these compactifications are

rather mysterious from the point of view of type IIB string theory.

For example, let us consider a Calabi-Yau threefold elliptically fibered over P2. The

low-energy effective theory is a six-dimensional (1, 0) supergravity theory. At a generic

point in moduli space, the fiber has an I1 singularity along a degree-36 curve in the base

manifold. In the type IIB picture, there is a single seven-brane wrapping this curve. There

are no vector fields in the massless spectrum of the theory. At various points in the complex

structure moduli space, however, the number of massless vector fields jump. The jump can

be understood when there is enhanced non-abelian gauge symmetry — in this case multiple

branes become coincident and the new particles added to the massless spectrum can be

understood from the point of view of the world-volume theory of the coincident branes [8–

11]. The picture is less clear when only abelian vector fields are added to the massless

spectrum, mainly due to global issues. For example, certain loci of the Calabi-Yau moduli

space with abelian gauge symmetry can be described by a single brane wrapping a single

curve with self-crossings in the base.18

The approach described in this paper seems promising when restricted to understand-

ing theories with only abelian gauge symmetry — a naive generalization of the results

of [30] on computing the cohomology H1(S̄, j∗HR) seems to produce the correct number

18Some examples of massless abelian vector fields showing up at such loci can be found in [43, 44].
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of massless vector fields. Some subtleties, however, should be worked out. For example,

the discriminant locus of the fibration have singular points which are not treated in [30].

From the physics point of view, one must formulate the world-volume theory of the seven-

brane wrapping the singular curve, and also keep track of the behavior of the bulk fields

and their interactions with the world-volume fields.19 It would be interesting to achieve

an understanding of such backgrounds and compute their massless spectrum from type

IIB string theory. Hopefully, insight gained from this process can shed light on the more

sophisticated Calabi-Yau fourfold backgrounds relevant to F-theory phenomenology.20

Singular backgrounds and exploration of non-geometric moduli. Another di-

rection to expand our results is to consider its extension to F-theory compactifications

on singular manifolds that give rise to non-abelian gauge symmetry. While the massless

fields of type IIB supergravity would not fully account for the degrees of freedom of these

backgrounds, one can nevertheless ask questions about the family of deformations of such

backgrounds to gain insight into the singular backgrounds themselves. Observing how var-

ious modes of the type IIB fields behave in the singular limit might shed light on novel

string backgrounds that are difficult to probe using dualities.

In particular, the approach of viewing F-theory backgrounds from the type IIB per-

spective may shed light on non-geometric vacua with “F-theory fluxes.” An interesting

class of such vacua can be described locally in terms of “T-branes” coined in [47], and also

studied in [48–53]. From the point of view of the local seven-brane, T-branes are particular

solutions to the Hitchin-type equations of the non-abelian fields living on coincident branes.

To be more precise, they are solutions in which the Higgs field vacuum expectation values

are upper-diagonal. An interpretation of these configurations in terms of the global geom-

etry of the elliptically fibered manifold has been given [50, 51, 53]. It would be interesting

to see how this geometric data translates into the type IIB data living on the base of the

elliptic fibration.
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A Monodromies of permitted gauge transformations ϕ

In this appendix, we show that “nice” CS gauge transformations

ξk → ξk + dϕ (A.1)

of a closed, normalizable SL(2,Z) doublet one-form ξk exhibit the monodromies
(

ϕ1

ϕ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

ϕ1

ϕ2

)

(A.2)

around brane locus Bi. We note that a general “CS gauge transformation” is allowed to

have shifts
(

ϕ1

ϕ2

)

→
(

1− piqi −q2i
p2i 1 + piqi

)(

ϕ1

ϕ2

)

+ Ci

(

−qi
pi

)

(A.3)

as one encircles a brane. By saying that ϕ is a “nice” gauge transformation, we mean that

it satisfies the following conditions:

1. ξk + dϕ is normalizable with respect to the norm (4.7).

2. piϕ
1 + qiϕ

2 = 0 at the locus of each (pi, qi) brane Bi.

The reason for imposing such criteria is explained in section 4.1.

Now given that

piϕ
1(zi, z̄i) + qiϕ

2(zi, z̄i) = 0 , (A.4)

ϕ near the brane locus has the form
(

ϕ1

ϕ2

)

= f(z, z̄)

(

−qi
pi

)

+ (vanishing piece as z → zi) . (A.5)

Here, f is a multivalued function that exhibits the shift

f → f + Ci (A.6)

upon rotation around the brane locus. This implies that in fact

lim
ǫ→0

∮

c
df = Ci (A.7)

for any contour c encircling the brane locus (zi, z̄i) close enough. Hence denoting

df ∧ ∗df = F (z, z̄)dz ∧ dz̄, (A.8)

where z is the holomorphic coordinate on the base, F has a singularity at the brane locus

that behaves like21

|F | ≥ C2
i

4π2|z − zi|2
. (A.9)

21One may worry that the behavior F of is not well-defined, as it is rescaled upon redefinition of the

holomorphic coordinate. The behavior of the integration measure dz ∧ dz̄, however, scales inversely, hence

leaving the behavior of the integrand invariant under coordinate redefinition.
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Near a given (pi, qi) brane Bi, the axio-dilaton τ behaves as

ri + siτ

pi + qiτ
∼ 1

2πi
ln(z − zi) , (A.10)

where ri and si are integers such that

pisi − qiri = 1 . (A.11)

It follows that the behavior of the integrand of the norm (4.7) is at best given by

MIJdϕ
I ∧ ∗dϕJ ∼ Ci

|z − zi|2 ln |z − zi|
dzdz̄ ∝ Ci

r ln r
drdθ (A.12)

near the brane locus (zi, z̄i). (r, θ) are polar coordinates centered at the brane. It follows

that the mode ξk+dϕ becomes non-normalizable upon such a gauge transformation, unless

Ci = 0. Therefore, in order to keep ξk + dϕ normalizable, all Ci must vanish. ✷

B Computation of h1(S̄, j∗HC)

Here we provide proofs for the results in section 4.2, based on the work of Zucker [30].

Proposition B.1. One has dimH1
(

S̄, j∗HQ

)

= 20, and all other cohomology groups of

the sheaf j∗HQ are trivial.

Proof. According to Lemma 1.2 of [54], we have R1f̄∗Q ≃ j∗HQ, as well as

H0(S̄, j∗HQ) = H2(S̄, j∗HQ) = 0.

Now the idea is to use the Leray spectral sequence

Ep,q
2 = Hp(S̄, Rqf̄∗Q) =⇒ Hp+q(M̄,Q) (B.2)

to compare the vector space in question to the cohomology of the K3-surface. We observe

that

R0f̄∗Q ≃ R2f̄∗Q ≃ Q,

because the cohomology in degree 0 and 2 is one-dimensional for all fibers of f̄ , including the

24 singular ones. The E2-page of the spectral sequence therefore has the following shape:

Q 0 Q

0 H1(S̄, j∗HQ) 0

Q 0 Q

It is obvious that the spectral sequence degenerates at E2; in fact, by Corollary 15.15

of [30], this is always the case. Because we know the cohomology of a K3-surface, we get

the desired result.
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The degeneration of the Leray spectral sequence in (B.2) has the following addi-

tional consequence.

Corollary B.3. The Leray spectral sequence induces an isomorphism

H2(M̄,Q)⊥ ≃ H1
(

S̄, j∗HQ

)

,

which is in fact an isomorphism of polarized Hodge structures of weight 2.

Proof. We denote by

L1H2(M̄,Q) = ker
(

H2(M̄,Q)→ H0
(

S̄, R2f̄∗Q
)

)

the subspace of cohomology classes that restrict trivially to all the fibers of f̄ . Because (B.2)

degenerates at E2, this subspace has dimension 21, and the natural mapping

L1H2(M̄,Q)→ H1
(

S̄, R1f̄∗Q
)

is surjective, with kernel

L2H2(M̄,Q) = H2
(

S̄, f̄∗Q
)

≃ H2(S̄,Q).

As mentioned above, H1
(

S̄, R1f̄∗Q
)

≃ H1
(

S̄, j∗HQ

)

; this clearly implies the desired iso-

morphism because

L1H2(M̄,Q) = H2(M̄,Q)⊥ ⊕ L2H2(M̄,Q).

The isomorphism respects the polarized Hodge structures on both sides according to the

results in section 15 of [30].

Let us also compute the dimension of H1(S,HQ). By the Picard-Lefschetz formula,

the local monodromy around each of the 24 points of the discriminant locus is given by

the matrix
(

1 1

0 1

)

in a suitable basis for the first cohomology of a nearby elliptic curve. It follows that the

sheaf R1j∗HQ is supported on the discriminant locus, and that its stalk at each of the 24

points is equal to Q. For dimension reasons, the Leray spectral sequence

Ep,q
2 = Hp

(

S̄, Rqj∗HQ

)

=⇒ Hp+q(S,HQ),

degenerates at E2; this leads to a short exact sequence

0→ H1
(

S̄, j∗HQ

)

→ H1(S,HQ)→ Q24 → 0.

It follows that dimH1(S,HQ) = 20 + 24 = 44.

– 34 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
5

C The Thomae formula

We write components of the semi-flat metric in terms of the unique holomorphic one-form

λ =
dx

y
. (C.1)

In particular, we show that

gzz̄ =
τ2|η(τ)|4
|∆|1/6 =

21/6

4π2i

∫

λ̄ ∧ λ . (C.2)

Here, gzz̄ is the metric of the elliptically fibered K3 manifold in the limit the fiber shrinks

to zero-size. As is always,

τ = τ1 + iτ2 =

∫

β λ
∫

α λ
(C.3)

for a choice of A and B-cycles, α and β. The integral in (C.2) is taken along the elliptic

fiber. Recall that the local equation defining the K3 manifold is given by

y2 = x3 + f8(z)x+ g12(z) (C.4)

where z is the base coordinate. The discriminant ∆ is defined to be

∆ ≡ 4f3
8 + 27g212 . (C.5)

Now τ satisfies the relation

(θ2(τ)
8 + θ3(τ)

8 + θ4(τ)
8)3

η(τ)24
= j(τ) = 1728× 4f3

8

∆
. (C.6)

Hence one finds that

|η(τ)|4
|∆|1/6 = 6912−1/6

|θ2(τ)8 + θ3(τ)
8 + θ4(τ)

8|1/2
|f8|1/2

. (C.7)

Meanwhile, by the Thomae formula,

θ2(τ)
8 + θ3(τ)

8 + θ4(τ)
8 =

6

π4

(∫

α
λ

)4

f8 . (C.8)

Note that both sides of this equation vary with respect to modular transformations that

come from choosing of different A and B-cycles. We therefore arrive at

|η(τ)|4
|∆|1/6 = 32−1/6π−2|

∫

α
λ|2 . (C.9)

Since

τ2 =
1

2i

∫

λ̄ ∧ λ

|
∫

α λ|2
, (C.10)

— where we have used the fact that
∫

α
λ̄

∫

β
λ−

∫

α
λ

∫

β
λ̄ =

∫

λ̄ ∧ λ (C.11)

— we obtain

gzz̄ =
√
g =

21/6

4π2i

∫

λ̄ ∧ λ . (C.12)
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D Bijection between semi-flat harmonic two-forms of M and doublet

harmonic one-forms on S̄

In this section, we examine the properties of semi-flat harmonic two-forms Ξ living in M —

the open manifold obtained by excising the degenerate fibers of the elliptically fibered K3

manifold M̄ — and their integrals along cycles of the fiber. We eventually prove that there

is a bijection between these semi-flat harmonic two-forms defined in section 4.3 and the

doublet harmonic one-forms defined in section 4.1. We use coordinate conventions defined

in section 4.3.

Let us begin by proving the following

Proposition D.1. Given the one-form ξ constructed from the semi-flat harmonic two-form

Ξ via (4.15), i.e.,

ξ =





∫

α Ξ
∫

β Ξ



 , (D.2)

the “dual” satisfies (4.33):

∗MIJξ
J =

( ∫

β ∗sfΞ

−
∫

α ∗sfΞ

)

. (D.3)

Proof. A closed two-form Ξ whose components Ξzz̄ and Ξww̄ vanish can be locally written as

Ξ = ω ∧ dz + ω̄ ∧ dz̄ + fdzdz̄ . (D.4)

Here, ω is a one-form aligned along the fiber direction so that

ω = adζ + bdζ̄ = aλ+ bλ̄ (D.5)

for some functions a and b. a, b and f are functions that can a priori depend on any

coordinate. The fact that Ξ is closed imposes that ω is also closed along the fiber direction.

Since λ and λ̄ span the space of closed one-forms of the elliptic fiber, ω can be re-written as

ω = Aλ+Bλ̄+ (∂ζCdζ + ∂ζ̄Cdζ̄) (D.6)

where C is a function that can depend on the fiber coordinates ζ and ζ̄, while A and B

only depend on the base coordinates z and z̄. It then follows that ξ is given by

ξ = A(z, z̄)





∫

α λ
∫

β λ



 dz +B(z, z̄)





∫

α λ̄
∫

β λ̄



 dz

+ Ā(z, z̄)





∫

α λ̄
∫

β λ̄



 dz̄ + B̄(z, z̄)





∫

α λ
∫

β λ



 dz̄ .

(D.7)

Since

MIJ ≡
1

τ2

(

|τ |2 −τ1
−τ1 1

)

(D.8)
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for

τ = τ1 + iτ2 =

∫

β λ
∫

α λ
, (D.9)

MIJ can be rewritten as

MIJ =
i

∫

λ̄ ∧ λ





2|
∫

β λ|2 −(
∫

α λ
∫

β λ̄+
∫

α λ̄
∫

β λ)

−(
∫

α λ
∫

β λ̄+
∫

α λ̄
∫

β λ) 2|
∫

α λ|2



 . (D.10)

Therefore the dual of the doublet one-form ξ as defined in (4.10) is given by

∗MIJξ
J =−A(z, z̄)

( ∫

β λ

−
∫

α λ

)

dz +B(z, z̄)

( ∫

β λ̄

−
∫

α λ̄

)

dz

− Ā(z, z̄)

( ∫

β λ̄

−
∫

α λ̄

)

dz̄ + B̄(z, z̄)

( ∫

β λ

−
∫

α λ

)

dz̄ ,

(D.11)

for a particular normalization of the antisymmetric two-tensor ǫzz̄.

Let us proceed to show that equation (D.11) can be identified with

( ∫

β ∗sfΞ

−
∫

α ∗sfΞ

)

. (D.12)

Since Ξzz̄ = Ξww̄ = 0, the Hodge dual ∗sfΞ also have vanishing components along these

directions, as the semi-flat metric factors in the base and fiber directions. Hence ∗sfΞ can

be written in the form

∗sf Ξ = ω′ ∧ dz + ω̄′ ∧ dz̄ + f ′dzdz̄ . (D.13)

As before, since ∗sfΞ is also closed, ω′ takes the form

ω′ = A′λ+B′λ̄+ (∂ζC
′dζ + ∂ζ̄C

′dζ̄) (D.14)

where A′ and B′ are functions independent of the ζ and ζ̄ coordinates. Meanwhile, applying

the Hodge dual to the expression (D.4) shows that

A+ ∂ζC = −A′ − ∂ζC
′, B + ∂ζ̄C = B′ + ∂ζ̄C

′ , (D.15)

upon a particular normalization of the antisymmetric four-tensor ǫww̄zz̄.
22 Taking partial

derivatives with respect to ζ̄ and ζ on the first and second equation, respectively, we

arrive at

∂ζ∂ζ̄C = ∂ζ∂ζ̄C
′ = 0 . (D.16)

Since the only harmonic function on a compact elliptic curve is the constant function, it

must be that

∂ζC = ∂ζ̄C = ∂ζC
′ = ∂ζ̄C

′ = 0 . (D.17)

22Such choices only affect overall factors of the equations — harmonicity conditions remain the same.
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It also follows that

ω′ = −Aλ+Bλ̄ . (D.18)

Hence we arrive at

( ∫

β ∗sfΞ

−
∫

α ∗sfΞ

)

=−A(z, z̄)

( ∫

β λ

−
∫

α λ

)

dz +B(z, z̄)

( ∫

β λ̄

−
∫

α λ̄

)

dz

− Ā(z, z̄)

( ∫

β λ̄

−
∫

α λ̄

)

dz̄ + B̄(z, z̄)

( ∫

β λ

−
∫

α λ

)

dz̄

(D.19)

upon integration along cycles. This coincides with (D.11).

A corollary of this proof is that a semi-flat harmonic two-form takes the form

Ξ = A(z, z̄)θw ∧ θz +B(z, z̄)θw̄ ∧ θz + B̄(z, z̄)θw ∧ θz̄ + Ā(z, z̄)θw̄ ∧ θz̄ , (D.20)

while the one-forms ξ constructed from Ξ via (D.2) then take the form (D.7), i.e.,

ξ = A(z, z̄)





∫

α λ
∫

β λ



 dz +B(z, z̄)





∫

α λ̄
∫

β λ̄



 dz

+ Ā(z, z̄)





∫

α λ̄
∫

β λ̄



 dz̄ + B̄(z, z̄)





∫

α λ
∫

β λ



 dz̄ .

(D.21)

It is clear from these equations that two linearly independent doublet harmonic two-forms

cannot yield the same doublet harmonic one-form via (D.2). Hence the bijection between

doublet harmonic one-forms and semi-flat harmonic two-forms would follow if the following

are true:

1. All doublet harmonic one-forms are of the form (D.21).

2. Given two-forms Ξ defined by (D.20) and a doublet one-form ξ defined by (D.21) for

the same functions A(z, z̄) and B(z, z̄), Ξ is harmonic if and only if ξ is harmonic.

It is simple to verify that the first claim is true. All doublet harmonic one-forms must

satisfy the appropriate monodromy conditions around discriminant loci. The one-forms





∫

α λ
∫

β λ



 dz,





∫

α λ̄
∫

β λ̄



 dz,





∫

α λ̄
∫

β λ̄



 dz̄,





∫

α λ
∫

β λ



 dz̄ , (D.22)

are linearly independent doublet one-forms that satisfy these monodromies and are non-

vanishing at all points of S, i.e., points on the base other than the discriminant loci. We note

that the components of these one-forms are linearly independent at each point in S, as the

torus is non-degenerate at these points. Hence any real one-form that satisfies monodromies
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defined by the fibration must be of the form (D.21) for some complex functions A(z, z̄)

and B(z, z̄).23

Showing the second claim is a matter of algebra. Using the fact that

dθw = −(∂λ, λ̄)

(λ, λ̄)
θw ∧ θz +

(∂λ, λ)

(λ, λ̄)
θw̄ ∧ θz , (D.23)

the harmonicity condition

dΞ = 0, d ∗sf Ξ = 0 (D.24)

of Ξ can be shown to be equivalent to the equations

∂z̄A = 0, ∂zB̄ −
(∂̄λ̄, λ̄)

(λ, λ̄)
B +

(∂λ, λ̄)

(λ, λ̄)
B̄ = 0 , (D.25)

and its complex conjugates. Meanwhile, the harmonicity conditions

dξI = 0, d ∗MIJξ
J = 0 (D.26)

are equivalent to

Λ̃IdξI = 0, ¯̃ΛIdξI = 0, ΛId ∗MIJξ
J = 0, Λ̄Id ∗MIJξ

J = 0 , (D.27)

for the basis of non-vanishing SL(2,Z) contravariant/covariant doublet scalars24 Λ̃, ¯̃Λ and

Λ, Λ̄. Λ and Λ̃ can be explicitly written as

Λ ≡





∫

α λ
∫

β λ



 , Λ̃ ≡
( ∫

β λ

−
∫

α λ

)

. (D.28)

Plugging in the ansatz (D.21) for ξ, the equations (D.27) boil down to (D.25). We hence

arrive at

Corollary D.29. The map (D.2) defines a bijection between the space of doublet harmonic

one-forms and the space of semi-flat harmonic two-forms.

23There is a subtlety that must be discussed here. Although the forms (
∫
c
λ)dz̄ and (

∫
c
λ̄)dz — for some

cycle c — do not vanish at any point in S, they are not well defined at the point that corresponds to

z = ∞ in the local patch of S we are working in. In fact, taking z̃ = −1/z = r̃eiθ̃, they behave as ∼ e4iθ̃d¯̃z

and ∼ e−4iθ̃dz̃, respectively. Hence conditions on the behavior of B must additionally be imposed for the

doublet one-form (D.21) to be well-behaved at this point. Not coincidentally, this is precisely the behavior

one must impose to make Ξ defined by (D.20) to be well behaved at z̃ = 0, and our following arguments

go through.
24These doublets are non-vanishing at every point of S except for z = ∞. Given that the behavior of A

and B are specified at this point, it is enough to check the equations that they satisfy at S \ {z = ∞} for

our argument to hold.
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E The cohomology of semi-flat harmonic two-forms

In this appendix, we provide a coordinate-invariant description of our method of construct-

ing smooth two-forms on M from smooth H-valued one-forms on S. More generally, we

shall define linear mappings

Ak(S,H)→ Ak+1(M,C)

that interchange the operator ∇ — induced by the connection on the holomorphic vector

bundle H — and the exterior derivative d on M .

The construction is based on the following observation. Let X = V/Γ be a compact

complex torus of dimension g; here V ≃ T0X is a g-dimensional complex vector space, and

Γ ≃ π1(X, 0) is a lattice of rank 2g in V . In particular, Γ ⊗Z R = V . By the Hurewicz

theorem, H1(X,Z) ≃ Γ; now the universal coefficients theorem shows that

H1(X,C) ≃ HomZ(Γ,C) ≃ HomR(V,C).

The isomorphism works like this: given an R-linear functional ϕ : V → C, we get a closed

one-form dϕ ∈ A1(V,C); it is translation-invariant, and therefore descends to a translation-

invariant closed one-form on X. Note that a closed form on a compact complex torus is

translation-invariant if and only if it is harmonic for the flat metric.

Now we return to our family of elliptic curves f : M → S. As a complex manifold, M

is isomorphic to a quotient B/BZ, where p : B → S is a holomorphic line bundle on S, and

BZ ⊆ B is a one-dimensional complex submanifold that intersects every fiber of B in a

lattice of rank 2. It is easy to see that H is isomorphic to OS(B
∗), the sheaf of holomorphic

sections of the dual bundle. According to the discussion above, a section σ ∈ HC(U) over

an open subset U ⊆ S gives rise to a smooth function

ϕσ : p
−1(U)→ C

whose restriction to every fiber of B is R-linear. Its derivative dϕσ descends to a smooth

one-form on f−1(U) that is closed, restricts to a translation-invariant closed one-form on

every fiber of f , and vanishes identically on the preferred section of f : M → S.

More generally, let Ak(S,H) denote the space of smooth k-forms on S with coefficients

in the holomorphic vector bundleH. By applying the construction from above on a suitable

open covering — consisting of simply connected open sets on which HC is trivial — we

obtain linear mappings

Ak(S,H)→ Ak+1(M,C),

with the property that the following diagram commutes:

A0(S,H) ∇
//

��

A1(S,H) ∇
//

��

A2(S,H)

��

A1(M,C)
d

// A2(M,C)
d

// A3(M,C)

Let us consider a smooth one-form ξ ∈ A1(S,H) with ∇ξ = 0; it goes to a closed two-form

Ξ ∈ A2(M,C). By construction, the restriction of Ξ to the fibers of f (and the section) is
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identically zero, and so Ξ ∈ L1A2(M,C) lies in the first step of the Leray filtration. We

therefore get a well-defined linear mapping

ℓ : H1(S,H)→ L1H2(M,C).

Because dimS = 1, the Leray spectral sequence for f : M → S degenerates at E2; it follows

that the edge mapping

ε : L1H2(M,C)→ H1(S,H)

is an isomorphism, since L2H2(M,C) ≃ H2(S, f∗C) vanishes. One can deduce from the

construction above that the composition of the edge mapping with ℓ is the identity. This

implies that ℓ is also an isomorphism.

Proposition E.1. The mapping ℓ takes the subspace

H1
(

S̄, j∗HC

)

⊆ H1(S,H)

isomorphically to the image of H2(M̄,C)⊥ in H2(M,C).

Proof. Because all the fibers of f̄ : M̄ → S̄ are irreducible, the long exact sequence for the

cohomology of the pair (M̄,M) shows that the kernel of the restriction mapping

H2(M̄,C)→ H2(M,C)

is spanned by the class of a fiber. In particular, H2(M̄,C)⊥ injects into L1H2(M,C). Now

the functoriality of the Leray spectral sequence gives us the following commutative diagram:

H2(M̄,C)⊥
�

�

//

ε̄
��

L1H2(M,C)

ε

��

H1
(

S̄, j∗HC

)

�

�

// H1(S,HC)

It was shown in appendix B that ε̄ is an isomorphism; we also know that ε is an isomor-

phism. Because ℓ = ε−1, the assertion follows.

To illustrate the meaning of this result, let us consider an SL(2,Z) doublet harmonic

one-form

ξ ∈ A1(S,H)

and the corresponding closed two-form Ξ ∈ A2(M,C). The cohomology class of Ξ lies in

the image of the subspace H2(M̄,C)⊥, but unless one knows more about its behavior near

the 24 singular fibers, one cannot say whether Ξ itself extends to a smooth closed form on

M̄ . It would be interesting to understand this point better.
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