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Abstract. A local system, defined on the complement of a divisor Z ⊆ X

in a complex manifold, can in general not be extended to all of X because of

local monodromy. This paper describes the construction of a normal analytic
space that naturally extends the étale space T of the local system, in the case

when Z is a divisor with normal crossings and the local system has unipotent

local monodromy.

Introduction

The extension problem. In many geometric situations, one has a local system
that is defined on the complement of an analytic subset Z in a complex manifold
X. A typical example is given by a proper holomorphic map f : Y → X between
complex manifolds; outside the analytic subset Z of points where f is not submer-
sive, each sheaf Rif∗Z is a local system. The behavior of the local system near
Z, which in the example is related to singularities on the fibers of f , is then an
important question.

When Z is a divisor (all other cases being trivial), the local system can usually
not be extended to all of X, due to the presence of local monodromy. The formalism
of perverse sheaves [1] gives a way to extend the local system in an algebraic way;
but our interest in this paper is in finding a geometric extension. To achieve this,
we focus not on the sheaf H, but on its étale space T , which is a covering space
(infinite-sheeted, with countably many connected components) of U = X − Z,
whose sheaf of sections is the given local system H. What we are looking for is an
analytic space Can(T ) over X, with certain properties, that extends the covering
space T in a natural way.

A hint as to what can be expected is given by the following example.

Example. Consider the case of a local system on the punctured disk ∆∗ = ∆−{0}.
Here each connected component of the étale space T is either isomorphic to the
upper half plane H (and of infinite degree over ∆∗), or to a copy of the punctured
disk (and of finite degree over ∆∗). There is only one natural way of extending T ,
namely by filling in the holes, and making the resulting disks into finite branched
coverings of ∆. Each point that is added corresponds, in this way, to an element
that has finite order under the monodromy transformation.

Since the correct choice of extension is clear in the case of a punctured disk,
we shall model the general construction on this particular case, by requiring the
following: Given any holomorphic map f : ∆→ X such that f(∆∗) ⊆ U , we can pull
back the local system to ∆∗, and the product Can(T )×X ∆ should give the natural
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extension of the pullback to ∆. To make this into a good notion, Can(T ) should
also be a normal analytic space, and the map Can(T ) → X should be relatively
Stein. These conditions are enough to make Can(T ) functorial for arbitrary maps
from normal analytic spaces to X (see Lemma 2 below).

In this paper, we prove the following result concerning the existence of such an
extension space.

Theorem 1. Let X be a complex manifold, Z ⊆ X an analytic divisor with normal
crossings, and U = X − Z. Let H be a local system of finitely generated, free Z-
modules on U , with associated étale space T → U . If the local monodromy of H
near points of Z is unipotent, then there is a canonically defined extension space
Can(T ) with the following three properties:

(A) Can(T ) is a normal Stein space, containing T as a dense open subset.
(B) There is a holomorphic map Can(T )→ X extending the map T → U .
(C) Given any map f : Y → X from a normal analytic space such that V =

f−1(U) is dense in Y , every section of T over V that is compatible with f
extends uniquely to a section of Can(T ) over Y .

T - Can(T )

V -

-

Y

-

U
?

-

-

X
?

f
-

The condition in (C) is illustrated in the diagram above; by definition, a section
of Can(T ) over a space Y is simply a holomorphic map Y → Can(T ) that is
compatible with the given map from Y to X.

Discussion. The condition on the local monodromy means that, for any holomor-
phic map f : ∆ → X with f(∆∗) ⊆ U , the generator of the fundamental group of
∆∗ should act on the fiber of H by a matrix whose eigenvalues are all equal to 1.
A result, due to A. Borel (see [12, Lemma 4.5 on p. 230] for details), shows that
the local monodromy of any geometrically defined local system, or in fact of any
local system underlying a polarized variation of mixed Hodge structure, is at least
quasi-unipotent. Our theorem therefore applies at least after passing to a finite
cover and resolving singularities. Most likely, the result could be generalized to
allow Z to be an arbitrary divisor, and the local system to have quasi-unipotent
monodromy, but some work remains to be done.

In analogy with the case of a punctured disk, points of Can(T ) over Z should
be thought of as elements in the fiber of H that are invariant under single local
monodromy transformation. Because of this, and due to the requirement that
Can(T ) give the correct extension on any disk contained in X, the fibers of the
holomorphic map Can(T ) → X can be very large; in fact, of dimension up to
dimX−1. This can be seen very clearly in Proposition 5. For the same reason, they
are typically no longer abelian groups. However, as a consequence of the condition
in (C), the sheaf of sections of Can(T )→ X is exactly j∗H, where j : U → X is the
inclusion map.

In the situation described in the theorem, we shall see in Section 2 that Can(T )
has toric singularities. One can restate this fact by saying that Can(T ), together
with the natural log structure given by the embedding T ⊆ Can(T ), is log regular.
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This circumstance, which suggests a connection with logarithmic geometry [11],
was pointed out by J. Stix, and will be taken up elsewhere.

Outline of the paper. Because of the functoriality of Can(T ) that is required
by condition (C), it is clear that the problem of constructing Can(T ) is a purely
local one. In Section 1, we therefore consider the case when X is a polydisk, and
investigate basic properties of Can(T ) in a more general setting. In Section 2, we
prove the existence of an extension space when Z ⊆ X is a divisor with normal
crossing singularities, and H has unipotent monodromy. In that case, Can(T ) is
obtained by taking the closure of T inside Deligne’s canonical extension of the
corresponding flat vector bundle [6]. The construction has the nice consequence
that the singularities of Can(T ) are those of a toric variety.

1. The general local setting

A more general version of the local problem is the following. Let X ⊆ Cn be a
polydisk, let Z ⊆ X be an analytic hypersurface, and U = X − Z its complement.
Suppose that we have a covering space T → U , possibly infinite-sheeted and not
necessarily connected. We would like to construct, in a natural way, an analytic
space Can(T ) extending T that has the three properties in Theorem 1. A first
observation is that it suffices to require the condition in (C) for Y = ∆ only.

Lemma 2. Suppose that an extension space Can(T ) exists, subject to the conditions
(A), (B), and (C) for Y = ∆. Then it automatically satisfies (C) for arbitrary
normal spaces Y .

Proof. Let f : Y → X be the given holomorphic map, and s : V → T a compatible
section. To show that s extends holomorphically to a map from Y into Can(T ),
it suffices to show that s is locally bounded near points of f−1(Z), because Y is
normal. But boundedness can be verified by composing s with suitable holomorphic
maps ∆→ Y , and therefore follows from condition (C) for the space ∆. �

It is also possible to describe the algebra O
(
Can(T )

)
of holomorphic functions

on Can(T ), as a closed subalgebra of O(T ). By normality, a holomorphic function
f ∈ O(T ) extends to Can(T ) if and only if it is bounded. This, in turn, can be
verified by restricting f to arbitrary holomorphic disks ∆ → Can(T ) such that
∆∗ → T . Because of (C), each such disk corresponds to a map ∆ → X, together
with a compatible section s : ∆∗ → T , and the condition is that s∗(f) ∈ O(∆),
where s∗ : O(T )→ O(∆∗) is the pullback map. In other words, we have

(1) O
(
Can(T )

)
=
{
f ∈ O(T )

∣∣∣∣ for every map ∆→ X, and every compatible
section s : ∆∗ → T , one has s∗(f) ∈ O(∆)

}
The right-had side defines a closed subalgebra of O(T ) for the compact-open topol-
ogy, because O(∆) ⊆ O(∆∗) is a closed subalgebra and each s∗ is continuous.

By work of O. Forster, a Stein space is completely determined by its algebra of
holomorphic functions [7, Satz 1 on p. 378]. If one knew that the algebra on the
right-hand side of (1) was a Stein algebra, it would thus be possible to construct the
space Can(T ) in this general setting, using Forster’s result. Unfortunately, deciding
whether a given topological algebra is Stein appears to be a difficult problem, and
we do not pursue this direction any further.

One case where the existence of Can(T ) is known, is when the covering space
T → U has finite degree.
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Lemma 3. If T → U is a finite unbranched covering, then Can(T ) exists.

Proof. This follows immediately from the “Fortsetzungssatz” for finite branched
coverings, due to H. Grauert and R. Remmert [9, Satz 8 on p. 261], and K. Stein
[13, Satz 1 on p. 67]. Indeed, their theorem is that T → U can be extended in a
unique way to a finite branched covering T ′ → X; in particular, T ′ is a normal Stein
space [9, p. 260]. Because the map T ′ → X is proper, condition (C) is automatic;
we thus have Can(T ) = T ′. �

2. Local systems with unipotent monodromy on the complement of a
normal crossing divisor

In this section, we prove that the extension space Can(T ) exists when T is the
total space of a local system H with unipotent monodromy. More precisely, we
consider the following situation:

(i) The divisor Z ⊆ X has at worst normal crossing singularities;
(ii) H is a local system of finitely generated, free Z-modules on U , and T → U

is the associated étale space; and
(iii) H has unipotent monodromy.

In this setting, the construction of Can(T ) is straightforward. Namely, let E → U
be the holomorphic vector bundle determined by the local system, with sheaf of
sections E = OU ⊗Z H. Under the assumptions on U and H, it was shown by
P. Deligne [6] that E can be canonically extended to a vector bundle Ẽ → X. The
space T is naturally embedded in E, and we prove the (nontrivial) fact that its
closure in Ẽ is an analytic subset. We can then define the extension space Can(T )
as the normalization of the closure.

After briefly reviewing Deligne’s canonical extension, we first determine the clo-
sure of T in Ẽ as a set. We then use this description to obtain finitely many
holomorphic equations that define the closure inside of Ẽ, and argue that the nor-
malization of the closure has all the properties required of Can(T ). Finally, we
show that, in this special setting, Can(T ) always has toric singularities.

Deligne’s canonical extension of a flat bundle. Let E → U be a holomorphic
vector bundle, with sheaf of sections E . A connection ∇ : E → Ω1

U ⊗ E is called
flat if its curvature tensor is zero, meaning that ∇ ◦∇ = 0. The connection is said
to have unipotent monodromy if the local system ker∇ ⊆ E of C-vector spaces has
unipotent monodromy. P. Deligne [6, pp. 91–5] proved the following basic result.

Theorem 4 (Deligne). Let X be a polydisk, Z ⊆ X a divisor with normal crossing
singularities, and U = X − Z. Let E → U be a holomorphic vector bundle with a
flat connection ∇ that has unipotent monodromy. Then there is a unique extension
of E to a holomorphic vector bundle Ẽ → X, such that the connection ∇ has
logarithmic poles with nilpotent residues.

In other words, letting Ẽ be the sheaf of sections of the vector bundle Ẽ, the
connection should extend to a map ∇ : Ẽ → Ω1

X(logZ) ⊗ Ẽ , where Ω1
X(logZ) is

the sheaf of differentials with logarithmic poles along Z.
For our purposes, the following explicit description of Ẽ will be useful. Let

t1, . . . , tn be local coordinates on the polydisk X, and suppose that Z is defined by
the equation t1 · · · tr = 0. Evidently, it suffices to treat the case when r = n; we
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may thus assume that X ' ∆n, and U ' (∆∗)n. Let d be the rank of the bundle
E. The fundamental group of (∆∗)n is isomorphic to Zn; it acts on the fiber Cd of
the bundle by parallel translation, and we let Tj be the operator corresponding to
the j-th standard generator of Zn. By assumption, each Tj is a unipotent matrix,
and we can define nilpotent matrices

Nj = − log Tj =
∞∑
n=1

1
n

(id−Tj)n

by taking logarithms (the minus sign is to keep the conventions of [4]).
We describe the vector bundle Ẽ by giving a collection of sections over U that

generate it. To obtain the sections in question, note that the pullback of the flat
bundle E to the universal covering space

p : Hn → (∆∗)n, p(z1, . . . , zn) =
(
e2πiz1 , . . . , e2πizn

)
,

is trivial. The fundamental group Zn acts on Hn by the rule

(a1, . . . , an) · (z1, . . . , zn) = (z1 − a1, . . . , zn − an),

and so sections of E over U correspond to holomorphic maps s̃ : Hn → Cd with the
property that s̃(z − ej) = Tj s̃(z) for all z ∈ Hn and all j = 1, . . . , n.

For an arbitrary vector v ∈ Cd, the holomorphic map

(2) s̃ : Hn → Cd, s̃(z) = e
P
zjNjv,

has the required invariance property, because s̃(z−ej) = e−Nj s̃(z) = Tj s̃(z); it thus
defines a holomorphic section s ∈ Γ(U,E ). Then Ẽ is the vector bundle generated
by all such sections. If we let si be the section corresponding to the i-th standard
basis vector of Cd, we have Ẽ ' X ×Cd, with the trivialization given by s1, . . . , sd.

Although it is not relevant for our purposes, it should be pointed out that the
connection ∇ indeed has logarithmic poles with nilpotent residues in that special
frame. This is easy to see from (2): on Hn, we have

∇s̃ =
n∑
j=1

dzj ⊗ e
P
zjNjNjv,

and since 2πi · dzj = dtj/tj , we conclude that

∇s =
1

2πi
·
n∑
j=1

dtj
tj
⊗Njs.

The poles in this expression are logarithmic, and for each j = 1, . . . , n, the residue
of the connection along the divisor tj = 0 is the nilpotent matrix Nj .

Set-theoretic description of the closure. We now assume that E is the flat
vector bundle associated to the local system H. The space T is then naturally em-
bedded into the canonical extension Ẽ, in the following manner. Letting t1, . . . , tn
be holomorphic coordinates on X, we may again assume that Z is defined by the
equation t1 . . . tn = 0, so that U ' (∆∗)n. The pullback of the local system to Hn

is trivial, with fiber Zd, and the description of the canonical extension shows that
T ⊆ Ẽ is the image of the holomorphic map

f : Hn × Zd → X × Cd,
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given by the rule

(3) (z1, . . . , zn, h) 7→
(
e2πiz1 , . . . , e2πizn , e−(z1N1+···+znNn)h

)
.

As it stands, the map f is not one-to-one; when the real parts xj = Re zj are
restricted to 0 ≤ x1, . . . , xn < 1, however, every point in the image is parametrized
exactly once.

The first step in the construction of Can(T ) is to determine the closure of the
image of f ; here is the result.

Proposition 5. A point in ∆n × Cd over (0, . . . , 0) ∈ ∆n is in the closure of the
image of f if, and only if, it is of the form(

0, . . . , 0, e−(w1N1+···+wnNn)h
)
;

here h ∈ Zd is such that a1N1h + · · · + anNnh = 0 for some choice of positive
integers a1, . . . , an, while w1, . . . , wn ∈ C can be arbitrary complex numbers.

As written, the proposition only describes those points in the closure that lie
over the origin in ∆n; this suffices, because we can always move the origin of the
coordinate system.

Proof. One half of the proposition is easy to prove: if h ∈ Zd satisfies a1N1h+ · · ·+
anNnh = 0 for positive integers a1, . . . , an, then every point of the form(

0, . . . , 0, e−(w1N1+···+wnNn)h
)

is in the closure of the image of f . Indeed, taking the imaginary part of z ∈ H
sufficiently large to have Im(ajz + wj) > 0 for all j, we get

f(a1z + w1, . . . , anz + wn, h) =
(
e2πia1ze2πiw1 , . . . , e2πianze2πiwn , e−

P
(ajz+wj)Njh

)
=
(
ta1e2πiw1 , . . . , tane2πiwn , e−

P
wjNje−z

P
ajNjh

)
=
(
ta1e2πiw1 , . . . , tane2πiwn , e−

P
wjNjh

)
,

having set t = exp(2πiz). As t → 0, these points in the image of f approach the
point

(
0, . . . , 0, e−(w1N1+···+wnNn)h

)
, which is consequently in the closure.

To prove the remaining half, we take a sequence of points(
z(m), h(m)

)
=
(
z1(m), . . . , zn(m), h(m)

)
∈ Hn × Zd

such that f(z(m), h(m)) converges to a point over (0, . . . , 0). This means that each
yj(m) = Im zj(m) is tending to infinity, and that the sequence of vectors

e−
P
zj(m)Njh(m) ∈ Cd

is convergent, as m→∞. We shall prove, in several steps, that the limit is of the
required form. In the course of the argument, we shall frequently have to pass to a
subsequence of the original sequence; to avoid clutter, this will not be indicated in
the notation.

Step 1. To begin with, we may adjust the values of h(m), if necessary, and assume
that the real parts xj(m) = Re zj(m) satisfy 0 ≤ xj(m) ≤ 1. We can then pass to
a subsequence along which all xj(m) converge. The vectors

e
P
xj(m)Nje−

P
zj(m)Njh(m) = e−i

P
yj(m)Njh(m)

still form a convergent sequence in this case, and so the xj(m) really play no role
for the remainder of the argument.
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Step 2. While all imaginary parts yj(m) are going to infinity, this may happen at
greatly different rates. To make their behavior more tractable, we use the following
technique, borrowed from the paper by E. Cattani, P. Deligne, and A. Kaplan
[4, p. 494]. Let y(m) =

(
y1(m), . . . , yn(m)

)
. After taking a further subsequence,

we can find constant vectors θ1, . . . , θr ∈ Rn with nonnegative components, such
that

y(m) = τ1(m)θ1 + · · ·+ τr(m)θr + η(m),

where the remainder term η(m) is convergent, and the ratios

(4)
τ1(m)
τ2(m)

,
τ2(m)
τ3(m)

, . . . ,
τr−1(m)
τr(m)

,
τr(m)

1

are all tending to infinity. Moreover, we may assume that

0 ≤ θ1j ≤ θ2j ≤ · · · ≤ θrj

for all j; because yj(m)→∞, all components of the last vector θr then have to be
positive real numbers. Now define

N(m) =
n∑
j=1

(
yj(m)− ηj(m)

)
Nj .

As in Step 1, the convergence of e−i
P
ηj(m)Nj makes the vectors ηj(m) irrelevant to

the rest of the argument—the sequence with terms e−iN(m)h(m) is still convergent.

Step 3. For each multi-index α = (α1, . . . , αn) ∈ Nn, we set

Nα =
n∏
j=1

N
αj

j .

Since the Nj are commuting nilpotent operators, Nα = 0 whenever |α| = α1 + · · ·+
αn is sufficiently large. We can thus let p ≥ 0 be the smallest integer for which
there is a subsequence of

(
z(m), h(m)

)
with

Nαh(m) = 0 for all multi-indices α with |α| ≥ p+ 1.

Passing to this subsequence, we find that when |α| = p, the sequence

Nαe−i
P
yj(m)Njh(m) = Nαh(m)

is convergent. However, it takes its values in a discrete set (in fact, there is an
integer M > 0 such that each coordinate of Nαh(m) is in Z[1/M ], and M depends
only on α and the Nj), and so it has to be eventually constant. If we remove finitely
many terms from the sequence, we can therefore achieve that

hα = Nαh(m)

is constant whenever |α| = p. Moreover, we have N(m)hα = 0 by the choice of p.
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Step 4. At this point, we can use an inductive argument to get the same conclusion
for all multi-indices α with |α| ≤ p. Thus let us assume that we already have a
subsequence

(
z(m), h(m)

)
for which hα = Nαh(m) is constant and N(m)hα = 0,

whenever α is a multi-index with p′ ≤ |α| ≤ p. If p′ > 0, we now show how to get
the same statement with p′ replaced by p′ − 1.

Consider a multi-index α with |α| = p′ − 1. Then

Nαe−iN(m)h(m) = Nαh(m)− iN(m)Nαh(m)

+
p−p′∑
s=1

(−i)s+1N(m)s ·N(m)Nαh(m)
(5)

is again convergent. Since α+ ej has length p′, we find that

N(m)Nαh(m) =
n∑
j=1

(
yj(m)− ηj(m)

)
Nα+ejh(m) =

n∑
j=1

(
yj(m)− ηj(m)

)
hα+ej ;

by the inductive hypothesis, the last term in (5) is therefore zero.
Thus the sequence Nαh(m)− iN(m)Nαh(m) is itself convergent, implying con-

vergence of its real and imaginary parts separately. As before, the sequence of
real parts Nαh(m) has to be eventually constant, and after omitting finitely many
terms, we can assume that it is constant. Let hα = Nαh(m) be that constant value.
Then the convergence of the imaginary part

N(m)hα = N(m)Nαh(m) =
r∑
i=1

τi(m)
n∑
j=1

θijN
α+ejh(m) =

r∑
i=1

τi(m)
n∑
j=1

θijh
α+ej ,

together with the behavior of the τi(m) described in (4), shows that N(m)hα = 0.
The statement is thus proved for all multi-indices α of length |α| = p′ − 1 as well.

Step 5. From Step 4, we conclude that, on a suitable subsequence, hα = Nαh(m) is
constant for all α, and satisfies N(m)hα = 0. In particular, h(m) is itself constant,
equal to a certain element h = h(0,...,0) ∈ Zd, and we have N(m)h = 0 for all m.

On the one hand, we now find that, along the subsequence we have chosen in
the previous steps, the original terms simplify to

e−
P
zj(m)Njh(m) = e−

P
(xj(m)+iηj(m))Nje−iN(m)h = e−

P
(xj(m)+iηj(m))Njh.

If we set wj = limm→∞
(
xj(m) + iηj(m)

)
, then the limit of the sequence is of the

form e−
P
wjNjh, which was part of the assertion in Proposition 5. On the other

hand, we conclude from

N(m)h =
r∑
i=1

τi(m)
n∑
j=1

θijNjh = 0

that the vectors Njh satisfy, for each i = 1, . . . , r, the linear relation

(6)
n∑
j=1

θijNjh = 0.
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Step 6. By Step 5, we know that the n vectors Njh are linearly dependent; the
coefficients θrj in the relation (6) for i = r are positive real numbers. But as the
vectors themselves are in fact in Qd, we can also find a relation with positive rational
coefficients. Taking a suitable multiple, we then obtain positive integers a1, . . . , an
satisfying

n∑
j=1

ajNjh = 0.

The remaining assertion of the proposition is thereby established. �

For later use, we record one consequence of the proof in the following proposition.

Proposition 6. Let
(
z(m), h(m)

)
∈ Hn×Zd be a sequence of points with xj(m) =

Re zj(m) ∈ [0, 1], and assume that f
(
z(m), h(m)

)
converges to a point in ∆n ×Cd

over (0, . . . , 0) ∈ ∆n. Then there is a subsequence, still denoted
(
z(m), h(m)

)
, for

which h(m) is constant.

Analytic equations for the closure. We shall now give explicit holomorphic
equations for the closure of T inside of Ẽ, thus proving that it is an analytic subset.

In general, T will have countably many connected components. Each component
is the image of a map f( , h) : Hn → ∆n × Cd, for some h ∈ Zd. Letting C(h)
denote that image, we have

T =
⋃
h∈H

C(h).

We observe that, as a matter of fact, the closure of T satisfies

T =
⋃
h∈H

C(h) =
⋃
h∈H

C(h).

This is because of the description of the closure given in Proposition 5: any point
in the closure is already in the closure of one of the components C(h). As would
be expected if the closure is an analytic space, only finitely many of the C(h) can
come together at any given point. This is the content of the following lemma.

Lemma 7. At most finitely many distinct C(h) can meet at any given point in
∆n × Cd.

Proof. Suppose, to the contrary, that infinitely many distinct C(h) met at a certain
point P of the closure; then P is in the closure of infinitely many distinct sheets
C(h). Moving the center of the coordinate system, if necessary, we may assume that
P lies over (0, . . . , 0) ∈ ∆n. We can then find a sequence of points

(
z(m), h(m)

)
∈

Hn × Zd, with 0 ≤ Re zj(m) ≤ 1 for all j = 1, . . . , n, such that f
(
z(m), h(m)

)
converges to P , but all h(m) are distinct. But such a sequence cannot exist by
Proposition 6. This contradiction proves that the number of components meeting
at P is indeed finite. �

We are now ready to give finitely many holomorphic equations in ∆n ×Cd that
define the closed subset C(h). As before, we break the argument down into several
steps.
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Step 1. Let S(h) ⊆ Zn be the subgroup of elements that leave h invariant. As a
subgroup of a free group, S(h) is itself free, say of rank n − k. If k = n, then h
is not invariant under any element in Zn, and so C(h) has to be already closed by
Proposition 5. Since no points are added in the closure, there is nothing to prove
in this case. We shall assume from now on that k < n; then the closure C(h) is
potentially bigger than the original sheet C(h).

Step 2. The quotient Zn/S(h) is a free abelian group. Indeed, Zn acts on the fiber
Zd of the local system by unipotent matrices, and so we have T a1

1 · · ·T an
n h = h if

and only if a1N1h + · · · + anNnh = 0. This means that S(h) is the kernel of the
homomorphism

Zn → Qd, (a1, . . . , an) 7→ a1N1h+ · · ·+ anNnh,

and so Zn/S(h) is free because it embeds into Qd.

Step 3. Because of Step 2, we can find an n× n matrix A, with integer entries and
detA = 1, whose last n − k columns give a basis for the subgroup S(h). We then
introduce new coordinates (w1, . . . , wn) ∈ Cn by the rule

(7) zi =
n∑
j=1

ai,jwj .

Rewriting z1N1 + · · · znNn in the form w1M1 + · · ·+ wnMn, where each

Mj =
n∑
i=1

ai,jNi

is still nilpotent, we now have Mk+1h = · · · = Mnh = 0, while the remaining k
vectors M1h, . . . ,Mkh are linearly independent. Instead of f , we can then use the
parametrization

(8) g : B → ∆n × Cd, (w1, . . . , wn) 7→
(
t1, . . . , tn, e

−(w1M1+···+wkMk)h
)
,

of the sheet C(h) under consideration; here

(9) tj =
n∏
s=1

e2πiaj,sws ,

and the map g is defined on the open subset B ⊆ Cn where all |tj | < 1.

Step 4. We now analyze the term e−(w1M1+···+wkMk)h in the parametrization g. As
a matter of fact, the map

Ck → Cd, (w1, . . . , wk) 7→ v = e−(w1M1+···+wkMk)h,

is a closed embedding, because the vectors M1h, . . . ,Mkh are linearly independent.
We will prove this by constructing an inverse: we show that there are polynomials
p1(v), . . . , pk(v) in v = (v1, . . . , vd), such that whenever v is in the image, one has

(w1, . . . , wk) =
(
p1(v), . . . , pk(v)

)
.

Proof. We construct suitable polynomials by induction on the number k of vari-
ables. If k = 0, there is nothing to do. So let us assume that the existence of such
polynomials is known for k − 1 ≥ 0 variables, and let us establish it for k.

For any multi-index α = (α1, . . . , αk) ∈ Nk, we write

Mα = Mα1
1 · · ·M

αk

k ;
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these matrices are zero whenever |α| is sufficiently large. Among all multi-indices α
with Mαh 6= 0, select one of maximal length |α|. Then |α| ≥ 1, because the vectors
Mjh are in particular nonzero, and without loss of generality we may assume that
αk ≥ 1. We have

Mα−ekv =
(
id−w1M1 − · · · − wk−1Mk−1

)
Mα−ekh− wkMαh.

Because at least one of the components of Mαh is non-zero, we can now solve for
wk in the form

wk = c1w1 + · · ·+ ck−1wk−1 + l(v),

with c1, . . . , ck−1 ∈ Q, and l(v) a degree-one polynomial in v. Substituting back,
we obtain

el(v)Mkv = e−w1(M1+c1Mk)−···−wk−1(Mk−1+ck−1Mk)h,

and, by the inductive hypothesis, w1, . . . , wk−1 can be expressed as polynomials in
the coordinates of the vector el(v)Mkv, since the vectors (Mi+ ciMk)h are of course
still linearly independent. It is thus possible to find polynomials in v such that

(w1, . . . , wk−1) =
(
p1(v), . . . , pk−1(v)

)
.

Then wk = c1p1(v) + · · · + ck−1pk−1(v) + l(v) is also a polynomial in v, and the
assertion is proved. �

Step 5. The result of Step 4 now gives us half of the equations for the closed subset
C(h). Indeed, we have seen that if (t, v) ∈ ∆n ×Cd is a point of C(h), then it is in
the image of g, and so its v-coordinates satisfy the relation

(10) v = e−(p1(v)M1+···+pk(v)Mk)h.

In components, these are d polynomial equations for v = (v1, . . . , vd). The same
equations obviously have to hold for every point in the closure C(h).

Step 6. Next, we turn our attention to the remaining n coordinates (t1, . . . , tn) of
the parametrization g, as given in (9). Letting uj = exp(2πiwj), for j = k+1, . . . , n,
we have

tj = u
aj,k+1
k+1 · · ·uaj,n

n · e2πi(aj,1w1+···+aj,kwk).

The shape of these formulas leads us to consider the algebraic map

(11) (C∗)n−k → Cn, (uk+1, . . . , un) 7→ (x1, . . . , xn),

whose coordinates are the products

(12) xj =
n∏

i=k+1

u
aj,i

i .

Because the map is given by polynomials in the variables ui and u−1
i , the topological

closure of its image is actually a closed algebraic subvariety of Cn, and as such
defined by finitely many polynomial equations

f1(x1, . . . , xn) = · · · = fe(x1, . . . , xn) = 0.

In fact, because the original map is monomial, each fb(x) can be taken as a binomial
in the variables x1, . . . , xn; the closure of the image of (11) is therefore a (possibly
non-normal) toric variety.
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Step 7. From Step 6, we can now read off the remaining equations for C(h). Indeed,
a point (t, v) in the image of g has to satisfy the equations

fb

(
t1e
−2πi

P
s≤k a1,sws , . . . , tne

−2πi
P

s≤k an,sws

)
= 0

for b = 1, . . . , e. From Step 4 we know, moreover, that ws = ps(v); therefore

(13) fb

(
t1e
−2πi

P
s≤k a1,sps(v), . . . , tne

−2πi
P

s≤k an,sps(v)
)

= 0

is another set of e holomorphic equations satisfied by the closure C(h).

Step 8. It remains to see that the d + e equations in (10) and (13) really define
C(h), and not a bigger set; for this, we use the set-theoretic description of the
closure in Proposition 5. The trivial case is when h is not invariant under any part
of the monodromy; here k = n, and as pointed out in Step 1, C(h) is then already
a closed set, and there is nothing to prove. In the remaining case, when k < n,
it suffices to consider solutions of the equations over (0, . . . , 0) ∈ ∆n, since we can
always move the center of the coordinate system.

So consider a point (0, v) ∈ ∆n × Cd that satisfies the equations. On the one
hand, the equations in (10) define the image of a closed embedding, as explained
in Step 4; therefore, v = e−(w1M1+···+wkMk)h for a unique point (w1, . . . , wk) ∈ Ck.
Letting w = (w1, . . . , wk, 0, . . . , 0), and going back to the original coordinates z in
(7), we get a point (z1, . . . , zn) ∈ Cn such that

v = e−(z1N1+···+znNn)h.

On the other hand, the equations in (13) arose from the map defined in Step 6.
Now (12) shows that the point (0, . . . , 0) can only be in the closure of the image when
some linear combination of the exponent vectors (a1,i, . . . , an,i), for i = k+1, . . . , n,
has positive coordinates. Since these vectors generate the subgroup S(h), we thus
get positive integers a1, . . . , an with

a1N1h+ · · ·+ anNnh = 0

But by the description in Proposition 5, this says exactly that the point (0, v)
belongs to C(h).

In summary, we have established the following result.

Proposition 8. Let T be the closure of T inside the vector bundle Ẽ. Then T is
an analytic subset with countably many irreducible components, each of the form
C(h) for some h ∈ Zd. Moreover, each C(h) can be defined by finitely many explicit
holomorphic equations in the coordinates (t1, . . . , tn, v1, . . . , vd) of Ẽ ' ∆n×Cd, as
in (10) and (13) above.

Existence of the extension space. We now let Can(T ) be the normalization of
T ; from the discussion above, it should be apparent that T itself is generally not
normal. We need to verify that Can(T ) satisfies the three defining conditions. For
(A) and (B), this is obvious; for (C), it is the content of the following lemma.

Lemma 9. The normalization of T satisfies the condition in (C).

Proof. This is an immediate consequence of the functoriality of Deligne’s canonical
extension. By Lemma 2, we only need to verify the condition when Y = ∆. So
let f : ∆ → X be the given map, and s : ∆∗ → T a compatible section of T . Since
T ⊆ E, we can view s as a holomorphic section of the pullback bundle f∗E over
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∆∗. Now the local system H is unipotent, and so its pullback f−1H to ∆∗ still
has unipotent monodromy around 0 ∈ ∆. By [6, Proposition 5.4 on p. 94], the
canonical extension of the associated flat vector bundle on ∆∗ coincides with f∗Ẽ.
From the description of the canonical extension, it is then obvious that the section
s of f−1H extends to a holomorphic section of f∗Ẽ. Since T ⊆ Ẽ is the closure of
T , this means that s extends to a holomorphic map ∆ → T , and hence to a map
from ∆ to the normalization of T . �

Thus the total space T of a local system with unipotent monodromy admits an
extension space Can(T ). It follows from the construction that this space is only
mildly singular, as we now explain.

Toric singularities. We conclude this section by describing the singularities of
the extension space Can(T ), in the case when T is the étale space of a local system
with unipotent monodromy, and Z a divisor with normal crossings.

When passing from T to its normalization Can(T ), two things are happening.
Firstly, the individual components C(h) are separated at points where they meet,
and become disjoint. Secondly, each component C(h) itself is normalized. From
Step 6 on p. 11 in Section 2, we see that C(h) is locally isomorphic to a (non-normal)
toric variety. Indeed, the map g in (8), whose image is the sheet C(h), is locally the
product of a closed immersion and a map defined by monomials. As explained in
the article by D. Cox [5, p. 402], the closure of the image of a monomial map as in
(11) is a non-normal toric variety; after taking the normalization, one gets a toric
variety in the usual sense. It follows that the normalization of each C(h) is locally,
in the analytic topology, isomorphic to a toric variety. It is known [8, Proposition on
p. 76] that toric varieties have only mild singularities; in particular, the singularities
are always Cohen-Macaulay and rational [10]. The same is therefore true for the
extension space Can(T ). Given that the construction involves taking a closure, this
is quite remarkable.

Acknowledgements

The construction of extension spaces for local systems arose in a joint project
with Herb Clemens. I warmly thank Herb for many useful discussions and for
his help during my time in graduate school. I am also grateful to Jakob Stix for
pointing out a possible connection with logarithmic geometry. Finally, I thank Paul
Taylor for his LATEX-package diagrams that was used to typeset the commutative
diagrams in this paper.

References
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