SURFACES WITH BIG ANTICANONICAL CLASS

CHRISTIAN SCHNELL AND DAWEI CHEN

1. INTRODUCTION

One aspect of the Minimal Model Program is the classification of algebraic varieties based on the behavior of the canonical divisor class K_X . Two classes of varieties, at opposite ends of the spectrum, are of particular importance:

- (1) Varieties of general type, where K_X is big.
- (2) Fano varieties, where $-K_X$ is ample.

Together with many other important results about the Minimal Model Program, C. Birkar, P. Cascini, C. Hacon, and J. McKernan [4] have recently proved the following theorem about the structure of the second class of varieties.

Theorem 1 (Birkar, Cascini, Hacon, and McKernan). Let (X, Δ) be a pair, consisting of a \mathbb{Q} -factorial and normal projective variety X, and an effective \mathbb{Q} -divisor Δ . Assume that $K_X + \Delta$ is dlt, and that $-(K_X + \Delta)$ is ample. Then X is a Mori dream space.

Mori dream spaces were introduced by Y. Hu and S. Keel [9]; they are natural generalizations of toric varieties. We recall the definition. Let X be a Q-factorial and normal projective variety, such that $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q} = N^1(X)$. Let D_1, \ldots, D_r be a collection of divisors that give a basis for $\operatorname{Pic}(X)$, and whose affine hull contains the pseudoeffective cone. The *Cox ring* of X is the multi-graded section ring

$$\operatorname{Cox}(X) = \bigoplus_{a \in \mathbb{N}^r} H^0(X, \mathscr{O}_X(a_1D_1 + \dots + a_rD_r)).$$

Then X is called a *Mori dream space* if Cox(X) is finitely generated as a \mathbb{C} -algebra.

The purpose of this paper is to study varieties whose anticanonical class is big. The following easy corollary of Theorem 1 shows that this is an interesting condition.

Proposition 2. Let X be a projective variety with only klt singularities and such that $-K_X$ is big and nef. Then X is a Mori dream space.

Proof. Since $-K_X$ is big and nef, there is an effective divisor D such that $-K_X - \varepsilon D$ is ample for all sufficiently small values of $\varepsilon > 0$ (see [11, Example 2.2.19 on p. 145] for details). Since X is klt, the pair $(X, \varepsilon D)$ remains klt when ε is small, and the assertion is therefore a direct consequence of Theorem 1.

Problem. Let X be a projective variety with klt singularities and such that $-K_X$ is big. Is X a Mori dream space?

Date: October 6, 2008.

One of the motivations to raise this problem comes from the study of the Kontsevich moduli space of stable maps $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^d, d)$. The canonical class $K_{\overline{\mathcal{M}}_{0,0}(\mathbb{P}^d,d)}$ was computed by Pandharipande [13]. Moreover, Coskun, Harris and Starr [6] worked out the effective cone of $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^d, d)$. It is not hard to check that $-K_{\overline{\mathcal{M}}_{0,0}(\mathbb{P}^d,d)}$ is big in this case. When d = 3, $-K_{\overline{\mathcal{M}}_{0,0}(\mathbb{P}^3,3)}$ is actually ample, so $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^3,3)$ is a Mori dream space. In [5], all the Mori chambers and birational models of $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^3,3)$ were described explicitly. Therefore, it would be of interest to know if $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^d,d)$ is a Mori dream space in general.

Unfortunately the above problem has a negative answer, at least when dim X is bigger than two. A counterexample was told to the authors by Coskun and Ein. Let X be the blow-up of \mathbb{P}^n at twelve general points on a plane cubic C, n > 2. Denote H as the pullback of the hyperplane class and E as the sum of the exceptional divisors. It is not hard to check that $-K_X = (n+1)H - (n-1)E$ is big. Now, consider the line bundle $L = \mathcal{O}_X(4H - E)$. L is big and nef. Moreover, it contains the proper transform of C in its stable base locus. Therefore, the section ring of L is not finitely generated as a consequence of Wilson's Theorem [11, Theorem 2.3.15 on p. 165].

When n = 2, $-K_X$ is not big in the above construction. So the question remains for the surface case. Firstly, we need to rule out the case when $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \neq N^1(X)$. For instance, let X be a ruled surface, i.e. a \mathbb{P}^1 bundle over a smooth genus g curve C such that g > 0 and $C \cdot C = -e$. Also let F denote a fiber class in $N^1(X)$. In this case, $\operatorname{NE}(X) = \overline{\operatorname{NE}}(X)$ is generated by C and F. Moreover, $-K_X = 2C + (e - 2g + 2)F$ is big if e > 2g - 2. Take two degree e divisors \mathbf{b}_1 and \mathbf{b}_2 on C such that \mathbf{b}_1 is linear equivalent to $N^*_{C/X}$ but $\mathbf{b}_2 \otimes N_{C/X}$ is nontorsion, where $N_{C/X}$ is the normal bundle of C in X. Consider the line bundle $L_i = \mathscr{O}_X(C + \mathbf{b}_i F), \ i = 1, 2$. Note that $L_1 = \operatorname{num} L_2$ in $N^1(X)$. Both L_1 and L_2 are big and nef. However, mL_1 is base-point-free for any m > 0 but C is contained in the stable base locus of L_2 . In particular, the section ring of L_1 is finitely generated while the section ring of L_2 is not.

To avoid this pathology, we further impose the condition $H^1(\mathcal{O}_X) = 0$ since in that case $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q} = N^1(X)$. Recall Castelnuovo's rationality criterion, which says that a smooth surface X is rational if and only if $H^1(\mathcal{O}_X) = H^0(2K_X) = 0$. So $H^1(\mathcal{O}_X) = 0$ along with the bigness of $-K_X$ force X to be a rational surface. One of the results we will prove in this note is the following.

Theorem 3. Let X be a smooth projective rational surface with big anticanonical class $-K_X$. Then X is a Mori dream space.

2. A CRITERION FOR THE FINITE GENERATION OF THE COX RING

C. Galindo and F. Monserrat [8, Corollary 1 on p. 95] proved the following condition for the Cox ring of a smooth projective surface to be finitely generated.

Theorem 4 (Galindo and Monserrat). Let X be a smooth projective surface, satisfying the following two conditions:

(1) The cone of curves $\overline{NE}(X)$ is polyhedral.

(2) Every nef divisor on X is semiample.

Then Cox(X) is a finitely generated \mathbb{C} -algebra.

Throughout this section, X will be a smooth projective rational surface with big anticanonical class $-K_X$. Evidently, no positive multiple of K_X can have any sections. In particular, we see that

$$H^1(X, \mathscr{O}_X) = H^2(X, \mathscr{O}_X) = 0.$$

Now recall that there exists a unique Zariski decomposition [11, Theorem 2.3.19 on p. 167] $-K_X = P + N$, with following three properties:

- (1) P is a nef \mathbb{Q} -divisor.
- (2) $N = \sum_{i=1}^{r} a_i E_i$ is an effective Q-divisor, and the intersection matrix

 $\|(E_i \cdot E_j)\|$

determined by the components of N is negative definite.

(3) P is orthogonal to N, which implies that $P \cdot E_i = 0$ for all i = 1, ..., r.

Since $-K_X$ is big, it follows that the positive part P is big and nef [11, Corollary 2.3.22 on p. 169]. Given any big and nef \mathbb{Q} -divisor B, we let Null(B) be the set of irreducible curves $C \subseteq X$ whose classes are orthogonal to B, meaning that $B \cdot [C] = 0$. Obviously, each component of N belongs to Null(P).

Lemma 5. Let B be any big and nef \mathbb{Q} -divisor on X. Then Null(B) consists of finitely many smooth rational curves. More generally, any purely one-dimensional subscheme Z supported on Null(B) satisfies $H^1(Z, \mathscr{O}_Z) = 0$.

Proof. That Null(B) has only finitely many irreducible components is proved in [12, Lemma 10.3.6 on p. 249] (see also [3, Lemma 1 on p. 237]). Now let Z be any purely one-dimensional subscheme of X supported on the set Null(B); we will show that $H^1(Z, \mathcal{O}_Z) = 0$. Let D = [Z] be the class of the subscheme; then $B \cdot D = 0$ by assumption.

Starting from the short exact sequence

$$0 \longrightarrow \mathscr{O}_X(-D) \longrightarrow \mathscr{O}_X \longrightarrow \mathscr{O}_Z \longrightarrow 0$$

for the subscheme Z, we can take cohomology to obtain the four-term exact sequence

$$H^1(X, \mathscr{O}_X) \longrightarrow H^1(Z, \mathscr{O}_Z) \longrightarrow H^2(X, \mathscr{O}_X(-D)) \longrightarrow H^2(X, \mathscr{O}_X).$$

Noting that the first and last term are zero, because X is a rational surface, and using Serre duality, we find that

$$H^1(Z, \mathscr{O}_Z) \simeq H^2(X, \mathscr{O}_X(-D)) \simeq \operatorname{Hom}_{\mathbb{C}}(H^0(X, \mathscr{O}_X(K_X + D)), \mathbb{C}).$$

But the space on the right-hand side is zero, because the line bundle $\mathscr{O}_X(K_X + D)$ cannot have any sections. Indeed, using that B is nef, we compute that

$$B \cdot (K_X + D) = B \cdot K_X = B \cdot (-P - N) \le -B \cdot P.$$

By the Hodge Inequality, $(B \cdot P)^2 \ge B^2 \cdot P^2 \ge 1$, since both B and P are big and nef. Thus $B \cdot (K_X + D) < 0$, which means that $K_X + D$ cannot be effective. This shows that $H^1(Z, \mathscr{O}_Z) = 0$.

Specializing to the case when Z is a curve, it follows that any irreducible curve $C \in \text{Null}(B)$ has arithmetic genus zero, and is therefore a smooth rational curve. This completes the proof.

In particular, Null(P) is a finite union of smooth rational curves.

Lemma 6. The cone of curves $\overline{NE}(X)$ is polyhedral, and is generated by the classes of finitely many smooth rational curves.

Proof. Let H be a fixed ample divisor on X, and $\varepsilon > 0$ a small rational number. Recall that the stable base locus $\mathbf{B}(-K_X - \varepsilon H)$ is independent of $\varepsilon > 0$, provided that ε is sufficiently small [12, Lemma 10.3.1 on p. 247]. It is called the *augmented base locus*, and denoted by $\mathbf{B}_+(-K_X)$. We assume from now on that $\varepsilon > 0$ is small enough to guarantee that

$$\mathbf{B}(-K_X - 2\varepsilon H) = \mathbf{B}_+(-K_X).$$

By [7, Example 1.11 on p. 1708], we have $\mathbf{B}_+(-K_X) = \text{Null}(P)$, since X is a surface.

According to the Cone Theorem [10, Theorem 1.24 on p. 22], there is a decomposition

$$\overline{NE}(X) = \overline{NE}(X)_{(K_X + \varepsilon H) \ge 0} + \sum_{\text{finite}} \mathbb{R}_{\ge 0}[C_i]$$

of the cone of curves; each C_i is a smooth rational curve, whose class spans an extremal ray for $\overline{NE}(X)$.

Now let C be an irreducible curve such that $(K_X + \varepsilon H) \cdot [C] \ge 0$. Then we have $-(K_X + 2\varepsilon H) \cdot [C] < 0$, and so

$$C \in \mathbf{B}(-K_X - 2\varepsilon H) = \mathbf{B}_+(-K_X) = \operatorname{Null}(P).$$

Thus $\overline{NE}(X)$ is generated by the finitely many extremal rays $[C_i]$, together with the classes [C] for $C \in \text{Null}(P)$. But according to Lemma 5, this is a finite set of smooth rational curves, and so the assertion is proved.

Lemma 7. Let B be a big and nef divisor on X. Then B is semiample.

Proof. This can be proved very quickly by applying a result of X. Benveniste [3, Proposition on p. 237]; note that Lemma 5 is exactly the condition needed to apply his result. For the convenience of the reader, we include a slightly different proof.

To begin with, note that since B is big and nef, we have

$$\mathbf{B}(B) \subseteq \mathbf{B}_+(B) = \mathrm{Null}(B),$$

and so the stable base locus is contained in Null(B). By Lemma 5, any purely one-dimensional subscheme Z supported on Null(B) satisfies $H^1(Z, \mathcal{O}_Z) = 0$. In particular, every irreducible component of Null(B) is a smooth rational curve.

By the Hodge Index Theorem, the intersection pairing is negative definite on the subset of $N^1(X)$ spanned by the curves in Null(B). The proof of [2, Proposition 2 on p. 130] shows that it is possible to find an effective divisor E, with support exactly equal to Null(B), such that $E \cdot C < 0$ for every irreducible curve $C \in \text{Null}(B)$.

It is then possible to choose sufficiently large integers n and m, such that the divisor

$$A = mB - K_X - nE$$

becomes ample. Indeed, we can first take n sufficiently large so that $A \cdot C > 0$ for every irreducible curve $C \in \text{Null}(B)$. By subsequently making m large, we can guarantee that $A \cdot C > 0$ for every irreducible curve $C \notin \text{Null}(B)$ (since $mB - K_X - nE$ is effective for large m, only finitely many curves need to be considered), and that $A^2 > 0$. By Kleiman's Criterion, A is then ample. Now let Z be the subscheme corresponding to the effective divisor nE. Note that the line bundle $\mathscr{O}_X(mB)$ has degree zero on each component of Z, since Z is supported on Null(B). We also have $H^1(Z, \mathscr{O}_Z) = 0$, and so [1, Theorem 1.7 on p. 489] implies that the restriction of $\mathscr{O}_X(mB)$ to Z is the trivial line bundle. We thus have an exact sequence

$$0 \longrightarrow \mathscr{O}_X(mB - nE) \longrightarrow \mathscr{O}_X(mB) \longrightarrow \mathscr{O}_Z \longrightarrow 0.$$

From the long exact sequence in cohomology, we then get exactness of

$$H^0(X, \mathscr{O}_X(mB)) \longrightarrow H^0(Z, \mathscr{O}_Z) \longrightarrow H^1(X, \mathscr{O}_X(mB - nE)).$$

But now $H^1(X, \mathscr{O}_X(mB-nE)) = H^1(X, \mathscr{O}_X(K_X+A)) = 0$ by Kodaira's Vanishing Theorem. The restriction map

$$H^0(X, \mathscr{O}_X(mB)) \longrightarrow H^0(Z, \mathscr{O}_Z)$$

is therefore surjective, and so $\mathscr{O}_X(mB)$ has a section that does not vanish at *any* point of Z. But by construction, the support of Z contains the stable base locus of B; the only possible conclusion is that $\mathbf{B}(B) = \emptyset$, which means exactly that B is semiample.

Next, we study nef divisors that are not big.

Lemma 8. Let B be a nef divisor on X with $B^2 = 0$. Then either B = 0, or $h^0(X, \mathscr{O}_X(B)) \ge 2$.

Proof. Let us assume that $B \neq 0$; we will deduce from this that $K_X \cdot B < 0$. Using the Zariski decomposition for $-K_X$, we have

$$B \cdot K_X = B \cdot (-P - N) \le -B \cdot P \le 0;$$

The possibility that $B \cdot P = 0$ is ruled out by the Hodge Index Theorem. Indeed, suppose we had $B \cdot P = 0$. The intersection pairing on $N^1(X)$ has exactly one positive eigenvalue; because $P^2 > 0$, while $B^2 = 0$, we conclude that B would have to be numerically trivial. But on the rational surface X, numerical equivalence and linear equivalence coincide, and so B = 0. Thus if $B \neq 0$, we conclude that $K_X \cdot B < 0$.

Now we apply the Riemann-Roch Theorem to estimate $h^0(X, \mathscr{O}_X(B))$. Using that X is rational, we have

$$h^0(X, \mathscr{O}_X(B)) - h^1(X, \mathscr{O}_X(B)) + h^2(X, \mathscr{O}_X(B))$$
$$= \frac{B \cdot (B - K_X)}{2} + \chi(\mathscr{O}_X) = -\frac{K_X \cdot B}{2} + 1 \ge 2.$$

By Serre duality, $h^2(X, \mathscr{O}_X(B)) = h^0(X, \mathscr{O}_X(K_X - B))$, and this quantity is zero, because $B \cdot (K_X - B) = B \cdot K_X < 0$ shows that $K_X - B$ cannot be effective. It follows that $h^0(X, \mathscr{O}_X(B)) \ge 2$, as claimed.

Lemma 9. Let B be a nef divisor on X with $B^2 = 0$. Then B is base point free.

Proof. If B = 0, then B is trivially base point free; for the remainder of the argument, we assume that $B \neq 0$. By Lemma 8, the linear system |B| is non-empty. Let F be the (divisorial) fixed part of |B|; then we have a decomposition B = F + D, where D is effective and |D| has only finitely many base points. Since X is a surface, it follows that D is nef.

Since F and D are both effective, and B is nef, the identity

$$0 = B^2 = B \cdot F + B \cdot D$$

implies that $B \cdot F = B \cdot D = 0$. Similarly,

$$0 = D \cdot B = D \cdot F + D^2$$

implies that $D \cdot F = D^2 = 0$. Thus we have $B \cdot C = D \cdot C = 0$ for every irreducible component C of the support of F.

This last fact implies that the fixed part F is itself nef; indeed, we have $F \cdot C = B \cdot C - D \cdot C = 0$ whenever C is in the support of F. But now

$$0 = F \cdot B = F^2 + F \cdot D = F^2,$$

and so Lemma 8 implies that either $h^0(X, \mathscr{O}_X(F)) \geq 2$, or F = 0. The first option would contradict the fact that F is the fixed part of |B|, and so we conclude that F = 0. Thus B = D has only finitely many base points. But then $B^2 = 0$ implies that B is actually free.

Theorem 10. Let X be a smooth projective rational surface with big anticanonical class $-K_X$. Then X is a Mori dream space.

Proof. By Lemma 6, the cone of curves on X is polyhedral. Moreover, any nef divisor B on X is semiample: if $B^2 > 0$, this follows from Lemma 7; and if $B^2 = 0$, from Lemma 9. We can therefore apply the criterion of Galindo-Monserrat in Theorem 4 to conclude that Cox(X) is finitely generated.

References

- M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, American Journal of Mathematics 84 (1962), 485–496.
- [2] _____, On isolated rational singularities of surfaces, American Journal of Mathematics 88 (1966), 129–136.
- [3] X. Benveniste, On the fixed part of certain linear systems on surfaces, Compositio Mathematica 51 (1984), no. 2, 237–242.
- C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, available at arXiv:math/0610203v2.
- [5] D. Chen, Mori's program for the Kontsevich moduli space $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^3,3)$, International Mathematics Research Notices **2008**. article ID rnn067.
- [6] I. Coskun, J. Harris, and J. Starr, *The effective cone of the Kontsevich moduli space*, Canadian Mathematical Bulletin, to appear.
- [7] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Asymptotic invariants of base loci, Annales de l'Institut Fourier 56 (2006), no. 6, 1701–1734.
- [8] C. Galindo and F. Monserrat, The total coordinate ring of a smooth projective surface, Journal of Algebra 284 (2005), no. 1, 91–101.
- Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Mathematical Journal 48 (2000), 331–348. Dedicated to William Fulton on the occasion of his 60th birthday.
- [10] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original.
- [11] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
- [12] _____, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals.
- [13] R. Pandharipande, The canonical class of $\overline{\mathcal{M}}_{0,n}(\mathbb{P}^{r,d})$ and enumerative geometry, International Mathematics Research Notices **1997**, 173–186.