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Introduction

Let X be a smooth projective complex variety of dimension d, and set

PX =
d⊕

i=0

H i
(
X,OX

)
, QX =

d⊕

i=0

H i
(
X,ωX

)
.

Via cup product, we may view these as graded modules over the exterior algebra

E =def Λ•H1
(
X,OX

)
.∗

The “complexity” of these E-modules was studied in [LP], where it was shown

that while PX can behave rather unpredictably, the E-module QX has quite

Received: Oct. 13, 2010; Revised: Jan. 5, 2011.

First author partially supported by NSF grant DMS-0652845

Second author partially supported by NSF grant DMS-0758253
∗Following the degree conventions of [EFS], we take E to be generated in degree −1, and

we declare that the summand Hi
(
X, ωX

)
of QX has degree −i, whereas Hi

(
X,OX

)
has degree

d − i in PX . Thanks to Serre duality, QX and PX then become dual E-modules.
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simple algebraic properties. Specifically, let

k = k(X) = dim X − dimalbX(X)

denote the dimension of the generic fiber of the Albanese mapping

albX : X −→ Alb(X)

over its image. It was established in [LP] (for compact Kähler manifolds) that

QX is k-regular as an E-module: it is generated in degrees 0, . . . ,−k; the first

syzygies among these generators have potential degrees −1, . . . ,−(k + 1); and so

on. In particular, if X has maximal Albanese dimension – i.e. when k(X) = 0 –

then QX is generated in degree 0 and has a linear resolution.

The purpose of this note is to prove a more precise statement in case k > 0.

Theorem A. There is a canonical direct sum decomposition

(*) QX =

k(X)⊕

j=0

Qj
X(j),

of E-modules, where Qj
X is 0-regular.† Thus the minimal E-resolution of QX is

a direct sum of (shifts of) linear resolutions.

Note that we do not assert that Qj
X 6= 0 for every j, although Qk

X is necessarily

non-vanishing. We remark that the existence of a direct sum decomposition

(*) follows immediately from Kollár’s theorem [Ko] on higher direct images of

dualizing sheaves. The essential assertion of the Theorem is the regularity of the

summands. Kollár’s decomposition appears in a related context in [CH].

As in [LP] the Theorem is proved by combining a package of results surround-

ing generic vanishing theorems with the BGG correspondence relating modules

over an exterior algebra to linear complexes over a symmetric algebra. The addi-

tional tool required for the present improvement is a homological argument, based

on a lemma on the degeneration of the spectral sequence associated to a filtered

complex with homogeneous differentials going back to Deligne [De]. Formaliz-

ing this in the derived category, and combining it with Kollár’s decomposition

theorem, allows one to circumvent some delicate questions of compatibility (as

in [CH]) between the derivative complexes appearing in [GL2] and elsewhere,

and the Leray spectral sequence. This background material is reviewed in §1.

†Given a graded E-module M , M(j) denotes as usual the shifted E-module with M(j)ℓ =

Mj+ℓ.
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The proof of Theorem A appears in §2. Finally, in §3 we make a few remarks

concerning the extension of these ideas to more general integral transforms.

We are grateful to Herb Clemens, Christopher Hacon and Beppe Pareschi

for helpful discussions, and to the referee for pointing out an error in an earlier

version.

It is with respect and sadness that we dedicate this paper to the memory

of Eckart Viehweg. Viehweg’s impact on the field was huge, and each of us

has profited from his mathematics and his vision. The first author in particular

treasured thirty years of friendship with Eckart, from whom he learned so much.

Eckart will be greatly missed.

1. Preliminaries

Basics on the BGG correspondence. We briefly recall from [EFS], [Eis]

and [LP] some basic facts concerning the BGG correspondence. Let V be a q-

dimensional complex vector space over a field k, and let E =
⊕q

i=0

∧i V be the

exterior algebra over V . Denote by W = V ∨ be the dual vector space, and by

S = Sym(W ) the symmetric algebra over W . Elements of W are taken to have

degree 1, while those in V have degree −1.

Consider now a finitely generated graded module P =
⊕d

i=0 Pi over E. The

dual over E of the module P is defined to be the E-module

Q = P̂ =

d⊕

j=0

P∨
−j

(so that positive degrees are switched to negative ones and vice versa). The basic

idea of the BGG correspondence is that the properties of Q as an E-module are

controlled by a linear complex of S-modules constructed from P . Specifically,

one considers the complex L(P ) given by

· · · −→ S ⊗C Pj+1 −→ S ⊗C Pj −→ S ⊗C Pj−1 −→ · · ·

with differential induced by

s ⊗ p 7→
∑

i

xis ⊗ eip,

where xi ∈ W and ei ∈ V are dual bases. We refer to [EFS] or [Eis] for a

dictionary linking L(P ) and Q.
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As in [LP], we consider a notion of regularity for E-modules analogous to

the theory of Castelnuovo-Mumford regularity for finitely generated S-modules,

limiting ourselves here to modules concentrated in non-positive degrees.

Definition 1.1 ([LP] Definition 2.1). A finitely generated graded E-module Q

with no component of positive degree is called m-regular if it is generated in

degrees 0 up to −m, and if its minimal free resolution has at most m + 1 linear

strands. Equivalently, Q is m-regular if and only if

TorE
i (Q, k)−i−j = 0

for all i ≥ 0 and all j ≥ m + 1.

In particular 0-regular means being generated in degree 0 and having a linear

free E-resolution. The regularity of Q can be computed from the BGG complex

of its dual as follows:

Proposition 1.2 ([LP] Proposition 2.2). Let P be a finitely generated graded

module over E with no component of negative degree, say P =
⊕d

i=0 Pi. Then

Q = P̂ is m-regular if and only if L(P ) is exact at the first d−m steps from the

left, i.e. if and only if the sequence

0 −→ S ⊗C Pd −→ S ⊗C Pd−1 −→ · · · −→ S ⊗C Pm

of S-modules is exact. �

Filtered complexes and BGG complexes. Let (R,m) be a regular local

k-algebra of dimension e, with residue field k = R/m. Let W = m/m2 be the

cotangent space, and V = W∨ the dual tangent space. We have m
p/mp+1 ≃

SympW for all p ≥ 0.

Let
(
K•, d

)
be a bounded complex of finitely generated free R-modules. We

can filter the complex by defining F pKn = m
pKn for all p ≥ 0 and all n; we then

have

F pKn/F p+1Kn ≃
(
Kn ⊗R k

)
⊗k SympW.

The standard cohomological spectral sequence associated to a filtered complex

then looks as follows

(1.1) Ep,q
1 = Hp+q

(
K• ⊗R k

)
⊗k SympW =⇒ Hp+q

(
K•

)
.

Note that, as V ∼= Ext1R(k, k), there is a natural action for each n given by

V ⊗ Hn
(
K• ⊗R k

)
−→ Hn+1

(
K• ⊗R k

)
.
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Consider now

PK• :=
⊕

i

H i
(
K• ⊗R k

)
and QK• :=

⊕

i

H i
(
K• ⊗R k

)∨
.

Assume (after shifting) that PK• lives in degrees 0 up to d, where d is a positive

integer, and that the degree of its H i piece is d − i. Using the action above, we

can then see PK• and QK• as dual finitely generated graded modules over the

exterior algebra E =
⊕∧i V if we consider the H i∨ piece in QK• in degree −i;

QK• then lives in degrees −d to 0.

One can apply the BGG correspondence described above to PK• and obtain

a linear complex L(PK•) of finitely generated free S-modules, where S = Sym W .

Lemma 1.3. The total complex of the E1-page in (1.1), with terms

En
1 =

⊕

p+q=n

Ep,q
1 = Hn

(
K• ⊗R k

)
⊗k S,

is isomorphic to the complex L(PK•).

Proof. This is an extension, with the same argument, of [LP] Lemma 2.3. �

This gives in particular the following criterion for the vanishing of cohomology

modules.

Corollary 1.4. Assume that the BGG complex L(PK•) is exact at the term

Hn
(
K• ⊗R k

)
⊗k S. Then we have Hn(K•) = 0.

Proof. The exactness in the hypothesis is equivalent to the fact that Ep,q
2 = 0

for all p and q with p + q = n in the spectral sequence (1.1), which implies the

conclusion. �

Complexes with homogeneous differentials. Consider as above a bounded

complex
(
K•, d

)
of finitely generated free R-modules. Each differential dn : Kn →

Kn+1 can be viewed as a matrix with entries in the ring R. We say that the

complex has linear differentials if there is a system of parameters t1, . . . , te for

R such that the entries of each dn are linear forms in t1, . . . , te. More generally,

we say that K• has homogeneous differentials of degree r if the entries of d are

homogeneous forms of degree r. Using the fact that R ⊆ k[[t1, . . . , te]], this means

that the entries of each dn, when viewed as elements of the power series ring, are

homogeneous polynomials of degree r. The following degeneration criterion will

be used in the proof of the main theorem.
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Lemma 1.5. If
(
K•, d

)
has homogeneous differentials of degree r, then the spec-

tral sequence in (1.1) degenerates at the Er+1-page. In particular, it degenerates

at the E2-page if the complex has linear differentials.

Proof. We use the technical criterion in Lemma 1.6 below: the spectral sequence

(1.1) degenerates at the Er+1-page if, and only if, the filtration satisfies

m
kKn ∩ d

(
Kn−1

)
⊆ d

(
m

k−rKn−1
)

for all n, k ∈ Z. Let t1, . . . , te be a system of parameters such that each differential

d in the complex is a matrix whose entries are homogeneous polynomials of degree

r. Now suppose we have a vector x ∈ Kn−1 such that dx has entries in m
k. Write

x = x′+x′′, in such a manner that the components of x′ are polynomials of degree

at most k − r − 1, while the components of x′′ belong to m
k−r. All components

of the vector dx′ are then polynomials of degree at most k − 1 in t1, . . . , te, while

those of dx′′ belong to m
k. The fact that dx = dx′ + dx′′ also has entries in m

k

then forces dx′ = 0; thus dx = dx′′. We conclude by the criterion mentioned

above. �

The following degeneration criterion for the spectral sequence of a filtered

complex generalizes [De] §1.3, where the case r = 0 is proved.

Lemma 1.6. The spectral sequence of a filtered complex (K•, F •) degenerates at

the Er+1-page if, and only if, the filtration satisfies

(1.2) F kKn ∩ d
(
Kn−1

)
⊆ d

(
F k−rKn−1

)

for all n, k ∈ Z.

Proof. By [De] §1.3, the entries of the spectral sequence are given by

Ep,q
r = im

(
Zp,q

r → Kp+q/Bp,q
r

)
,

where we have set

Zp,q
r = ker

(
d : F pKp+q → Kp+q+1/F p+rKp+q+1

)
,

Kp+q/Bp,q
r = coker

(
d : F p−r+1Kp+q−1 → Kp+q/F p+1Kp+q

)
.

Moreover, the differential dr is defined by the rule dr[x] = [dx] for x ∈ Zp,q
r .

To prove the criterion, let us first assume that the spectral sequence de-

generates at Er+1; in other words, that dr+1 = dr+2 = · · · = 0. This means
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that

Ep,q
i+1 = Ep,q

∞ = F pHp+q
(
K•

)
/F p+1Hp+q

(
K•

)

for all p, q ∈ Z and i ≥ r. Thus for any x ∈ F pKp+q that satisfies dx ∈

F p+i+1Kp+q+1, there exists some y ∈ F pKp+q with dy = 0 and x − y ∈

F p+1Kp+q + d
(
F p−i+1Kp+q−1

)
. In other words, taking n = p + q + 1 and

k = p + i + 1, we have

F kKn ∩ d
(
F k−i−1Kn−1

)
⊆ d

(
F k−iKn−1

)
.

Since the filtration is exhaustive, (1.2) follows by descending induction on i ≥ r.

Conversely, suppose that the condition in (1.2) is satisfied. Consider an

arbitrary class [x] ∈ Ep,q
r+1, represented by an element x ∈ F pKp+q with dx ∈

F p+r+1Kp+q+1. Since F p+r+1Kp+q+1 ∩ d
(
Kp+q

)
⊆ d

(
F p+1Kp+q

)
by virtue of

(1.2), we can find z ∈ F p+1Kp+q with dx = dz. But then y = x − z represents

the same class as x and satisfies dy = 0; this shows that di[x] = di[y] = 0 for all

i ≥ r + 1, and proves the degeneracy of the spectral sequence at Er+1. �

Example 1.7. Here is an example showing that Lemma 1.5 does not necessarily

hold when the entries of the matrices representing the differentials are polynomials

of degree at most r, hence homogeneity is necessary. Let R = k[[t]] be the ring of

power series in one variable, and consider the complex of free R-modules

R⊕2
A=

(
1 −t
t 0

)

- R⊕2.

Now take x = (t, 1); then A · x =
(
0, t2

)
has components in m

2, but there is no

vector y with components in m such that A · y =
(
0, t2

)
. Since the condition in

Lemma 1.6 is violated, the spectral sequence does not degenerate at E2 in this

case.

Passing to the derived category. We now generalize the construction of the

spectral sequence to arbitrary objects in the bounded derived category D(R)

of finitely generated R-modules. We use the fact that D(R) is isomorphic to

the category of bounded complexes of finitely generated free R-modules up to

homotopy [We] §10.4.

Let C• be any object in D(R). We can find a complex K• of finitely generated

free R-modules quasi-isomorphic to C•. If we apply the construction of the

previous paragraph to K•, we obtain a spectral sequence

(1.3) Ep,q
1 = Hp+q

(
C• ⊗R k

)
⊗k SympW =⇒ Hp+q

(
C•

)
,
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in which both the E1-page and the limit can be computed from C•.

It remains to show that the spectral sequence (1.3) is well-defined and only

depends on C• up to isomorphism in D(R). It suffices to show that if C• → D•

is a quasi-isomorphic map of complexes, then it induces a canonical isomorphism

between the two associated spectral sequences. Let L• be a bounded complex

of finitely generated free R-modules quasi-isomorphic to the complex D•. Then

K• and L• are also quasi-isomorphic, and since both are bounded complexes of

free R-modules, they must be homotopy equivalent (see [We] Theorem 10.4.8).

In other words, there are maps of complexes

f : K• → L• and g : L• → K•

such that f ◦ g − idL• and g ◦ f − idK• are null-homotopic. Moreover, any two

choices of f (resp. g) are homotopic to each other. Since f and g clearly preserve

the filtrations defined by powers of m, we get induced maps

Fr : Ep,q
r (K•) → Ep,q

r (L•) and Gr : Ep,q
r (L•) → Ep,q

r (K•)

between the spectral sequences for the two filtered complexes.

Lemma 1.8. Let h : K• → L• be a map between two bounded complexes of free

R-modules. If h is null-homotopic, then the induced map on spectral sequences is

zero.

Proof. Since h ∼ 0, there is a collection of maps sn : Kn → Ln−1 with the

property that hn = d ◦ sn − sn+1 ◦ d. It follows that the maps Hn
(
K• ⊗R k

)
→

Hn
(
L• ⊗R k

)
induced by h are zero. But this means that the map of spectral

sequences induced by h is also zero, starting from the E1-page. �

Since any two choices of f are homotopic to each other, it follows that the

maps Fr are independent of the choice of f , and therefore canonically determined

by the two complexes K• and L•. Moreover, the fact that f ◦ g and g ◦ f are

homotopic to the identity shows that Fr ◦Gr are Gr ◦Fr are equal to the identity.

This proves that the two spectral sequences are canonically isomorphic.

Corollary 1.9. Let C• be any object in D(R). If C• is quasi-isomorphic to

a complex of free R-modules with linear differentials, then the spectral sequence

(1.3) degenerates at the E2-page.

Corollary 1.10. Let C•
i , for i = 1, . . . , k, be a collection of objects in D(R).

If C• = C•
1 ⊕ . . . ⊕ C•

k is quasi-isomorphic to a complex of free R-modules with
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linear differentials, then the spectral sequence (1.3) for each C•
i degenerates at

the E2-page.

Proof. Since the spectral sequence for C• is the direct sum of the individual

spectral sequences, the assertion follows immediately from Corollary 1.9. �

2. Decomposition of the canonical cohomology module

Let X be a smooth projective complex variety X of dimension d and irreg-

ularity q = h1(X,OX ), with

a : X −→ Alb(X)

the Albanese mapping of X, and let

k = k(X) = dim X − dim a(X)

be the dimension of the general fiber of a. Define

PX =
d⊕

i=0

H i
(
X,OX

)
, QX =

d⊕

i=0

H i(X,ωX),

These are dual graded modules over the exterior algebra E =
⊕q

i=0

∧i V , with

V = H1(X,OX ). Here H i(X,ωX) is considered in degree −i and H i(X,OX ) in

degree d − i. The main result of Kollár [Ko] asserts that one has a splitting

(2.1) Ra∗ωX
∼=

k⊕

j=0

Rja∗ωX [−j]

in the derived category D(A). Therefore QX can be expressed as a direct sum

QX =

k⊕

j=0

Qj
X(j) , with Qj

X =

d⊕

i=0

H i
(
A,Rja∗ωX

)
.

Moreover this is a decomposition of E-modules: E acts on H∗
(
A,Rja∗ωX

)
via

cup product through the identification H1
(
X,OX

)
= H1

(
A,OA

)
, and we again

consider H i
(
A,Rja∗ωX

)
to live in degree −i. In [LP] Theorem B it was proved

that the regularity of QX over E is equal to k. Here we prove the stronger

Theorem 2.1. The modules Qj
X are 0-regular for all j = 0, . . . , k, and the min-

imal E-resolution of QX splits into the direct sum of the linear resolutions of

Qj
X(j).
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Proof. Let P be a Poincaré bundle on X × Pic0(X). We denote by

RΦP : D(X) → D(Pic0(X)), RΦPE = Rp2∗(p
∗
1E ⊗ P )

the integral functor given by P , and analogously for RΦP∨ . Following Mukai’s

notation [Mu], we also denote by

RŜ : D(A) → D(Pic0(X))

the standard Fourier-Mukai functor on A, again given by the respective Poincaré

bundle P, with P = (a × id)∗P. We have RΦP = RŜ ◦ Ra∗ and RΦP∨ =

(−1)∗ ◦ RŜ ◦ Ra∗.

For an object F we denote F∨ = RHom(F ,OX ) and R∆F :=

RHom(F , ωX). Grothendieck duality gives for any object F in D(X) or D(A)

the following formulas (see for instance the proof of [PP2] Theorem 2.2):

(2.2) (RΦP∨F)∨ ≃ RΦP (R∆F)[d] and (−1)∗(RŜF)∨ ≃ RŜ(F∨)[q].

Applying this to F = ωX , we obtain

RΦPOX
∼=

(
RΦP∨ωX

)∨
[−d]

and therefore by (2.1) it follows that in D(Pic0(X)) we have a splitting

RΦPOX
∼=

k⊕

j=0

(−1)∗
(
RŜ(Rja∗ωX)

)∨
[j − d]

∼=

k⊕

j=0

RŜ
(
(Rja∗ωX)∨

)
[q + j − d],

(2.3)

where the second isomorphism again comes from (2.2) applied to F = Rja∗ωX .

In addition, by [Hac] §4 we know that for all j the sheaf Rja∗ωX satisfies the

property

RŜ
(
(Rja∗ωX)∨

)
≃ RqŜ

(
(Rja∗ωX)∨

)
[−q],

meaning that the Fourier-Mukai transform of its dual is supported only in degree

q.‡ Combined with (2.3), this finally gives the decomposition into a direct sum

of (shifted) sheaves

(2.4) RΦPOX
∼=

k⊕

j=0

Gj [j − d]

‡As the referee points out, this is the only result used in the proof that at the moment is not

known to hold in the Kähler setting.
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with Gj := RqŜ
(
(Rja∗ωX)∨

)
.

We may pull back the object RΦPOX via the exponential map exp : V →

Pic0(X) centered at the origin. By [GL2], Theorem 3.2, we then have the iden-

tification of the analytic stalks at the origin

Hi
(
(K•)an

)
0

∼= (Rip2∗P)0.

where (K•)an is the complex of trivial analytic vector bundles on V :

0 −→ OV ⊗H0
(
X,OX

)
−→ OV ⊗H1

(
X,OX

)
−→ . . . −→ OV ⊗Hd

(
X,OX

)
−→ 0,

with maps given at each point of V by wedging with the corresponding element

of H1
(
X,OX

)
. Passing from analytic to algebraic sheaves as in [LP] Proposition

1.1, we obtain that the the stalk of RΦPOX at the origin is quasi-isomorphic

to a complex of free modules over R = OPic0(X),0 whose differentials are linear

(with respect to a system of parameters corresponding to a euclidean coordinate

system on V via the exponential map). This implies by Lemma 1.5 that the

spectral sequence derived from (1.2)

Ep,q
1 = Hp+q

(
(RΦPOX)0 ⊗R k

)
⊗k SympW =⇒ (Rp+qΦPOX)0

degenerates at the E2-page. By Lemma 1.3, the total E1-page of this spectral

sequence is the BGG complex L(PX). Denoting by P j
X the E-module dual to

Qj
X , the functoriality of the BGG correspondence implies that we have a decom-

position

L(PX) ≃

k⊕

j=0

L(P j
X)[j].

Fix an index 0 ≤ j ≤ k. Given (2.4), Corollary 1.10 implies that for each j the

spectral sequence

Ep,q
1 = Hp+q(Gj ⊗R k) ⊗k SympW =⇒ Hp+q(Gj)0.

degenerates at the E2-page as well, while its total E1-page is the complex L(P j
X).

As Gj is a single R-module, the limit of the corresponding spectral sequence is 0

except for p + q = 0. Now using again Lemma 1.3, this means that each complex

L
(
P j

X

)
is exact except at its right end. But by Proposition 1.2 this is equivalent

to the fact that each Qj
X is 0-regular as a graded E-module. �

Remark 2.2. The result above gives in particular a proof of the following state-

ment for all the Rja∗ωX : the stalks of the Fourier-Mukai transforms of their
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derived duals admit filtrations whose associated graded modules are the coho-

mologies of their (linear) derivative complexes at the origin. The argument given

here circumvents the need to check the compatibility of the differentials in the

Leray spectral sequence with those in the derivative complex, stated in [CH]

Theorem 10.1.

3. General integral transforms

We conclude by briefly noting that the technical material in the previous

sections can be formally extended from the setting of RΦP in the proof of Theo-

rem 2.1 to that of arbitrary integral functors. We hope that this may have future

applications. The main point, undoubtedly known to experts, is that the BGG

complexes we consider can be seen as local linearizations of integral transforms.

Let X and Y be smooth projective varieties over an algebraically closed field

k, of dimensions d and e respectively, and let P be a locally free sheaf on X ×Y §

inducing the integral transform

RΦP : D(X) → D(Y ), RΦP (·) := RpY ∗(p
∗
X(·)

L

⊗ P ).

For any y ∈ Y we denote Py := P|X×{y}. Fix y0 ∈ Y , and denote (R,m) =

(OY,y0
,my0

). For any object F in D(X), we can consider the object

C•
F := Li∗y0

(RΦPF) in D(R).

Recall that we use the notation R∆F := RHom(F , ωX).

Exterior module structure. For each n we have a basic isomorphism

(3.1) H
n(X,F ⊗ Py0

) ∼= Hn(C• ⊗R k(y0))

by applying the Leray isomorphism and the projection formula (cf. [PP1] Lemma

2.1). We consider

PC•
F

:=
⊕

n

H
n(X,F ⊗ Py0

) and QC•
F

:=
⊕

n

H
n(X,R∆F ⊗ P∨

y0
)

as dual modules over the exterior algebra E =
⊕∧i TY,y0

, via the Kodaira-

Spencer map

κy0
: TY,y0

−→ Ext1(Py0
, Py0

)

and the natural cup-product action of Ext1(Py0
, Py0

) on PC•
F
.

§This can be easily extended to any coherent sheaf on X × Y , flat over Y .
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Comparison of the BGG complex with the integral transform. The spec-

tral sequence in (1.3) applied to the object C•
F , together with the isomorphism

in (3.1), translates into

Lemma 3.1. There is a cohomological spectral sequence

Ep,q
1 = H

p+q(X,F ⊗ Py0
) ⊗k SympW =⇒ Hp+q(C•

F ).

By Lemma 1.3, the total E1-complex associated to this spectral sequence is

the BGG complex L(PC•
F
). This leads to the interpretation mentioned above:

the BGG complex L(PC•
F
) is a linearization of the integral transform RΦPF in

a neighborhood of y0.

This implies a refinement of the familiar base change criterion for the local

vanishing of the higher derived functors, saying that if Hn(X,F ⊗Py0
) = 0, then

(RnΦPF)y0
= 0.

Proposition 3.2. Assume that the BGG complex L(PC•
F
) is exact at the term

Hn(X,F ⊗ Py0
) ⊗k S. Then (RnΦPF)y0

= 0.

Proof. This follows from Lemma 3.1 and Proposition 1.4. �

Remark 3.3. Note that the converse is true only if the spectral sequence de-

generates at the E2-term, in particular if C•
F can be represented around y0 by

a complex of free R-modules with linear differentials. It would be interesting to

study the differentials di in the spectral sequence for i ≥ 2.

Let now G be a sheaf on X, and F := R∆G. Note that in this case PC•
F

will

live in degrees 0 to d = dim X and QC•
F

in degrees −d to 0.

Corollary 3.4 (BGG exactness implies generic vanishing). Assume that L(PC•
F
)

is exact at the first d−k steps from the left, or equivalently that QF ,y0
is k-regular

over E. Then

codim y0
Supp RiΦP∨G ≥ i − k, for all i > 0.

(In the language of [PP1], G is a GV−k-sheaf with respect to P∨ in a neighborhood

of y0.)

Proof. Proposition 3.2 implies that (RiΦPF)y0
= 0 for all i < d−k. By the basic

local GV -WIT equivalence [PP2] Theorem 2.2, this is equivalent to the fact that

G is GV−k with respect to P∨. �



1542 Robert Lazarsfeld, Mihnea Popa and Christian Schnell

References

[CH] H. Clemens and Ch. Hacon, Deformations of the trivial line bundle and vanishing theo-

rems, Amer. J. Math. 124 (2002), no. 4, 769–815.
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