
The De Giorgi-Nash-Moser Estimates

We are going to discuss the the equation

Lu ≡ −Di(aij(x)Dju) = 0 in B4 ⊂ Rn. (1)

The aij, with i, j ∈ {1, . . . , n}, are functions on the ball B4. Here and in the
following doubly occurring indices are always understood to indicate sum-
mation. We assume that the coefficients aij satisfy the following ellipticity
condition

λ|ξ|2 ≤ aij(x)ξiξj for all ξ ∈ Rn and all x ∈ B4. (2)

with a positive constant λ. The equation Lu = 0 is then a second-degree
elliptic equation. We also require the aij to be bounded and measurable,
satisfying ‖aij‖L∞(B4) ≤ Λ with another constant Λ > 0. (In case you wonder,
the radius ’4’ of the ball is to avoid fractions. Most of our estimates will be of
the kind “some expression on B1 ≤ another expression on B4 ” and it would
be unconvenient to have things like 1/8 as a radius.)

It is clear that under these assumptions the equation (1) does not make
sense, for the aij need not be differentiable. In fact, we shall use it as an
abbreviation and really talk about so called weak solutions. Let us introduce
these terms. A function u ∈ H1(B4) is a weak solution to Lu = 0 if for all
φ ∈ H1

0 (B4), ∫
aijDjuDiφ = 0. (3)

Conventional or strong solutions are obviously weak solutions as well. The
notion of weak solutions has come up because it provides a good way of
attacking equations. The question of solvability splits in two parts—first,
show that a weak solution exists; second, find out how nice (continuous,
differentiable) solutions are. Besides, there are equations without strong
solutions.

A function u is called a subsolution if∫
aijDjuDiφ ≤ 0 (4)

holds for all φ ∈ H1
0 (B4) with φ ≥ 0. If the inequality in (4) is reversed, u is

a supersolution.
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Our purpose is to carry out part of the second step described above. We
will demonstrate that a weak solution of Lu = 0 is not just an element of
the Sobolev space H1(B4) but is in fact in Cα(B4), i.e., Hölder continuous
with some exponent α. Recall what this means: On a domain, a function u
is Hölder continuous with exponent α ∈ [0, 1] if it is continuous and

sup
x,y∈K

|u(x)− u(y)|
|x− y|α

< ∞

for every compact subset K of the domain.
Results of this kind can of course be obtained under different assump-

tions on the aij; the mildest ones are probably those stated above. That
solutions to more general second-order equations with bounded coefficients
aij are Hölder continuous was first proved by De Giorgi (1957, for the elliptic
case) and independently by Nash (1958, for the parabolic case). De Giorgi’s
arguments were then much simplified and extended by Moser (1960, 1961).

The methods used involve what are called a priori estimates. One assumes
that an equation has a weak solution, usually in some Sobolev space, and then
tries to obtain general estimates on the solution, as in the case of Theorem 1
below. That way, regularity is proved for whole classes of solutions, only from
the fact that they are solutions; one does not consider individual properties.
(Hence the word ’a priori’.)

One more word about notation. As usual, there are lots of constants.
Rather than lump them all together under one letter ’C’ we label them
successively by C1, C2, . . . so that one can work out the individual values if
needed. It is easier to check the dependence on the parameters that way.

1 Local Boundedness of Solutions

The first step in proving Hölder continuity is to show that solutions u to
Lu = 0 are locally bounded. This involves estimating the supremum of a
solution in terms of its L2-norm. But how in the world does one do that?
Because of the Sobolev inequality, u is in Lq for q = 2n/(n − 2). It turns
out that, u being a solution, these “gains” can be amplified by an iterative
procedure. The iteration used in the proof is due to Moser (and is named
after him).
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Theorem 1. Let u ∈ H1(B4) be a subsolution to the equation, i.e., assume
that u satisfies (3). Then there is a positive constant C4, depending only on
n and Λ/λ, such that

sup
B2

u+ ≤ C4‖u‖L2(B4).

Proof. Let us first give the general idea of the proof. By inserting a suitable
test function φ in the equation and playing around a bit, we can bound the
Lp1-norm of u in a smaller ball Br1 by the Lp2-norm in a larger ball Br2 ,
where p1 > p2 ≥ 2. In (13) below, we will have an estimate of the form

‖u+‖Lp1 (Br1 ) ≤ C‖u+‖Lp2 (Br2 ),

some kind of reversed Hölder inequality. We will iterate this, choosing ri and
pi carefully, to get our result.

To begin with, introduce the following two functions. For positive num-
bers k and m, set ū = k + u+ and

ūm =

{
ū if u < m

k + m if u ≥ m

The point is that ūm is still an element of H1(B4), but bounded from below
by k and from above by (k +m). Also note that Dūm = 0 whenever u < 0 or
u > m and that ūm = ū at all other points. The function ū is always positive
and Dū = Du if u ≥ 0. Both k and m are needed to make the argument
work; in the end, we will let k → 0+ and m → ∞, so that both ū and ūm

converge to u+.
We start from the fact that u is a subsolution. In the inequality (4),

we use a test function of the form φ = η2(ūβ
mū − kβ+1), where β ≥ 0 is

an arbitray real number and η ∈ C1
0(B4) a nonnegative cut-off function to

be chosen later on. This function φ is an element of H1
0 (B4) because ūm is

bounded; it is also nonnegative and can therefore be used as a test function.
An explicit calculation with the weak derivatives gives

Dφ = βη2ūβ−1
m Dūmū + Dūη2ūβ

m + 2ηDη(ūβ
mū− kβ+1)

= η2ūβ
m(βDūm + Dū) + 2ηDη(ūβ

mū− kβ+1),
(5)

where we used positivity of ūm and the fact that ū = ūm whenever Dūm 6= 0.
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Now insert this expression into the inequality (4) to obtain

0 ≥
∫

aijDjuDiφ

=

∫
aijDjūη2ūβ

m(βDiūm + Diū) + 2

∫
aijDjūDiηη(ūβ

mū− kβ+1)

≥
∫

η2ūβ
m

(
βλ|Dūm|2 + λ|Dū|2

)
− 2

∫
η
∣∣aijDjuDiη

∣∣∣∣ūβ
mū− kβ+1

∣∣.
(6)

Notice that Dφ = 0 whenever u < 0, so that all integrals are effectively over
the set {u ≥ 0} only. This allowed us to replace Dju by Djū, since the two
are equal if u ≥ 0. We also used the ellipticity condition (2) and the fact
that Diū = Diūm whenever the latter is nonzero.

Let us estimate the second integral. From Cauchy’s inequality,

2

∫
η
∣∣aijDjūDiη

∣∣∣∣ūβ
mū− kβ+1

∣∣ ≤ 2

∫
η · Λn|Dū||Dη| · |ūβ

mū− kβ+1|,

and since ūβ
mū− kβ+1 ≥ 0,

≤ 2nΛ

∫
η|Dū||Dη|ūβ

mū =

∫ (
|Dū|ηūβ/2

m

)(
2nΛ|Dη|ūūβ/2

m

)
.

Apply Young’s inequality
(
ab ≤ λ

2
a2 + 1

2λ
b2

)
to the two bracketed factors to

get

≤ λ

2

∫
|Dū|2η2ūβ

m +
2n2Λ2

λ

∫
|Dη|2ū2ūβ

m.

Combining this result with (6) and simplifying slightly, we obtain

β

∫
η2ūβ

m|Dūm|2 +

∫
η2ūβ

m|Dū|2 ≤ 4n2Λ2

λ2

∫
|Dη|2ū2ūβ

m

= C1

∫
|Dη|2ū2ūβ

m

(7)

where C1 = 4n2(Λ/λ)2.

We define an additional function w ∈ H1(B4) by w = ū
β/2
m ū. As before,

one calculates that Dw = ū
β/2
m (β/2 ·Dūm + Dū); therefore

|Dw|2 = ūβ
m

∣∣β
2
Dūm + Dū

∣∣2 = ūβ
m

(
β2

4
|Dūm|2 + βDūmDū + |Dū|2

)
= ūβ

m

(
β(β/4 + 1)|Dūm|2 + |Dū|2

)
≤ ūβ

m(β + 1)
(
β|Dūm|2 + |Dū|2

)
.

(8)
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In combination with (7), we have∫
|Dw|2η2 ≤ (β + 1)

(
β

∫
η2ūβ

m|Dūm|2 +

∫
η2ūβ

m|Dū|2
)

≤ (β + 1)C1

∫
|Dη|2w2

and so∫
|D(ηw)|2 ≤ 2

∫
|Dη|2w2 + |Dw|2η2 ≤ 2

(
1 + C1(β + 1)

) ∫
|Dη|2w2

≤ 4C1(β + 1)

∫
|Dη|2w2.

(9)

Remember that we want to estimate stronger Lp-norms by weaker ones.
Here is how we do it. From the Sobolev inequality, with χ = n/(n− 2) > 1
for n > 2 and any fixed χ > 2 for n = 2, we get(∫

(ηw)2χ

) 1
χ

≤ C(n)

∫
|D(ηw)|2 ≤ 4C1C(n)(β + 1)

∫
|Dη|2w2. (10)

Now choose a suitable cut-off function. For 0 < r < R ≤ 4, take η ∈ C1
0(B4)

with η ≡ 1 in Br and |Dη| ≤ 2/(R− r). Then(∫
Br

w2χ

) 1
χ

≤
(∫

(ηw)2χ

) 1
χ

≤ 4C1C(n)(β + 1)

∫
|Dη|2w2

≤ 16C1C(n)
(β + 1)

(R− r)2

∫
BR

w2 = C2
(β + 1)

(R− r)2

∫
BR

w2,

(11)

and, if we let γ = β + 2 ≥ 2, recall the definition of w and use that ūm ≤ ū,(∫
Br

ūγχ
m

) 1
χ

=

(∫
Br

ū2χūβχ
m

) 1
χ

=

(∫
Br

w2χ

) 1
χ

≤ C2
(β + 1)

(R− r)2

∫
BR

w2

≤ C2
(γ − 1)

(R− r)2

∫
BR

ū2ūβ
m ≤ C2

(γ − 1)

(R− r)2

∫
BR

ūγ.

(12)

Finally, let m →∞ and k → 0+ (use Fatou’s Lemma) to obtain the crucial
estimate

‖u+‖Lγχ(Br) ≤
(

C2
(γ − 1)

(R− r)2

) 1
γ

‖u+‖Lγ(BR). (13)
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Observe how the stronger Lγχ-norm is estimated by the weaker Lγ-norm. As
a trade-off, we have to increase the ball from Br to the larger BR. As we
said above, the two ingredients were the Sobolev inequality and the equation
itself.

The key observation is that (13) is valid for all 0 < r < R ≤ 4 and
for all γ ≥ 2. This suggests an iteration, taking successively the values
γ = 2, 2χ, 2χ2, . . . . Define, for all i = 0, 1, 2, . . . ,

γi = 2χi and ri = 2 +
1

2i−1
.

For any i ≥ 0, insert r = ri+1, R = ri and γ = γi into (13),

‖u+‖Lγi+1 (Bri+1 ) ≤
(

C2
(γi − 1)

(1/2i)2

) 1
γi

‖u+‖Lγi (Bri )
≤ C

i

χi

3 ‖u+‖Lγi (Bri )
.

C3 depends only on n and Λ/λ because χ is a function of n alone. By
iteration,

‖u+‖Lγi (Bri )
≤ C

P i

χi

3 ‖u+‖L2(B4) = C4‖u‖L2(B4),

valid for all i ≥ 1; since all ri are greater than 2, one arrives at

‖u+‖Lγi (B2) = C4‖u‖L2(B4).

Now let i →∞; this entails γi →∞ and gives us

sup
B2

u+ ≤ C4‖u‖L2(B4).

We have proved the estimate.

There are technical reasons for stating the theorem in terms of subsolu-
tions: this helps in the proofs of the next section. For solutions u of (3), we
can immediately derive a stronger result, namely boundedness on compact
subsets of B4.

Corollary 1. Let u ∈ H1(B4) be a weak solution to Lu = 0 in the ball B4.
Then u satisfies

‖u‖L∞(B2) ≤ C4‖u‖L2(B4)

with the same constant C4 as in Theorem 1. Moreover, u is bounded on each
compact subset K of B4.

6



Proof. If u is a solution to (3), then both u and (−u) are subsolutions. In
addition to the estimate in the theorem, we therefore have

sup
B2

u− ≤ C4‖u‖L2(B4).

If we combine the two, we get

‖u‖L∞(B2) ≤ C4‖u‖L2(B4). (14)

Now one quickly sees that u is bounded on each compact subset K. Con-
sider first the case of a ball Bs(a) contained in B4, with s > 0. If we define
v(x) = u(a + sx), v is an element of H1(B4), and by taking test functions
with support in Bs(a) in the original equation (3) and changing coordinates,
we see that v satisfies ∫

ãijDjvDiϕ = 0

for all ϕ ∈ H1
0 (B4), where ãij(x) = aij(a + sx). Inequality (14) above, when

applied to v, gives us

‖u‖L∞(Bs/2(a)) ≤
C4√

s
‖u‖L2(Bs(a)) ≤

C4√
s
‖u‖L2(B4).

An arbitrary compact subset K can be covered by finitely many open
balls B(ai, si/2) of positive radius si, such that B(ai, si) ⊂ B4. Then

‖u‖L∞(K) ≤ max
i
‖u‖L∞(Bsi/2(ai)) ≤ max

i

C4√
si

‖u‖L2(B4)

which is finite. Therefore u is bounded on K.
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2 Hölder Continuity of Solutions

In this section, we show that solutions to Lu = 0 are Hölder continuous. On
the way we meet with the very pretty Theorem 2 which gives a lower bound
on positive solutions. The following lemma on subsolutions and supersolu-
tions is helpful.

Lemma 1. Let Φ be a convex and locally Lipschitz continuous function on
some interval I.

1. If u is a subsolution with values in I and Φ′ ≥ 0, then v = Φ(u) is also
a subsolution, provided it is in H1

loc(B4).

2. If u is a supersolution with values in I and Φ′ ≤ 0, then v = Φ(u) is a
subsolution, provided it is in H1

loc(B4).

Proof. Let us prove the second statement only, since it is the one used in
Theorem 2 below (the first one is dealt with in an analogous manner). Since
C1

0 is dense in H1
0 , it is enough to consider test functions φ ∈ C1

0 . If one as-
sumes that Φ ∈ C2

loc(I), then Φ′(t) ≤ 0 and Φ′′(t) ≥ 0. Take any nonnegative
φ ∈ C1

0(B4). A direct calculation gives∫
aijDjvDiφ =

∫
aijΦ

′(u)DjuDiφ =

= −
∫

aijDjuDi(−Φ′(u)φ)−
∫

(aijDjuDiu)φΦ′′(u)

≤ −
∫

aijDjuDi(−Φ′(u)φ)− λ

∫
|Du|2φΦ′′(u) ≤ 0

because −Φ′(u)φ ∈ H1
0 (B4) is nonnegative. Therefore Φ(u) is a subsolution.

In general, let ρε be the standard mollifier and set Φε(t) = ρε∗Φ(t). Then
Φ′

ε(t) = ρε ∗ Φ′(t) ≤ 0 and Φ′′
ε(t) = ρε ∗ Φ′′(t) ≥ 0. By what we have just

proved, Φε(t) is a subsolution. Because Φ′
ε(t) → Φ′(t) a.e. as ε → 0+ and

because φ has compact support, the dominated convergence theorem implies
that

0 ≥
∫

aijΦ
′
ε(u)DjuDiφ →

∫
aijΦ

′(u)DjuDiφ =

∫
aijDjvDiφ,

which gives the result.
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We use this lemma in the following way. The function Φ(t) = (log t)− is
convex and satisfies local Lipschitz conditions on (0,∞). If u ∈ H1(B4) is a
positive supersolution to the equation, then Φ(u) = (log u)− is a subsolution,
provided it is still in H1

locB4, which is the case if, say, u is bounded from
below by a positive number.

The next two theorems show that solutions to the equation (3) cannot
oscillate too much. This is reminiscent of the behavior of harmonic functions,
for example of Harnack’s inequality for positive solutions to ∆u = 0 on a
domain Ω. It states that for any compact subset K of Ω, there is an absolute
constant, depending only on K and Ω, such that

sup
K

u ≤ C inf
K

u

holds for any positive harmonic function u on Ω.
But maybe these connections come as no surprise, for the Laplace equa-

tion is a special case of (1). In fact, Moser was able to prove an analogue
of Harnack’s inequality for weak solutions to (3). For more details, see [1],
Chapter 4.4.

Theorem 2 (Density Theorem). Suppose that u ∈ H1(B4) is a positive
supersolution with

m
(
{x ∈ B2 : u ≥ 1}

)
≥ εm

(
B2

)
for some ε > 0. Then there exists a constant C7 = C7(ε, n, Λ/λ) ∈ (0, 1)
such that

inf
B1

u ≥ C7.

Proof. Since one can always add a small constant to u, we can assume that
u ≥ δ > 0 (let δ → 0+ in the end). By Lemma 1, the function v = (log u)−

is a subsolution, bounded by log 1/δ. After a dilatation, Theorem 1 tells us
that

sup
B1

v ≤ C4√
2
‖v‖L2(B2).

Since m
(
{x ∈ B2 : v = 0}

)
= m

(
{x ∈ B2 : u ≥ 1}

)
≥ εm

(
B2

)
, one of the

versions of the Poincaré inequality (as discussed in class) implies

sup
B1

v ≤ C4C(ε, n)√
2

‖Dv‖L2(B2). (15)
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To show that the right-hand side is bounded, use a test function φ = ζ2/u
(with ζ ∈ C1

0(B2)),

0 ≤
∫

aijDjuDi

(
ζ2

u

)
= −

∫
ζ2aijDjuDiu

u2
+ 2

∫
ζaijDjuDiζ

u
.

From the ellipticity condition and Hölder inequality, one gets

λ

∫
ζ2|D log u|2 ≤ 2Λn

(∫
ζ2|D log u|2

) 1
2
(∫

|Dζ|2
) 1

2

,

which implies ∫
ζ2|D log u|2 ≤ 4Λ2n2

λ2

∫
|Dζ|2.

If we take a fixed ζ ∈ C1
0(B4) with ζ ≡ 1 in B2, we have∫
|D log u|2 ≤ 4Λ2n2

λ2

∫
|Dζ|2 = C5. (16)

where C5 is a constant depending on n and Λ/λ.
Along with (15) we obtain

sup
B1

v = sup
B1

(log u)− ≤ C4C(ε, n)√
2

C5 = C6,

which gives
inf
B1

u ≥ e−C6 = C7 > 0.

Theorem 3 (Oscillation Theorem). Suppose that u is a solution of Lu = 0
in B4. Then there exists a number γ = γ(n, Λ/λ) ∈ (1/2, 1) such that

osc
B 1

2

u ≤ γ osc
B2

u

Proof. In Corollary 1, it was shown that u is bounded on compact subsets
of B4. We may thus define

α1 = sup
B2

u and β1 = inf
B2

u
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as well as
α2 = sup

B 1
2

u and β2 = inf
B 1

2

u.

Excluding the trivial case of constant u, the two functions

u− β1

α1 − β1

and
α1 − u

α1 − β1

are positive solutions to the equation on B2. Note the following two equiva-
lences:

u ≥ 1

2
(α1 + β1) ⇐⇒

u− β1

α1 − β1

≥ 1

2

u ≤ 1

2
(α1 + β1) ⇐⇒

α1 − u

α1 − β1

≥ 1

2

Depending on whether u is ”generally big” or not, there are two possibilities.

Case 1. Suppose that

m
({

x ∈ B1 : 2
u− β1

α1 − β1

≥ 1

})
≥ 1

2
m

(
B1

)
.

Apply the Density Theorem (with ε = 1/2) to the function 2 u−β1

α1−β1
≥ 0, but

in B2 instead of in B4. For some constant C7 ∈ (0, 1), we have

inf
B 1

2

u− β1

α1 − β1

≥ C7

2

from which we obtain the estimate

β2 = inf
B 1

2

u ≥ β1 +
C7

2
(α1 − β1).

Case 2. Now suppose that

m
({

x ∈ B1 : 2
α1 − u

α1 − β1

≥ 1

})
≥ 1

2
m

(
B1

)
.

Here, the result is

α2 = sup
B 1

2

u ≤ α1 −
C7

2
(α1 − β1).
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with the same constant C7.
Since clearly β2 ≥ β1 and α2 ≤ α1, we have in both cases

α2 − β2 ≤
(

1− C7

2

)
(α1 − β1),

which is our inequality with γ = 1− C7/2.

After all that work, we are now able to come to the following, triumphant
conclusion (called De Giorgi’s theorem).

Theorem 4. Suppose that u ∈ H1(B4) is a weak solution of the equation
Lu = 0 in B4. Then there holds

sup
x∈B2

|u(x)|+ sup
x,y∈B2

|u(x)− u(y)|
|x− y|α

≤ C8(n, Λ/λ)‖u‖L2(B4)

with some real number α = α(n, Λ/λ) ∈ (0, 1). Moreover, u ∈ Cα(B4).

Proof. One half of the estimate, namely

sup
x∈B2

|u(x)| ≤ C4(n, Λ/λ)‖u‖L2(B4), (17)

is given by Theorem 1.
For the second half, fix two arbitray distinct points x, y ∈ B2 and set

r = |x− y|. For some n ≥ 0, we have 4−n+1 > r ≥ 4−n. Let us first consider
the interesting case n > 0. By applying the oscillation theorem several times
on suitable dilates of u, we obtain

osc
Br(x)

u ≤ γn−1 osc
B4n−1r(x)

u ≤ γn−12C4‖u‖L2(B4),

invoking Theorem 1 in the last step. In particular,

|u(x)− u(y)| ≤ γn−12C4‖u‖L2(B4).

Now r ≥ 4−n and so rα ≥ 4−nα for any α ∈ (0, 1). We get

|u(x)− u(y)|
|x− y|α

≤ γn−14nα2C4‖u‖L2(B4) ≤ 8C4(4
αγ)n−1‖u‖L2(B4).

Take α such that 4αγ = 1; since γ ∈ (1/2, 1), α actually falls in the range
(0, 1/2).
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The case n = 0 is somewhat easier. Because r ≥ 1, we directly conclude
that

|u(x)− u(y)|
|x− y|α

≤ 2C4‖u‖L2(B4).

We see that the choice C8 = 8C4 gives the inequality in the theorem.
To prove that u is an element of Cα(B4), that is to say, Hölder continuous

on each compact subset of B4, one can proceed in exactly the same way as
in Corollary 1. We omit this argument.
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