
Lecture 1: January 28

Overview. The purpose of this course is to give an introduction to the theory of
algebraic D-modules. I plan to cover roughly the following topics:

– modules over the Weyl algebra An
– D-modules on smooth algebraic varieties
– functors on D-modules (and how they relate to PDE)
– holonomic D-modules, regularity (with a focus on what it means)
– b-functions, localization along a hypersurface
– D-modules of normal crossing type (as a class of examples)
– Riemann-Hilbert correspondence (with proofs in the normal crossing case)
– some applications, either to representation theory or to algebraic geometry

The website for the course,

http://www.math.stonybrook.edu/~cschnell/mat615,

contains a list of useful references.

Introduction. Very briefly, D-modules were invented in Japan (by Mikio Sato,
Masaki Kashiwara, and others) and France (by Alexander Grothendieck, Zogman
Mebkhout, and others). It has its origins in the field of “algebraic analysis”, which
means the study of partial differential equations with algebraic tools. The theory
of algebraic D-modules was further developed by Joseph Bernstein.

Systems of linear equations. D-modules arise naturally from systems of linear
partial differential equations. To get a better understanding of how this works, let
us first look at the example of a system of linear equations

(1.1)

q∑
j=1

ai,jxj = 0, i = 1, . . . , p,

with coefficients ai,j in a field K (such as R or C). In linear algebra, one usually
transforms such a system in various ways, for example by making a substitution in
the unknowns x1, . . . , xq, or by taking linear combinations of the equations. One
can associate to the system in (1.1) a single K-vector space that is invariant under
such transformations. Consider the linear mapping

ϕ : Kp → Kq, ϕ(y1, . . . , yp) =

(
p∑
i=1

yiai,1, . . . ,

p∑
i=1

yiai,q

)
,

built from the coefficient matrix of the system in (1.1), and define the K-vector
space V = kerϕ = Kq/ϕ(Kp). It sits in the exact sequence

Kp Kq V 0,
ϕ π

and the solution space to (1.1) can be recovered from V as

HomK(V,K) =
{
f : Kq → K

∣∣ f ◦ ϕ = 0
}
.

Indeed, a linear mapping from V to K is the same thing as a linear mapping
f : Kq → K whose composition with ϕ is equal to zero.

Kp Kq V

K

ϕ

0

π

f

1

http://www.math.stonybrook.edu/~cschnell/mat615
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Now f is uniquely determined by the q scalars xj = f(ej) ∈ K, where ej denotes
the j-th coordinate vector in Kq. Since f ◦ ϕ = 0, we get∑

i,j

yiai,jxj = 0

for every (y1, . . . , yp) ∈ Kp. This means exactly that (x1, . . . , xq) ∈ Kq is a solution
to the system of linear equations in (1.1).

The same construction can be applied to systems of linear equations with coef-
ficients in other rings. For example, let R = K[x1, . . . , xn] be the polynomial ring
in n variables, and consider the system of linear equations

(1.2)

q∑
j=1

fi,juj = 0, i = 1, . . . , p,

with polynomial coefficients fi,j ∈ R. As before, we can associate to the system an
R-module M = cokerϕ, defined as the cokernel of the morphism of R-modules

ϕ : Rp → Rq, ϕ(v1, . . . , vp) =

(
p∑
i=1

vifi,1, . . . ,

p∑
i=1

vifi,q

)
,

and the space of solutions (u1, . . . , uq) ∈ Rq to the system in (1.2) can be recov-
ered from M as HomR(M,R). This formulation has the advantage that we can
describe solutions over other R-algebras S, such as the ring of formal power series
K[[x1, . . . , xn]], in the same way, by taking HomR(M,S).

Note. The polynomial ring R is noetherian, meaning that every ideal of R is finitely
generated. This implies that every submodule of a finitely generated R-module
is again finitely generated. In particular, every finitely generated R-module is
isomorphic to the cokernel of ϕ : Rp → Rq for some p, q ∈ N. Studying systems
of linear equations with coefficients in R is therefore the same thing as studying
finitely generated R-modules.

Systems of linear partial differential equations. We now apply the same
construction to systems of linear partial differential equations with coefficients in
the polynomial ring. The role of the polynomial ring R = K[x1, . . . , xn] is played
by the Weyl algebra An = An(K). The elements of An are linear partial differential
operators of the form

P =
∑

i1,...,in

fi1,...,in(x1, . . . , xn)
∂i1

∂xi11
· · · ∂

in

∂xinn
,

where fi1,...,in ∈ R, and the sum is finite. To simplify the notation, we put ∂j =
∂/∂xj , and write the above sum in multi-index notation as

P =
∑
α,β

cα,βx
α∂β ,

where xα = xα1
1 · · ·xαnn , and ∂β = ∂β1

1 · · · ∂βnn . We can multiply two differential
operators in the obvious way, using the relations

(1.3) [xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δi,j ,

where δi,j = 1 if i = j, and δi,j = 0 otherwise. The relation [∂i, ∂j ] = 0 expresses
the equality of mixed partial derivatives; the relation [∂i, xj ] = δi,j is a consequence
of the product rule:

∂

∂xi
(xjf) =

∂xj
∂xi

f + xj
∂f

∂xj
= δi,jf + xj

∂

∂xi
f
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Multiplication of differential operators turns An into a non-commutative ring. Dif-
ferential operators naturally act on polynomials, by the usual (algebraic) rules for
computing derivatives of polynomials; if we denote the action of a differential op-
erator P on a polynomial f by the symbol Pf , we obtain a linear mapping

An ×R→ R, (P, f) 7→ Pf.

This makes the polynomial ring R into a left module over the Weyl algebra An.
The action on polynomials leads to the following more intrinsic description of

the Weyl algebra: An is the smallest subring of the ring of K-linear endomorphisms

HomK

(
K[x1, . . . , xn],K[x1, . . . , xn]

)
that contains K[x1, . . . , xn] and the partial derivative operators ∂1, . . . , ∂n. Alge-
braically, one can also describe the Weyl algebra by generators and relations: An is
the non-commutative K-algebra generated by the 2n symbols x1, . . . , xn, ∂1, . . . , ∂n,
subject to the relations in (1.3).

Now suppose that we have a system of linear partial differential equations

(1.4)

q∑
j=1

Pi,juj = 0, i = 1, . . . , p,

with differential operators Pi,j ∈ An. As before, we consider the morphism of left
An-modules

ϕ : Apn → Aqn, ϕ(Q1, . . . , Qp) =

(
p∑
i=1

QiPi,1, . . . ,

p∑
i=1

QiPi,q

)
,

and associate to the system in (1.4) the left An-module

M = cokerϕ = Aqn/ϕ(Apn).

Note that it becomes necessary to distinguish between left and right An-modules,
because An is non-commutative. We can again recover the solutions to the system
in (1.4) directly from M , as follows. Let S be any commutative K-algebra with
an action by differential operators, meaning that S is a left An-module. Exam-
ples are the polynomial ring R = K[x1, . . . , xn], the ring of formal power series
K[[x1, . . . , xn]], etc. For K = R or K = C, we might also be interested in the ring
of convergent power series, the ring of C∞-functions, etc. In any of these examples,
the solutions in S are given by the formula

HomAn(M,S) =
{
f : Aqn → S

∣∣ f ◦ ϕ = 0
}

Indeed, a morphism of leftAn-modules fromM to S is the same thing as a morphism
of left An-modules f : Aqn → An whose composition with ϕ is equal to zero.

Apn Aqn M

S

ϕ

0

π

f

Once again, f is uniquely determined by the q functions uj = f(ej) ∈ S, where ej
denotes the j-th coordinate vector in Aqn. Since f ◦ ϕ = 0, we get∑

i,j

QiPi,juj = 0

for every (Q1, . . . , Qp) ∈ Apn, and so (u1, . . . , uq) ∈ Sq solves the system of linear
partial differential equations in (1.4).
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Note. The Weyl algebra An is again left noetherian, meaning that every left ideal
of An is finitely generated. (We will prove this next time.) This implies that
every submodule of a finitely generated left An-module is again finitely generated.
Studying systems of linear partial differential equations with coefficients in R is
therefore the same thing as studying finitely generated left An-modules.

One advantage of this point of view is that we can describe the solutions to
the system in a uniform way, by applying the solution functor HomAn(M,−). We
shall see later on that the solution functor is not exact (in the sense of homological
algebra), and that it is natural to consider its derived functors. We shall also see
that for so-called “regular holonomic” systems, one can recover the system up to
isomorphism from its solutions (in the derived sense); this is the content of the
famous Riemann-Hilbert correspondence.

Example 1.5. The exponential function u = ex solves the ordinary differential
equation u′ = u, which we can write in the form (∂−1)u = 0. The corresponding left
A1-module is A1/A1(∂ − 1). The function v = e1/x solves the ordinary differential
equation −x2v′ = v, whose associated A1-module is A1/A1(x2∂ + 1). Later on,
when we discuss regularity, we shall see how the essential singularity of v at the
point x = 0 affects the properties of the A1-module A1/A1(x2∂ + 1).

Another advantage is that we can transform the system in (1.4) without changing
the isomorphism class of the An-module M .

Example 1.6. Consider the second-order equation a(x)u′′ + b(x)u′ + c(x)u = 0,
where a, b, c ∈ K[x]. A standard trick is to transform this into a system of two
first-order equations u′1 − u2 = 0 and au′2 + bu2 + cu1 = 0, by setting u1 = u and
u2 = u′. The first-order system leads to the left A1-module

M1 = coker

(
A2

1

(
∂ −1
c a∂+b

)
−−−−−−−→ A2

1

)
and the second-order system to the left A1-module

M2 = A1/A1(a∂2 + b∂ + c)

Can you find an isomorphism between M1 and M2 as left A1-modules?

Left and right An-modules. I already mentioned that it is necessary to distin-
guish between leftAn-modules and rightAn-modules, due to the non-commutativity
of the Weyl algebra. Left An-modules naturally arise from functions, whereas right
An-modules arise naturally from distributions. Let us look at the example of dis-
tributions in more detail. The R-algebra C∞0 (Rn) of all compactly supported C∞-
functions on Rn is naturally a left An(R)-module; as before, we denote the action
of a differential operator P ∈ An on a test function ϕ ∈ C∞0 (Rn) by the symbol
Pϕ. With the topology of uniform convergence of all derivatives on compact sub-
sets, C∞0 (Rn) becomes a topological R-vector space, and we denote by Db(Rn) its
topological dual. In other words, a distribution D ∈ Db(Rn) is a continuous linear
functional from C∞0 (Rn) to R. We write the natural pairing between distributions
and test functions as

Db(Rn)× C∞0 (Rn)→ R, (D,ϕ) 7→ 〈D,ϕ〉.

In analysis, it is also common to use the more suggestive notation

〈D,ϕ〉 =

∫
Rn
Dϕdµ,
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where dµ is Lebesgue measure. Using formal integration by parts, Db(Rn) naturally
becomes a right An-module, by defining

〈DP,ϕ〉 = 〈D,Pϕ〉
for D ∈ Db(Rn), P ∈ An, and ϕ ∈ C∞0 (Rn). For example, D∂j is the distribution
obtained by applying D to the test function ∂ϕ/∂xj . If we take any distribution,
and act on it by differential operators, we obtain a right An-module inside Db(Rn).

Example 1.7. Consider the delta function δ0 ∈ Db(Rn), defined by 〈δ0, ϕ〉 = ϕ(0).
Clearly, δ0x1 = · · · = δ0xn = 0, and in fact, one can show that the right An-module
generated by δ0 is isomorphic to

An/(x1, . . . , xn)An.

As an R-vector space, this is just R[∂1, . . . , ∂n], but the An-action is nontrivial.

Exercises.

Exercise 1.1. Construct an isomorphism between the two left A1-modules M1 and
M2 in Example 1.6.

Exercise 1.2. Show that if P ∈ An(R) satisfies (Pϕ)(0) = 0 for every test function
ϕ ∈ C∞0 (Rn), then P ∈ (x1, . . . , xn)An.
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Lecture 2: January 30

Recall that the Weyl algebra An = An(K) is generated by x1, . . . , xn, ∂1, . . . , ∂n,
subject to the relations

[xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δi,j ,

Today, we begin studying An-modules in detail. One interesting difference between
modules over An and modules over the polynomial ring R = K[x1, . . . , xn] is the
absence of nilpotents.

Example 2.1. As a K[x]-module, K[x]/(x2) is not isomorphic to two copies of K,
because the action by x is nilpotent but not trivial. On the other hand, it is a fun
exercise to show that the left A1-module A1/A1x

2 is actually isomorphic to two
copies of A1/A1x.

Left and right An-modules. The crucial difference between the Weyl algebra and
the polynomial ring is that An(K) is non-commutative. This means that we need
to distinguish between left and right An-modules. In fact, there are no interesting
two-sided An-modules.

Proposition 2.2. An(K) is a simple algebra, meaning that the only two-sided
ideals of An(K) are the zero ideal and An(K).

Proof. This follows from the commutator relations in An. We can write any P ∈ An
in multi-index notation as

P =
∑
α,β

cα,βx
α∂β .

One can easily show by induction that

[∂j , x
α∂β ] = αjx

α−ej∂β and [xj , x
α∂β ] = −βjxα∂β−ej ,

where ej ∈ Nn is the j-th coordinate vector. Now suppose that I ⊆ An is a nonzero
two-sided ideal. Choose any nonzero P ∈ I, and write it as P =

∑
cα,βx

α∂β . Let

m = max
{
α1

∣∣ cα,β 6= 0
}

be the largest power of x1 that appears in P . If m ≥ 1, then by the formulas from
above, the commutator

[∂1, P ] = ∂1P − P∂1

is nonzero, and the maximal power of x1 that appears is now m− 1. Because I is
a two-sided ideal, we still have [∂1, P ] ∈ I. After repeating this operation m times,
we obtain a nonzero element P1 ∈ I in which x1 does not appear. Continuing
in this way, we can successively eliminate x1, . . . , xn by taking commutators with
∂1, . . . , ∂n, and then eliminate ∂1, . . . , ∂n by taking commutators with x1, . . . , xn,
until we arrive at a non-zero constant contained in I. But then I = An(K). �

For reasons of notation, we usually work with left An-modules. This is no loss
of generality, because one can convert left modules into right modules and vice
versa. Before I explain this, let me first show you how to describe left (or right)
An-modules in very simple terms.

Example 2.3. A left An-module is the same thing as a K[x1, . . . , xn]-module M , to-
gether with a family of commutingK-linear endomorphisms d1, . . . , dn ∈ EndK(M),
subject to the condition that

di(xjm)− xjdi(m) = δi,jm

for every m ∈M and every i, j = 1, . . . , n. From this data, we can reconstruct the
left An-module structure using the generators and relations for the Weyl algebra.
Indeed, if we define ∂jm = dj(m) for m ∈M , then the condition on d1, . . . , dn says
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exactly that [∂i, ∂j ] and [∂i, xj ] − δi,j act trivially on M , and so we obtain a left
An-module.

Example 2.4. A right An-module is a K[x1, . . . , xn]-module M , together with a
family of commuting K-linear endomorphisms d1, . . . , dn ∈ EndK(M), such that

di(xjm)− xjdi(m) = −δi,jm

for every m ∈ M and every i, j = 1, . . . , n. From this data, we can reconstruct
the right An-module structure by setting m∂j = dj(m) for m ∈M . As before, the
condition on d1, . . . , dn says that [∂i, ∂j ] and [∂i, xj ] − δi,j act trivially on M , and
so we obtain a right An-module.

Since the only difference in the two descriptions is the minus sign, we can easily
convert left An-modules into right An-modules (and back) by changing the sign.

Example 2.5. Suppose that M is a left An-module. Define d1, . . . , dn ∈ EndK(M)
by setting di(m) = −∂im for m ∈M . The sign change means that

di(xjm)− xjdi(m) = −∂i(xjm) + xj∂im = −[∂i, xj ] = −δi,jm,

and so this defines a right An-module structure on M . Concretely, a differential
operator P =

∑
cα,βx

α∂β now acts on an element m ∈M as

mP = σ(P )m,

where σ(P ) =
∑

(−1)|β|cα,βx
α∂β and |β| = β1 + · · ·+ βn. The resulting involution

σ : An → An also swaps the left and right module structure on An itself.

Filtrations on algebras. Recall that the order of a partial differential operator
P =

∑
cα,βx

α∂β ∈ An(K) is the maximal number of partial derivatives that appear
in P ; in symbols,

ord(P ) = max
{
β1 + · · ·+ βn

∣∣ cα,β 6= 0
}

Because of the relation [∂i, xi] = δi,j , the commutator between a differential opera-
tor of order d and a differential operator of order e is a differential operator of order
at most d+ e− 1. In this sense, the Weyl algebra is only mildly non-commutative.
In fact, An is an example of a filtered algebra, in the following sense.

Definition 2.6. Let R be a K-algebra, not necessarily commutative. A filtration
F• = F•R on R is a sequence of linear subspaces

{0} = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ R,

such that Fj · Fk ⊆ Fj+k and R =
⋃
Fk.

In particular, F0R is a subalgebra of R, and each FkR is a left (and right) module
over F0R. In many cases of interest, the FkR are finitely generated as F0R-modules.

Example 2.7. The order filtration on An is defined by

F ord
j An =

{
P =

∑
cα,βx

α∂β
∣∣∣ ord(P ) = |β| ≤ j

}
In this case, F ord

0 An = K[x1, . . . , xn], and each F ord
j An is a finitely generated

K[x1, . . . , xn]-module. Note that we have F ord
j · F ord

k = F ord
j+k for every j, k ≥ 0.

Example 2.8. The Bernstein filtration on An is defined by

FBj An =
{
P =

∑
cα,βx

α∂β
∣∣∣ |α|+ |β| ≤ j }.

In this case, FB0 An = K, and each FBj An is a K-vector space of finite dimension.

Note that we have FBj · FBk = FBj+k for every j, k ≥ 0.
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The advantage of the Bernstein filtration is that each FBj is finite dimensional.
The advantage of the order filtration is that it generalizes to the case of D-modules
on arbitrary smooth algebraic varieties (whereas the Bernstein filtration only makes
sense on affine space).

Definition 2.9. Given a filtration F•R on a K-algebra R, the associated graded
algebra is defined as

grF R =

∞⊕
j=0

Fj/Fj−1.

It inherits a multiplication from R in the natural way: for r ∈ Fj and s ∈ Fk, the
product (r + Fj−1) · (s+ Fk−1) = rs+ Fj+k−1 is well-defined.

For both the order filtration and the Bernstein filtration, the associated graded
algebra of An is simply the polynomial ring in 2n variables. In particular, the
associated graded algebra is commutative.

Proposition 2.10. Let An = An(K).

(a) If F•An is the Bernstein filtration, then

grFAn ∼= K[x1, . . . , xn, ∂1, . . . , ∂n],

with the usual grading by the total degree in x1, . . . , xn, ∂1, . . . , ∂n.
(b) If F•An is the order filtration, then

grFAn ∼= K[x1, . . . , xn, ∂1, . . . , ∂n],

with the grading by the total degree in ∂1, . . . , ∂n.

Proof. We prove this only for the Bernstein filtration, the other case being similar.
From the definition of the Bernstein filtration as

Fj =
{
P =

∑
cα,βx

α∂β
∣∣∣ |α|+ |β| ≤ j },

it is obvious that x1, . . . , xn, ∂1, . . . , ∂n ∈ F1. For clarity, we use x̄1, . . . , x̄n, ∂̄1, . . . , ∂̄n
to denote their images in F1/F0. It is also obvious that Fj/Fj−1 is generated by all
monomials of degree j in x̄1, . . . , x̄n, ∂̄1, . . . , ∂̄n. It remains to analyze the relations.
Obviously, x̄1, . . . , x̄n commute, and ∂̄1, . . . , ∂̄n commute. Since

∂ixj − xj∂i = [∂i, xj ] = δi,j ∈ F0,

we have ∂̄ix̄j − x̄j ∂̄i = 0 as elements of F2/F1. Therefore, all 2n elements commute
with each other; as there are no further relations, we obtain the desired isomorphism
with the polynomial ring. �

Filtrations on An-modules. For the time being, we only consider leftAn-modules.
Let F•An be either the Bernstein filtration or the order filtration.

Definition 2.11. Let M be a left An-module. A compatible filtration F•M on M
is a sequence of linear subspaces

{0}F−1M ⊆ F0M ⊆ F1M ⊆ · · · ⊆M,

with FjAn · FkM ⊆ Fj+kM and M =
⋃
FkM , such that each FkM is finitely

generated as an F0An-module.

Given a compatible filtration on M , one forms the associated graded module

grFM =

∞⊕
k=0

FkM/Fk−1M,

which again inherits the structure of a graded module over grFAn by defining
(r + Fj−1An) · (m+ Fk−1M) = rm+ Fj+k−1M . Since grFAn is a polynomial ring
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in 2n-variables, this puts us back in the world of commutative algebra. At least for
finitely generated modules, one can use this device to transfer properties of modules
over the polynomial ring to modules over the Weyl algebra.

Definition 2.12. A compatible filtration F•M is called good if grFM is finitely
generated over grFAn.

The following proposition gives a useful necessary and sufficient criterion for a
filtration to be good.

Proposition 2.13. Let M be a left An-module. A compatible filtration F•M is
good if, and only if, there exists j0 ≥ 0 such that FiAn · FjM = Fi+jM for every
i ≥ 0 and every j ≥ j0.

Proof. To simplify the notation, we put

grFj An = FjAn/Fj−1An and grFkM = FkM/Fk−1M.

Let us first prove that the condition is sufficient. Taking j = j0 and i = j − j0, we
see that FjM = Fj−j0An ·Fj0M for every j ≥ j0. This implies almost immediately
that grFM is generated, over grFAn, by the direct sum of all grFj M with j ≤ j0.

Now each FjM is finitely generated over F0An, which means that grFj M is finitely

generated over grF0 An. In total, we therefore get a finite number of elements that
generate grFM as a grFAn-module.

The more interesting part is to show that the condition is sufficient. Here it is
enough to prove the existence of an integer j0 ≥ 0 such that FjM = Fj−j0An ·Fj0M
for every j ≥ j0; the general case follows from this by induction on j ≥ j0. Since
everything is graded, the fact that grFM is finitely generated over grFAn implies
that it can be generated by finitely many homogeneous elements; let j0 be the
maximum of their degrees. For every j ≥ j0, we then have

grFj M =

j0∑
i=0

grFj−iAn · grFi M,

which translates into the relation

FjM = Fj−1M +

j0∑
i=0

Fj−iAn · FiM = Fj−1M + Fj−j0An · Fj0M,

using the fact that Fj−iAn = Fj−j0An · Fj0−iAn. At this point, we can prove the
desired equality FjM = Fj−j0An · Fj0M by induction on j ≥ j0. �

We can now show that the existence of a good filtration characterizes finitely
generated An-modules.

Corollary 2.14. Let M be a left An-module. Then M admits a good filtration if,
and only if, it is finitely generated over An.

Proof. Suppose thatM is generated, overAn, by finitely many elementsm1, . . . ,mk.
Then we can define a compatible filtration F•M by setting

FjM = FjAn ·m1 + · · ·+ FjAn ·mk.

Note that each FjM is finitely generated over F0An, due to the fact that FjAn is
finitely generated over F0An. With this definition, we have FjM = FjAn ·F0M for
every j ≥ 0, and therefore the filtration is good by Proposition 2.13.

Conversely, suppose that M admits a good filtration F•M . By Proposition 2.13,
there is an integer j0 ≥ 0 such that FjM = Fj−j0An ·Fj0M for every j ≥ j0. Since
M =

⋃
FjM , and since Fj0M is finitely generated over F0An, it follows pretty

directly that M is finitely generated over An. �
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The following result is useful for comparing different good filtrations.

Corollary 2.15. Let M be a left An-module with a good filtration F•M . Then for
every compatible filtration G•M , there exists some j1 ≥ 0 such that FjM ⊆ Gj+j1M
for all j ≥ 0.

Proof. As before, choose j0 ≥ 0 with the property that FjM = Fj−j0An ·Fj0M for
every j ≥ j0. Since Fj0M is finitely generated over the commutative noetherian
ring F0An, and since G•M is an exhaustive filtration of M by finitely generated
F0An-modules, there is some j1 ≥ 0 such that Fj0M ⊆ Gj1M . But then

FjM ⊆ Fj+j0M = FjAn · Fj0M ⊆ FjAn ·Gj1M ⊆ Gj+j1M,

as claimed. �

Let us conclude the discussion of good filtrations by proving that the Weyl al-
gebra is left noetherian. Notice how, during the proof, passing to the associated
graded algebra/module allows us to transfer the noetherian property from the com-
mutative ring grFAn to the non-commutative ring An.

Proposition 2.16. Let M be a finitely generated left An-module. Then every sub-
module of M is again finitely generated. In particular, An itself is left noetherian.

Proof. Let N ⊆M be a left An-submodule. Since M is finitely generated, it admits
a good filtration F•M . If we define

FjN = N ∩ FjM,

then it is easy to see that FiAn · FjN ⊆ Fi+jN . Moreover, each FjN is finitely
generated over F0An: this follows from the fact that FjM is finitely generated
over F0An because F0An is commutative and noetherian. Therefore F•N is a good
filtration. By construction, we have

grFj N ⊆ grFj M,

which says that grFN is a submodule of grFM . Since the original filtration was
good, grFM is a finitely generated module over the commutative noetherian ring
grFAn, and so grFN is also finitely generated over grFAn. This proves that N is
finitely generated over An. �

Exercises.

Exercise 2.1. Consider the left A1-module M = A1/A1x. As a K-vector space, M
is isomorphic to K[∂]. Write down a formula for the resulting A1-action on K[∂].

Exercise 2.2. Show that the left A1-module A1/A1x
2 is isomorphic to the direct

sum of two copies of A1/A1x.

Exercise 2.3. M = K[x, x−1] is a left A1-module, with the usual differentiation rule
∂ · xk = kxk−1. Show that M is generated, as an A1-module, by x−1. What does
the associated graded module for the good filtration FjM = FjA1 · x−1 look like?
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Lecture 3: February 11

Dimension and multiplicity. We are going to introduce two important invari-
ants of modules over the Weyl algebra, namely dimension and multiplicity. They
are defined using good filtrations. For this, we need to work with the Bernstein fil-
tration on An, so in today’s lecture, F•An = FB• An will always mean the Bernstein
filtration. Recall that each FBj An has finite dimension over K.

Let M be a finitely generated An-module, where An = An(K) and K is a field.
Choose a good filtration F•M on M , compatible with the Bernstein filtration F•An.
We saw last time that the existence of such a filtration is equivalent to M being
finitely generated. Since F0An = K, each subspace FjM in the good filtration is a
K-vector space of finite dimension. Consider its dimension

dimK FjM =

j∑
i=0

dimK FiM/Fi−1M

as a function of j ≥ 0. Here are some examples:

(1) For M = An with the Bernstein filtration, we have

FjAn =
{∑

cα,βx
α∂β

∣∣ |α|+ |β| ≤ j }
and therefore

dimFjAn =

(
2n+ j

2n

)
=

1

(2n)!
j2n + · · ·

is a polynomial of degree 2n in the variable j, at least for j ≥ 0.
(2) For M = K[x1, . . . , xn], with the usual filtration by degree, we have

dimFjM =

(
n+ j

n

)
=

1

n!
jn + · · ·

is a polynomial of degree n in the variable j.
(3) Consider M = An/An(x1, . . . , xn), with the filtration induced by the Bern-

stein filtration onAn. As aK-vector space, M is isomorphic toK[∂1, . . . , ∂n],
and the filtration is just the filtration by degree. So again,

dimFjM =

(
n+ j

n

)
=

1

n!
jn + · · ·

(4) Consider the A1-module M = K[x, x−1], with the filtration FjM = FjAn ·
x−1. Clearly, F0M is spanned by x−1, and it is easy to see that FjM is
spanned by xj−1, xj−2, . . . , x−j−1 for every j ≥ 0. So

dimFjM = 2j + 1

for j ≥ 0, which is again a polynomial of degree 1.

In fact, at least for sufficiently large values of j, the function dimK FjM always
grows like a polynomial.

Proposition 3.1. There is a polynomial χ(M,F•M, t) ∈ Q[t], called the Hilbert
polynomial of (M,F•M), with the property that

dimK FjM = χ(M,F•M, j)

for all sufficiently large values of j.

Proof. The point is that grFAn is a polynomial ring in 2n variables, and so we
can use the theory of Hilbert functions for finitely generated modules over the
polynomial ring. (This is explained very well in Eisenbud’s book Commutative
Algebra.) Let me sketch the proof. Set S = grFAn, and recall that this is isomorphic
to the polynomial ring in 2n variables, with the usual grading by degree. The fact
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that F•M is a good filtration means that grFM is a finitely generated graded S-
module. By Hilbert’s syzygy theorem, every finitely generated graded S-module
admits a finite resolution by graded free S-modules; the length of such a resolution
is at most the number of variables in the polynomial ring, so 2n in our case. Choose
such a resolution

0→ E2n → E2n−1 → · · · → E1 → E0 → grFM → 0.

Denoting by S(q) the graded S-module with S(q)i = Sq+i, we have

Ep =
⊕
q∈N

S(−q)⊕bp,q

for certain natural numbers bp,q ∈ N, all but finitely many of which are of course
zero. By counting monomials, we have

dimSi =

(
i+ 2n− 1

2n− 1

)
for i ≥ 0, and so if we take dimensions in the resolution from above, we get

dimFiM/Fi−1M =

2n∑
p=0

(−1)p
∑
q

bp,q dimSi−q =

2n∑
p=0

(−1)p
∑
q

bp,q

(
i− q + 2n− 1

2n− 1

)
.

At least for i � 0, this is a polynomial of degree at most 2n − 1 in the variable i,
whose coefficients are rational numbers. It follows that

dimFjM =

j∑
i=0

dimFiM/Fi−1M

is a polynomial of degree at most 2n in the variable j, at least for j � 0. �

If M 6= 0, then the Hilbert polynomial is not the zero polynomial; let d ≥ 0 be
its degree. The proof shows that d ≤ 2n. Since dimFjM is of course always a non-
negative integer, it is not hard to see that the leading coefficient of the polynomial
χ(M,F•M, t) must be of the form

m

d!

for some integer m ≥ 1. (See the exercises.) Both d and m are actually invariants
of the module M itself.

Lemma 3.2. The two numbers d and m only depend on M , but they do not depend
on the choice of good filtration on M .

Proof. Let χF (t) = χ(M,F•M, t) be the Hilbert polynomial for the good filtra-
tion F•M . Suppose that G•M is another good filtration, with Hilbert polynomial
χG(t) = χ(M,G•M, t). By Corollary 2.15, there is an integer k ≥ 0 such that

Fj−kM ⊆ GjM ⊆ Fj+kM

for every j ≥ 0. This gives

dimFj−kM ≤ dimGjM ≤ dimFj+kM,

and therefore we obtain the inequality

χF (t− k) ≤ χG(t) ≤ χF (t+ k)

for the Hilbert polynomials. Since χF (t±k) has the same leading term as χF (t), it
follows that χG(t) is also a polynomial of degree d with leading coefficient m/d!. �
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The number d = d(M) is called the dimension of the An-module M , and the
number m = m(M) is called the multiplicity. As long as M 6= 0, we have d(M) ≥ 0
and m(M) ≥ 1. If M = 0, we use the convention that m(M) = 0. We will see later
what the geometric significance of these two numbers is. Going back to the four
examples from above, we see that An has dimension 2n and multiplicity 1; both
K[x1, . . . , xn] and An/An(x1, . . . , xn) have dimension n and multiplicity 1; and the
A1-module K[x, x−1] has dimension 1 and multiplicity 2.

Let us investigate the behavior of dimension and multiplicity for submodules and
quotient modules. Recall that a short exact sequence of An-modules

0→M ′ →M →M ′′ → 0

means that M ′ is a submodule of M , and that M ′′ is isomorphic to the quotient
module M/M ′. Given a filtration F•M , we can induce filtrations on M ′ and M ′′

by setting

FjM
′ = M ′ ∩ FjM and FjM

′′ = im(FjM →M ′′).

With this definition, the associated graded modules form a short exact sequence

0→ grFM ′ → grFM → grFM ′′ → 0,

now in the category of grFAn-modules.

Proposition 3.3. Let M be a finitely generated An-module, and F•M a good fil-
tration. Suppose that

0→M ′ →M →M ′′ → 0

is a short exact sequence of An-modules. Then the induced filtration F•M
′ and

F•M
′′ are both good, and

0→ grFM ′ → grFM → grFM ′′ → 0

is a short exact sequence of finitely generated graded grFAn-modules. Moreover:

(a) One has χ(M,F•M, t) = χ(M ′, F•M
′, t) + χ(M ′′, F•M

′′, t).
(b) One has d(M) = max{d(M ′), d(M ′′)}.
(c) If d(M ′) = d(M ′′), then m(M) = m(M ′) +m(M ′′).

Proof. The short exact sequence follows from the definition of the filtrations on
M ′ and M ′′. Since F•M is a good filtration, grFM is finitely generated over the
polynomial ring grFAn. The polynomial ring is commutative and noetherian, and
so both the submodule grFM ′ and the quotient module grFM ′′ are again finitely
generated, which means that F•M

′ and F•M
′′ are also good filtrations. Taking

dimensions in the short exact sequence, we get the relation

χ(M,F•M, t) = χ(M ′, F•M
′, t) + χ(M ′′, F•M

′′, t)

among the three Hilbert polynomials. The other two assertions are obvious conse-
quences. �

Example 3.4. The calculation in the proposition explains for example why the
multiplicity of the A1-module K[x, x−1] should be 2. Indeed, we have a short exact
sequence

0→ K[x]→ K[x, x−1]→ K[x, x−1]/K[x]→ 0.

The class of x−1 generates the quotient module, but since x · x−1 = 1, it is also
annihilated by x, and so the quotient module is actually isomorphic to A1/A1(x).
Both the submodule and the quotient module have multiplicity 1, and therefore
K[x, x−1] must have multiplicity 2.
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Bernstein’s inequality. In our discussion of Hilbert functions, we have only used
properties of the polynomial ring grFAn. Now comes the first place where An-
modules are genuinely different from modules over the polynomial ring. The fol-
lowing important result is due to Joseph Bernstein.

Theorem 3.5 (Bernstein’s inequality). Let M 6= 0 be a finitely generated An-
module. Then d(M) ≥ n.

Choose a filtration F•M , compatible with the Bernstein filtration on An; after
a shift in the indexing, we can assume that F0M 6= 0.

Lemma 3.6. The multiplication map

FBj An → HomK(FjM,F2jM), P 7→ (m 7→ Pm),

is injective for every j ≥ 0.

Proof. We argue by induction on j ≥ 0. For j = 0, the statement is clearly true:
FB0 An = K, and since F0M 6= 0, the multiplication map K → HomK(F0M,F0M)
is obviously injective. Now suppose that the result is known for j − 1 ≥ 0. Assume
for the sake of contradiction that there is a nonzero differential operator P ∈ FBj An
that lies in the kernel of the multiplication map, so that Pm = 0 for everym ∈ FjM .
Clearly, P cannot be constant (because FjM is nonzero), and so P has to contain
xi or ∂i for some i = 1, . . . , n. If xi appears in P , then by a calculation we did in
Lecture 1, the commutator [P, ∂i] ∈ FBj−1An is still nonzero. But then

[P, ∂i]m = P (∂im)− ∂i(Pm) = 0

for every m ∈ Fj−1M ; indeed, both m and ∂im belong to FjM , and P annihilates
FjM by assumption. This contradicts the inductive hypothesis. If ∂i appears in
P , then we use the same argument with [P, xi] instead. �

Now suppose that F•M is a good filtration, and let χ(t) = χ(M,F•M, t) be the
Hilbert polynomial. The lemma gives

dimFBj An ≤ dim HomK(FjM,F2jM) = dimFjM · dimF2jM,

and therefore (
j + 2n

2n

)
≤ χ(j) · χ(2j)

for all sufficiently large values of j. Since χ(t) is a polynomial of degree d(M), we
conclude that 2n ≤ 2d(M), or n ≤ d(M). This proves Bernstein’s inequality.

Holonomic modules. Bernstein’s inequality suggests the following definition.

Definition 3.7. A finitely generated An-module M is called holonomic if either
M 6= 0 and d(M) = n, or if M = 0.

Holonomic modules are those for which the dimension takes the minimal value
allowed by Bernstein’s inequality. We also consider the zero module to be holonomic
for convenience. In the special case of holonomic modules, Proposition 3.3 has many
nice consequences. The following result would be cumbersome to state if we did
not consider the zero module to be holonomic.

Corollary 3.8. Suppose that

0→M ′ →M →M ′′ → 0

is a short exact sequence of An-modules. Then M is holonomic if and only if M ′ and
M ′′ are holonomic. In particular, submodules and quotient modules of holonomic
modules are again holonomic.
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Proof. This follows from the fact that d(M) = max{d(M ′), d(M ′′)} and Bernstein’s
inequality. �

Now suppose that M is a nonzero holonomic module, with a certain multiplicity
m(M) ≥ 1. If we have any chain of submodules

M1 ⊆M2 ⊆M3 ⊆ · · · ⊆M` ⊆M,

then each Mj is again holonomic, hence of dimension n. By Proposition 3.3, the
multiplicities add, and so

m(M) = m(M1) +m(M/M1) = m(M1) +m(M2/M1) + · · ·+m(M`/M`−1).

If the chain is strictly increasing, then each term in the sum is ≥ 1, and so we get
` ≤ m(M). In other words, the length of any strictly increasing (or decreasing)
chain of submodules is bounded by m(M).

Corollary 3.9. Let M be a holonomic An-module.

(a) M is both noetherian and artininian, meaning that every increasing or de-
creasing chain of submodules stabilizes.

(b) M has finite length, meaning that it admits a finite filtration whose subquo-
tients are simple An-modules.

Proof. The first assertion follows from the calculation we just did. For the second
assertion, see the exercises. �

We have already seen a few simple examples of holonomic modules; for instance,
K[x1, . . . , xn] is a holonomic An-module, and K[x, x−1] is a holonomic A1-module.
Here is a more interesting class of holonomic An-modules.

Proposition 3.10. Let p ∈ K[x1, . . . , xn] be a nonzero polynomial. Then

M = K[x1, . . . , xn, p
−1],

with the structure of left An-module given by formal differentiation, is a holonomic
An-module.

Unlike the example of K[x, x−1], it is not even obvious that M is finitely gener-
ated. Fortunately, we can use the following numerical criterion for holonomicity.

Lemma 3.11. Let M be a An-module, and F•M a filtration compatible with the
Bernstein filtration on An. If

dimK FjM ≤
c

n!
jn + c1(j + 1)n−1

for some constants c, c1 ≥ 1, then M is holonomic and m(M) ≤ c. In particular,
M is finitely generated.

Proof. The idea is to study finitely generated submodules of M . These are easy to
construct: simply take any finite number of elements of M and look at the sub-
module they generate. Let N ⊆ M be any nonzero finitely generated submodule,
and F•N a good filtration of N . The filtration N ∩ F•M is compatible with the
Bernstein filtration, but of course not necessarily good. Still, according to Corol-
lary 2.15, there is an integer k ≥ 0 such that

FjN ⊆ N ∩ Fj+kM ⊆ Fj+kM
for every j ≥ 0. Taking dimensions, we get

dimFjN ≤ dimFj+kM ≤
c

n!
(j + k)n + c1(j + k + 1)n−1,

and therefore d(N) ≤ n. Since d(N) ≥ n by Bernstein’s inequality, we see that
d(N) = n, and so N is holonomic. It also follows that m(N) ≤ c, by looking at the
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leading terms on both sides. Therefore any finitely generated submodule of M is
holonomic and has multiplicity at most c.

This implies now that M itself must be finitely generated, hence holonomic.
To see this, choose any nonzero element m1 ∈ M , and let N1 be the submodule
generated by m1. If N1 = M , then we are done; otherwise, choose an element
m2 ∈M \N1, and let N2 be the submodule generated by m1 and m2. If N2 = M ,
then we are done; otherwise, choose an element m3 ∈ M \ N2, and let N3 be
the submodule generated by m1,m2,m3. Continuing in this way, we produce an
chain of submodules N1 ⊂ N2 ⊂ N3 ⊂ · · · . Because each Nj is holonomic with
m(Nj) ≤ c, this chain has to stabilize after at most c steps, and so M is in fact
generated by at most c elements. In particular, M is holonomic and m(M) ≤ c. �

Note that the filtration F•M is not necessarily good. The lemma is quite re-
markable: it allows us to prove that M is finitely generated simply by computing
the dimensions of FjM .

Now we apply this to study the An-module M = K[x1, . . . , xn, p
−1]. The action

by An is by formal differentiation:

∂j(fp
−`) = −`f ∂p

∂xj
p−(`+1) +

∂f

∂xj
p−` =

(
−`f ∂p

∂xj
+ p

∂f

∂xj

)
p−(`+1).

Let m = deg p, and consider the filtration

FjM =
{
fp−`

∣∣ deg f ≤ (m+ 1)`
}
.

Each FjM is a finite-dimensional K-vector space. If fp−` ∈ FjM , then deg f ≤
(m + 1)`, and so xjfp

−` and ∂j(fp
−`) again belong to Fj+1M (by the above for-

mula). In other words, the filtration is compatible with the Bernstein filtration on
An. Lastly, we have M =

⋃
FjM ; indeed, given any element fp−` ∈M , we have

fp−` = (fpk)p−(`+k),

and since deg(fpk) = deg f + km ≤ (m + 1)(` + k) for sufficiently large k, the
element eventually belongs to F`+kM . Taking dimensions, we have

dimFjM =

(
(m+ 1)j + n

n

)
,

which is a polynomial of degree n in j with leading coefficient (m+ 1)n/n!. So the
lemma shows that M is holonomic with m(M) ≤ (m+ 1)n.

Exercises.

Exercise 3.1. Suppose that χ(t) ∈ Q[t] has the property that χ(j) ∈ Z for all suffi-
ciently large values of j ∈ Z. Show that χ(t) can be written as a linear combination,
with integer coefficients, of the polynomials

χn(t) =
t(t− 1) · · · (t− n+ 1)

n!

for n ≥ 0. Conclude that the leading coefficient of χ(t) has the form m/d! for some
m ∈ Z, where d is the degree of χ(t).

Exercise 3.2. Show that A1/A1P is holonomic for every nonzero P ∈ A1.

Exercise 3.3. Recall that a (left) An-module M is said to be simple if it does not
have any An-submodules besides {0} and M . Show that every simple An-module
is cyclic, meaning that it be generated by a single element.

Exercise 3.4. The goal of this exercise is to prove that every holonomic An-module
is cyclic. This phenomenon is very different from the case of modules over the
polynomial ring.
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(a) Let M be a nonzero holonomic An-module. Show that M has finite length,
meaning that it admits a filtration by An-submodules whose subquotients
are simple modules. Let ` ≥ 1 be the length of such a filtration.

(b) Show that the result is true if ` = 1.
(c) If ` ≥ 2, let N ⊆ M be a simple submodule, generated by some m0 ∈ N .

By induction, M/N is cyclic, so let m ∈ M be any element that maps to
a generator of M/N . Show that the left ideal I =

{
P ∈ An

∣∣ Pm = 0
}

is
nonzero.

(d) Show that there is some Q ∈ An such that IQ is not contained in the left
ideal

{
P ∈ An

∣∣ Pm0 = 0
}

. (Hint: An is a simple algebra.)
(e) Now choose P ∈ I such that PQm0 6= 0. Show that the element m+Qm0

generates M as a left An-module.
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Lecture 4: February 13

Last time, somebody asked what happens to chains of submodules when the
dimension is greater than n. Here is an example to show that there can be infinite
descending chains. (Since An is noetherian, there are no infinite ascending chains
in finitely generated An-modules.)

Example 4.1. Consider the chain of submodules

A1 ⊃ A1x ⊃ A1x
2 ⊃ · · ·

All modules in this chain are isomorphic to A1, and all subquotients are isomorphic
to A1/A1x. What happens is that, in the short exact sequence

0→ A1
x−→ A1 → A1/A1x→ 0,

the first two modules have dimension 2 and multiplicity 1, whereas the third module
has dimension 1 and multiplicity 1.

Distributions and polynomials. Today, we are going to look at an application
of holonomic An-modules to the study of certain integrals. This was in fact one of
the reasons why the theory was developed in the first place. For the time being,
we take K = R. Let p ∈ R[x1, . . . , xn] be a nonzero polynomial with the property
that p(x1, . . . , xn) ≥ 0 for every (x1, . . . , xn) ∈ Rn. (We can always achieve this by
replacing p by its square.)

Let S(Rn) be the Schwartz space of all rapidly decreasing functions. A complex-
valued function ϕ ∈ C∞(Rn) is rapidly decreasing if the quantity

pα,β(f) = sup
x∈Rn
|xα∂βϕ(x)|

is finite for every pair of multi-indices α, β ∈ Nn. Then S(Rn) is a topological vector
space, with the topology defined by the family of semi-norms pα,β . A tempered
distribution T is a continuous linear functional T : S(Rn)→ C.

Now fix a rapidly decreasing function ϕ ∈ S(Rn), and consider the integral

Ts(ϕ) =

∫
Rn
p(x)sϕ(x) dµ(x),

as a function of the complex parameter s ∈ C. For Re s > 0, the integral makes
sense and has a finite value, due to the fact that ϕ is rapidly decreasing (and p only
takes nonnegative real values). Differentiation under the integral sign shows that
Ts(ϕ) is actually a holomorphic function of s for Re s > 0.

Example 4.2. The Gamma function

Γ(s) =

∫ ∞
0

xs−1e−x dx

is a typical example of such an integral. The integral only makes sense for Re s > 0,
but in fact, Γ(s) can be analytically continued to a meromorphic function on C with
simple poles along {0,−1,−2, . . . }. This is done step by step, using integration by
parts. One has

d

dx

(
xse−x

)
= sxs−1e−x − xse−x,

and therefore

sΓ(s) = xse−x
∣∣∣∞
0

+

∫ ∞
0

xse−x dx = Γ(s+ 1)

for Re s > 0; now the identity Γ(s) = Γ(s + 1)/s provides an extension of the
Gamma function to Re s > −1, with a simple pole at s = 0.
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Now the question is whether Ts(ϕ) can always be extended to a meromorphic
function on the entire complex plane. Bernstein discovered that the answer is yes.
The reason is that one always has a functional equation of the form

(4.3) D(s)p(x)s+1 = b(s)p(x)s,

where b(s) ∈ R[s] is a monic polynomial, and D(s) ∈ An
(
R[s]

)
is a differential

operator with coefficients in the ring R[s]. This sort of relation gives the desired
meromorphic extension, again step by step. Indeed, after substituting into the
integral and integrating by parts, we get

b(s)Ts(ϕ) =

∫
Rn
D(s)p(x)s+1ϕ(x) dµ =

∫
Rn
p(x)s+1σ

(
D(s)

)
ϕ(x) dµ,

where σ
(
D(s)

)
is the differential operator obtained from D(s) by the left-to-right

transformation in Lecture 2. (The reason is that each time we integrate by parts
to move ∂j from the first to the second factor, we get an additional minus sign.)
The new integral is again holomorphic for Re s > −1, and after dividing by b(s),
we obtain a meromorphic extension of Ts(ϕ) to the half plane Re s > −1, possibly
with poles along the zero set of b(s). Continuing in this manner, we can extend
Ts(ϕ) to a meromorphic function on the entire complex plane, with poles contained
in the set {

s ∈ C
∣∣ b(s+ k) = 0 for some k ≥ 0

}
.

For this reason, we obviously want to choose the polynomial b(s) in (4.3) to be of
minimal degree.

Example 4.4. In the case of the Gamma function, we have p(x) = x, and the desired
relation is simply that ∂xs+1 = (s+ 1)xs.

Bernstein polynomials. Let us now investigate the existence of the relation in
(4.3). This works over any field K, and so we relax the assumptions and allow
p ∈ K[x1, . . . , xn] to be any nonzero polynomial. Set m = deg p. Since we are
going to work algebraically, we let s be an independent variable, and consider the
field of rational functions K(s), and the Weyl algebra An

(
K(s)

)
with coefficients

in K(s). We now endow the K(s)-vector space

M = K(s)[x1, . . . , xn, p
−1]

with the structure of a left An
(
K(s)

)
-module, as follows. Multiplication by poly-

nomials with coefficients in K(s) is defined as usual; and

∂j
(
fp−`

)
=

∂f

∂xj
p−` + (s− `)f ∂p

∂xj
p−(`+1).

One can check, based on the discussion in Lecture 2, that this defines a left action
by the Weyl algebra with coefficients in K(s). The formulas are easier to remember
if we introduce a formal symbol ps, with the property that

∂jp
s = sp−1 ∂p

∂xj
· ps,

and write elements of Mps in the form fps−`. Then the formula from above is
simply the (formally correct) differentiation rule

(4.5) ∂j
(
fps−`

)
=

∂f

∂xj
ps−` + (s− `)f ∂p

∂xj
ps−(`+1).

The same calculation as in Lecture 3 shows that the filtration

FjM =
{
fp−`

∣∣ deg f ≤ (m+ 1)`
}
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is compatible with the Bernstein filtration on An
(
K(s)

)
, and

dimK(s) FjM =

(
(m+ 1)`+ n

n

)
.

According to Lemma 3.11, M is therefore a holonomic module, of multiplicity at
most (m+ 1)n.

Now consider, for k ≥ 0, the submodule Mk ⊆M generated by pk; concretely,

Mk = An
(
K(s)

)
· pk ⊆M.

Clearly M0 ⊇ M1 ⊇ M2 ⊇, and because M is holonomic, each Mk is holonomic,
and the chain has to stabilize after at most m(M) many steps. So there exists some
k ≥ 0 such that Mk+1 = Mk. This means concretely that there is a differential
operator Q(s) ∈ An

(
K(s)

)
with the property that Q(s)pk+1 = pk. Note that Q(s)

has coefficients in the field of rational functionsK(s), so there may be denominators.
Let d(s) ∈ K[s] be a nonzero polynomial such that R(s) = d(s)Q(s) has coefficients
in K[s]. Then we get R(s)pk+1 = d(s)pk, which we can write symbolically as

R(s)ps+k+1 = d(s)ps+k.

After replacing s by s− k everywhere (which is compatible with the differentiation
rule in (4.5), and therefore okay), we obtain the identity

R(s− k)ps+1 = d(s− k)ps,

which has the same shape as (4.3). Now let b(s) ∈ K[s] be the monic polynomial
of minimal degree that satisfies a relation of the form

D(s)ps+1 = b(s)ps

for some differential operator D(s) ∈ An
(
K[s]

)
.

Definition 4.6. The polynomial b(s) ∈ K[s] is called the Bernstein polynomial of
p ∈ K[x1, . . . , xn], and D(s) ∈ An

(
K[s]

)
is called a Bernstein operator for p.

In fact, the set of all polynomials for which such a relation holds is closed under
addition and multiplication by elements of K[s], and therefore an ideal in K[s].
The Bernstein polynomial is then simply the unique monic generator of this ideal,
keeping in mind that K[s] is a principal ideal domain.

Note. The relation D(s)p = b(s) in the module M implies (by induction on the
exponent of p in the denominator) that M0 = M , in the notation from above. Here
is another way of looking at the Bernstein polynomial: Multiplication by s defines
an endomorphism of the quotient module

M0/M1 = M/An
(
K(s)

)
p,

and b(s) is the minimal polynomial for this endomorphism.

Let us finish by computing a few examples of Bernstein polynomials.

Example 4.7. In one variable, let p = x. Here ∂xs+1 = (s + 1)xs, and so we have
b(s) = s+ 1 and D(s) = ∂.

Example 4.8. Still in one variable, take p = x2. Now ∂ps+1 = (s+ 1)2xps, and

∂2ps+1 = (s+ 1)
(
2ps + 4x2sps−1

)
= (s+ 1)(2ps + 4sps) = (s+ 1)(4s+ 2)ps,

and therefore b(s) = (s+ 1)(s+ 1
2 ).

Example 4.9. The previous example generalizes to p = xm; after applying ∂m, one
finds that b(s) = (s+ 1)(s+ m−1

m ) · · · (s+ 1
m ).
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Example 4.10. In n variables, we can take p = xm1
1 · · ·xmnn , and after applying the

differential operator ∂m1
1 · · · ∂mnn , we get

b(s) =

n∏
j=1

mj∏
k=1

(
s− k

mj

)
Example 4.11. Another case that can be computed by hand is p = x2

1 + · · · + x2
n.

Here we again have
∂2
j p
s+1 = (s+ 1)

(
2ps + 4x2

jsp
s−1
)

by the calculation in the second example, and therefore

(∂2
1 + · · ·+ ∂2

n)ps+1 = (s+ 1)(2n+ 4s)ps.

So the Bernstein polynomial in this case is b(s) = (s+ 1)(s+ n
2 ).

These examples suggest that s = −1 is always a root of the Bernstein polynomial.
It can be proved (using resolution of singularities) that all roots of the Berstein
polynomial are negative rational numbers. In general, the Bernstein polynomial
can be found using computer algebra systems (such as Macaulay 2 ); except when
p is homogeneous, the shape of the Bernstein operator D(s) is not easy to guess in
advance, however. Here is a more complicated example for algebraic geometers.

Example 4.12. Consider the polynomial p = x2
1 + x3

2; this has a so-called cusp
singularity at the origin. One can show that(

1

27
∂3

2 +
x2

6
∂2

1∂2 +
x1

8
∂3

1

)
ps+1 = (s+ 5

6 )(s+ 1)(s+ 7
6 )ps,

and so the Bernstein polynomial is b(s) = (s+ 5
6 )(s+ 1)(s+ 7

6 ).

The Bernstein polynomial is of interest in the study of hypersurface singularities.
Indeed, the zero set of the polynomial p defines a hypersurface in affine space, to use
the terminology from algebraic geometry, and many invariants of its singularities
are related to the roots of the Bernsteint polynomial. For example, the largest root
of the Bernstein polynomial is the so-called “log canonical threshold” of p.



22

Lecture 5: February 18

Basic facts about algebraic geometry. The goal of today’s class is to give a
geometric interpretation for the dimension d(M) from last time. Suppose for the
time being that K is an algebraically closed field (such as C). We can then think
of the polynomial ring K[x1, . . . , xn] as being the ring of algebraic functions on
the affine space Kn. If An = An(K) is the Weyl algebra, and F•An is either the
Bernstein filtration or the degree filtration, then grFAn ∼= K[x1, . . . , xn, ξ1, . . . , ξn],
where ξj is the class of ∂j . We can think of this polynomial ring in 2n variables
as the ring of algebraic functions on K2n = Kn × Kn, viewed as the cotangent
bundle of Kn. The additional variables ξ1, . . . , ξn, are linear functions on the fibers
of the cotangent bundle. We will see below that d(M) can be interpreted as the
“dimension” of a certain subset of K2n, called the characteristic variety of M .

Since algebraic geometry language will be useful for this, we start with a brief
review of the basic correspondence between closed algebraic subsets of Kn and
ideals in the polynomial ring K[x1, . . . , xn]. To any ideal I ⊆ K[x1, . . . , xn], we can
associate a closed subset

Z(I) =
{

(a1, . . . , an) ∈ Kn
∣∣ f(a1, . . . , an) = 0 for every f ∈ I

}
Since the polynomial ring is noetherian, every ideal is finitely generated, and so
every closed subset of this type can in fact be defined by finitely many polynomial
equations. Conversely, to a closed subset Z ⊆ Kn defined by polynomial equations,
we can associate the ideal

IZ =
{
f ∈ K[x1, . . . , xn]

∣∣ f(a1, . . . , an) = 0 for every (a1, . . . , an) ∈ Z
}

of all polynomials that vanish on Z. If fm ∈ IZ for some m ≥ 1, then of course
also f ∈ IZ (because K is a field), and so IZ is always a radical ideal. Here the
radical of an ideal I is defined as

√
I =

{
f ∈ K[x1, . . . , xn]

∣∣ fm ∈ I for some m ≥ 1
}
,

and an ideal is called a radical ideal if I =
√
I. One can show that

Z(IZ) = Z and IZ(I) =
√
I.

The second assertion is usually called the Nullstellensatz. One can summarize this
by saying that I 7→ Z(I) and Z 7→ IZ sets up a one-to-one correspondence(

closed algebraic subsets of Kn
)
←→

(
radical ideals in K[x1, . . . , xn]

)
This correspondence reverses the order, meaning that I1 ⊆ I2 iff Z(I2) ⊆ Z(I1).
The quotient ring K[x1, . . . , xn]/IZ can be viewed as the ring of algebraic functions
on the algebraic variety Z, where a polynomial determines a function on Z by
restriction (and IZ is the ideal of functions whose restriction to Z is zero).

Since K is algebraically closed, every maximal ideal in K[x1, . . . , xn] is of the
form (x1 − a1, . . . , xn − an) for some (a1, . . . , an) ∈ Kn, and so under the above
correspondence, maximal ideals in the polynomial ring correspond to points of Kn.
More generally, prime ideals correspond to irreducible algebraic subsets, where
irreducible means that the set cannot be written as a union of two strictly smaller
algebraic sets. One can define the dimension of a closed algebraic subset Z ⊆ Kn in
two equivalent ways: geometrically, as the length of the longest strictly decreasing
chain of irreducible closed algebraic subsets

Z ⊇ Z0 ⊃ Z1 ⊃ · · · ⊃ Zd
contained in Z; algebraically, as the length of the longest strictly increasing chain
of prime ideals

IZ ⊆ P0 ⊂ P1 ⊂ · · · ⊂ Pd
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containing IZ . This notion of dimension is known as the Krull dimension, and is
denoted by dimZ. The geometric picture of the chain is that Z0 has dimension
d, Z1 has dimension d − 1, and so on, down to Zd, which has dimension 0 (and
hence is a point). Since ideals in K[x1, . . . , xn] containing IZ are in one-to-one
correspondence with ideals in the quotient ring K[x1, . . . , xn]/IZ , one also has

dimZ = dim
(
K[x1, . . . , xn]/IZ

)
,

where the dimension dimR of a commutative ring R is by definition the length
of the longest strictly increasing chain of prime ideals in R. The polynomial ring
K[x1, . . . , xn] has dimension n, of course.

We shall also need the notion of the support of a module. Let M be a finitely
generated module over K[x1, . . . , xn]. Then

SuppM ⊆ K2n

is the set of all points (a1, . . . , an) ∈ Kn such that the localization of M at the
maximal ideal (x1 − a1, . . . , xn − an) is nontrivial. The geometric picture is that
M corresponds to a (coherent) sheaf on Kn, and the support of M is the set of
points where the stalk of this sheaf is nontrivial. (In other words, the complement
of SuppM is the largest open set on which the sheaf is trivial.) The support of M
is a closed algebraic subset, defined by the annihilator ideal

AnnM = AnnK[x1,...,xn]M =
{
f ∈ K[x1, . . . , xn]

∣∣ fm = 0 for every m ∈M
}
.

We have dim SuppM = dimK[x1, . . . , xn]/AnnM .

Characteristic varieties. Now we return to modules over the Weyl algebra. Let
M be a finitely generated left An-module. If we choose a good filtration F•M ,
compatible with the Bernstein filtration on An, then the associated graded module
grFM is finitely generated over grFAn, the polynomial ring in 2n variables. One
of the basic facts about Hilbert polynomials is that the degree d(M) of the Hilbert
polynomial of grFM is equal to the dimension of Supp grFM ; in symbols,

dB(M) = dim Supp(grFM) = dim grFAn/Ann(grFM).

I have added the superscript B to indicate that this notion of dimension is related to
the Bernstein filtration on An. We would now like to have an analogous definition
for the degree filtration on the Weyl algebra, since that is the case that generalizes
to arbitrary D-modules.

From now on, we use the notation F•An for the filtration by the degree of
differential operators. Let M be a finitely generated left An-module, and choose a
good filtration F•M compatible with the degree filtration on An. We define

I(M,F•) = AnngrFAn(grFM)

as the annihilator of grFM , and use the notation

J(M) =
√
I(M,F•M)

for the radical ideal. We will see in a moment that J(M) only depends on M , but
not on the particular good filtration chosen, justifying the notation. As we said
earlier, the closed subset of K2n corresponding to the radical ideal J(M) is the
support of the module grFM .

Definition 5.1. The characteristic variety Ch(M) is the closed algebraic subset
of K2n corresponding to the radical ideal J(M). Let

ddeg(M) = dim Ch(M) = dim
(
grFAn/J(M)

)
be the dimension of the characteristic variety.
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Examples show that the ideal I(M,F•M) depends on the filtration. Nevertheless,
the radical ideal J(M) and the characteristic variety Ch(M) only depend on M .

Proposition 5.2. The ideal J(M) only depends on M , but not on the choice of
good filtration F•M . The same is therefore true for Ch(M).

Proof. We first need to describe the annihilator of grFM more concretely. For a
differential operator P ∈ FkAn of order exactly k, we denote by [P ] its image in
grFk An; this is usually called the (principal) symbol of P . Likewise, if m ∈ FjM ,
we write [m] ∈ grFj M for its image in the associated graded module. The module

structure on grFM is then defined by setting

[P ] · [m] = [Pm] ∈ grFk+jM

for [P ] ∈ grFk An and [m] ∈ grFj M . Thus [P ] · [m] = 0 means that Pm ∈ Fk+j−1M

(but it does not mean that Pm = 0). Since grFM is a graded module, the annihila-
tor ideal Ann(grFM) is a homogeneous ideal; by what we just said, it is generated
by all those homogeneous elements [P ] ∈ grFk An with the property that

P · FjM ⊆ Fk+j−1M

for every j ≥ 0. The radical ideal
√
I(M,F•M) is therefore generated by those

homogeneous elements [P ] ∈ grFk An such that, for some m ≥ 1, one has

(5.3) Pm · FjM ⊆ Fmk+j−1M

for every j ≥ 0.
Now let G•M be another good filtration. By Corollary 2.15, the two good

filtrations are comparable, and so there is some j0 ≥ 0 such that

FjM ⊆ Gj+j0M and GjM ⊆ Fj+j0M

for every j ≥ 0. Suppose that [P ] ∈ grFk An belongs to the radical of I(M,F•M),
hence that we have (5.3) for some m ≥ 1. Let ` ≥ 1 be any integer. We have

P `m ·GjM ⊆ P `m · Fj+j0M ⊆ F`mk+j+j0−`M ⊆ G`mk+j+2j0−`M.

If we take ` = 2j0 + 1 and m′ = `m, then we have

Pm
′
·GjM ⊆ Gm′k+j−1M

for every j ≥ 0, and so P belongs to the radical of I(M,G•M). Since the situation

is symmetric, we conclude that
√
I(M,G•) =

√
I(M,F•M), and hence that J(M)

is independent of the choice of good filtration. �

Example 5.4. One can tell from the characteristic variety whether or not a finitely
generated An-module M is actually finitely generated over the polynomial ring
K[x1, . . . , xn]. Suppose that M is finitely generated over K[x1, . . . , xn]. Then
setting F−1M = {0} and FjM = M for j ≥ 0 defines a good filtration, and since
grFj M = 0 for j 6= 0, every element in grFAn of strictly positive degree annihilates

grFM . This means that Ch(M) is defined by the ideal (ξ1, . . . , ξn) in the polynomial
ring grFAn = K[x1, . . . , xn, ξ1, . . . , ξn]; in other words, Ch(M) is the “zero section”.

Conversely, if Ch(M) is the zero section, then M is actually finitely generated
over K[x1, . . . , xn]. Here is the reason. Choose a good filtration F•M , so that
grFM is finitely generated over grFAn = K[x1, . . . , xn, ξ1, . . . , ξn]. By assumption,
some power of each ξj belongs to the annihilator, which means that ξe11 · · · ξenn acts
trivially on grFM as long as e1 + · · · + en is sufficiently large. Thus the finitely
many generators of grFM over grFAn, together with their finitely many images
under the elements ξe11 · · · ξenn for e ∈ Nn, generate grFM over K[x1, . . . , xn]. But
this implies that M itself is finitely generated over K[x1, . . . , xn].
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Equality of dimensions. In the next few lectures, we are going to prove that the
two notions of dimension (with respect to the Bernstein filtration and with respect
to the degree filtration) agree: for any finitely generated An-module, one has

dB(M) = ddeg(M).

This will tell us in particular that the Bernstein inequality d(M) ≥ n also holds
with respect to the degree filtration. The geometric interpretation is that the
characteristic variety Ch(M) always has dimension at least n. The strategy for
proving this is to relate two kinds of dimension to a third invariant of M , which is of
a more homological nature and can be defined without reference to good filtrations.
The invariant is defined in terms of the Ext-modules ExtjR(M,R), namely

j(M) = min
{
j ≥ 0

∣∣ ExtjR(M,R) 6= 0
}
.

The precise result that we are going to prove is that

dB(M) = 2n− j(M) = ddeg(M).

Let me end with a brief reminder about Ext-modules. Recall that if R is any ring,
and if M and N are two left R-modules, we can form the group

HomR(M,N)

of all left R-linear morphisms from M to R. This defines a contravariant functor
HomR(−, N) from left R-modules to groups, and ExtjR(M,N) is by definition the j-

th derived functor. Concretely, one computes ExtjR(M,N) by choosing a resolution
of M by free left R-modules,

· · · → L2 → L1 → L0 →M → 0,

and then applying the functor HomR(−, N) to this resolution. Thus ExtjR(M,N)
is the j-th cohomology group of the complex

0→ HomR(L0, N)→ HomR(L1, N)→ HomR(L2, N)→ · · ·
In particular, Ext0

R(M,N) = HomR(M,N). Note that unless R is commutative,
HomR(M,N) typically no longer has the structure of a left or right R-module. But
in the special case where N = R, we can use the right R-module structure on the
ring R to endow HomR(M,R) with the structure of a right R-module. Concretely,
for f ∈ HomR(M,R), and for r ∈ R, we define f · r ∈ HomR(M,R) by the formula

(f · r)(x) = f(x)r.

Since the multiplication in R is associative, f · r is again left R-linear. Using a
resolution as above, it follows that each ExtjR(M,R) is naturally a right R-module.
(Similar comments apply if we work with right R-modules.)

Exercises.

Exercise 5.1. Let M = A1/A1(x) be the left A1-module related to the δ-function.
Show that the image of 1 ∈ A1 and the image of ∂ ∈ A1 both generate M , but that
the two resulting good filtrations F•M and G•M give rise to different annihilator
ideals: I(M,F•M) 6= I(M,G•M).

Exercise 5.2. Let I ⊆ An be a left ideal, and let FjI = I ∩ FjAn be the induced
filtration. Describe the ideal Ann(grF I) inside grFAn in concrete terms.
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Lecture 6: February 20

General setup. We start working on the proof of the theorem from last time,
comparing the two notions of dimension dB(M) (with respect to the Bernstein
filtration) and ddeg(M) (with respect to the degree filtration). In order to make
the result more useful, and to simplify the notation, we are going to work in the
following more general setting.

Let R be a ring with 1. We assume that R is filtered; as before, this means that
R comes with an exhaustive increasing filtration F•R, with

{0} = F−1R ⊆ F0R ⊆ F1R ⊆ · · · ,

such that 1 ∈ F0R and FiR·FjR ⊆ Fi+jR for all i, j ≥ 0. This makes F0R a subring
of R. We define S = grF R to be the associated graded ring, with Sj = FjR/Fj−1R,
and with the product defined by (r + FiR) · (r′ + FjR) = (rr′ + Fi+jR); note that
F0R = S0 is also a subring of S. Generalizing from what happens in the case
R = An, we make the following two assumptions about S:

(A) S is a commutative noetherian ring.
(B) S is regular of dimension dimS = 2n.

As in Lecture 2, the assumption (A) implies that R is left noetherian; moreover,
the subring F0R = S0 is also commutative and noetherian. The condition in (B)
means concretely that for every maximal ideal m ⊆ S, the localization Sm is a
regular local ring of dimension 2n, in the sense that

dimS/m m/m2 = dimSm = 2n.

This implies that every finitely generated Sm-module has a free resolution of length
at most 2n; in fact, by a theorem of Serre, the two things are equivalent to each
other. The geometric meaning of the condition in (B) is of course that the scheme
SpecS is nonsingular of dimension 2n.

Example 6.1. Take R = An, either with the Bernstein filtration FB• An or the degree

filtration F deg
• An. In both cases, S is the polynomial ring in 2n variables.

Now let M be a finitely generated left R-module. As in Lecture 3, we have
the notion of a compatible filtration F•M . Recall that this means that F•M is
an exhaustive increasing filtration of M , such that FiR · FjM ⊆ Fi+jM for every
i, j ≥ 0, and such that each FjM is finitely generated over the commutative ring
F0R. As before, the filtration is called good if the associated graded module grFM
is finitely generated over S = grF R. Every finitely generated R-module has a good
filtration. As in the case of An, one shows that the ideal

J(M) =
√

AnnS(grFM)

is independent of the choice of good filtration F•M . It is easy to see that a prime
ideal P ⊆ S contains J(M) if and only if the localized module MP = SP ⊗S M
is nonzero. The geometric interpretation is that the finitely generated S-module
grFM defines a coherent sheaf on the scheme SpecS, and the closed subscheme
defined by the ideal J(M) is the support of this sheaf.

Definition 6.2. Let M be a finitely generated left R-module. We set

d(M) = dimS/J(M) = dim Supp(grFM)

j(M) = min
{
j ≥ 0

∣∣ ExtjR(M,R) 6= 0
}

The theorem I stated last time holds in this generality.
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Theorem 6.3. Let (R,F•R) be a filtered ring satisfying the two conditions in (A)
and (B). Then one has

d(M) + j(M) = dimS

for every finitely generated left R-module M .

This immediately implies the result I stated last time. Take R = An, and suppose
that M is a finitely generated left An-module. The definition of the invariant j(M)
does not mention any filtrations, and so it is the same no matter what filtration on
R we consider. If we take F•R = FB• An, we get

dB(M) + j(M) = 2n,

and if we take F•R = F deg
• An, we get

ddeg(M) + j(M) = 2n.

The two equations together give us the desired equality dB(M) = ddeg(M).

The commutative case. The proof of Theorem 6.3 is going to take some time.
Let us first consider what happens in the commutative case. In the general setting
from above, R is of course allowed to be commutative; but to avoid any confusion,
let me stick to the notation S for the commutative noetherian ring.

Proposition 6.4. Let S be a commutative noetherian ring, regular of dimension
2n. For any finitely generated S-module M , set J(M) =

√
AnnSM and define

d(M) = dimS/J(M) and j(M) = min
{
j ≥ 0

∣∣ ExtjS(M,S) 6= 0
}

Then the following is true:

(a) If ExtjS(M,S) 6= 0, then 2n− d(M) ≤ j ≤ 2n.

(b) One has d
(
ExtjS(M,S)

)
≤ 2n− j for every j ≥ 0.

(c) One has d
(
Ext

j(M)
S (M,S)

)
= d(M).

(d) The identity d(M) + j(M) = 2n holds.

Proof. Let me try to give at least an idea of the proof (without dotting all the i’s).
The first step is to reduce to the case where S is a regular local ring. We can test
whether or not ExtjS(M,S) is zero by localizing at all maximal ideals of M . Let
m ⊆ S be any maximal ideal containing J(M); in terms of the scheme SpecS, we
are choosing a closed point on the support of M . Then one has

Sm ⊗S ExtjS(M,S) ∼= ExtjSm

(
Sm ⊗S M,Sm

)
.

After replacing S by its localization, and M by Sm⊗SM , we can therefore assume
that S is a regular local ring of dimension 2n. Geometrically, this means that we
are working locally near a point of SuppM .

We prove (a) and (b) by induction on d = dimS/J(M) ≥ 0. When d = 0, the
fact that S is local implies that J(M) = m. Since M is finitely generated, one has
m`M = 0 for some ` ≥ 0. By considering the chain of submodules M ⊇ mM ⊇
m2M ⊇ · · · ⊇ m`M = {0} and the long exact sequence for Ext-modules, we reduce
to the case where mM = 0. Now M is finitely generated over the field S/m, and
so we further reduce to the case where M = S/m is the residue field of the local
ring. Since S is regular, the Koszul complex (for any system of 2n generators for
the maximal ideal) resolves S/m; from this resolution, one obtains

ExtjS(S/m, S) =

{
S/m if j = 2n,

0 if j 6= 2n.
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This establishes (a) and (b) in the case d = 0. For the inductive step, it suffices
(with a little bit of extra work) to consider the case where there is an element f ∈ m
that is not a zero-divisor on M . We then have a short exact sequence

0→M
f−→M →M/fM → 0,

and d(M/fM) = d − 1. The geometric picture is that SuppM is a closed subset
of dimension d, and that the hypersurface defined by f intersects it in a subset of
dimension d − 1; the S-module M/fM is of course representing the restriction of
M to the hypersurface. Define

Ej = ExtjS(M,S) and F j = ExtjS(M/fM,S).

By induction, we have F j = 0 unless 2n − d − 1 ≤ j ≤ 2n, and d(F j) ≤ 2n − j.
The long exact cohomology sequence for Ext-modules gives

· · · → F j → Ej
f−→ Ej → F j+1 → · · · .

If j 6∈ {2n− d, . . . , 2n}, then we have F j = F j+1 = 0, and so multiplication by f is
an isomorphism from Ej to itself. Since Ej is a finitely generated S-module, and
f ∈ m, this implies Ej = 0 by Nakayama’s lemma. This proves (a). Also from the
exact sequence, Ej/fEj is isomorphic to a submodule of F j+1, and therefore

2n− (j + 1) ≥ d(F j+1) ≥ d(Ej/fEj) ≥ d(Ej)− 1,

which proves (b).
Now we turn to (c). From (a), we get j(M) ≥ 2n− d(M). Combined with (b),

this gives

d(Ej) ≤ 2n− j ≤ 2n− j(M) ≤ d(M),

with strict inequality for j > j(M). Assume for the sake of contradiction that
d(Ej(M)) < d(M). Then d(Ej) < d(M) for every j ≥ 0. Setting

E =

2n⊕
j=2n−d(M)

Ej ,

this gives d(E) < d(M), and therefore the ideal J(E) must be strictly bigger than
J(M). After localizing at an element f ∈ J(E) \ J(M), we achieve that M 6= 0

but ExtjS(M,S) = 0 for every j ≥ 0. Now one can show (as an exercise) that this
contradicts the fact that M is finitely generated.

It remains to deduce (d). We have already seen that j(M) ≤ 2n − d(M). The
reverse inequality follows from (c) and (b), because

d(M) = d(Ej(M)) ≤ 2n− j(M).

This completes the proof. �

Filtered resolutions. Now we return to the case where M is a finitely generated
left R-module. Choose a good filtration F•M . Proposition 6.4, applied to the
finitely generated S-module grFM , gives

d(grFM) + j(grFM) = 2n.

Obviously, we have J(M) =
√

AnnS(grFM) = J(grFM), and therefore

d(M) = dimS/J(M) = d(grFM).

The identity d(M) + j(M) = 2n in Theorem 6.3 is therefore equivalent to

j(M) = j(grFM).

In order to prove the theorem, we therefore need to understand the relationship
between ExtjR(M,R) and Extj

grFM
(grFM, grF R). We will see next time that this
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involves a spectral sequence. To set it up, we need a resolution of M by free
R-modules that takes into account the good filtration F•M .

Proposition 6.5. Let (M,F•M) be a finitely generated R-module with a good
filtration. Then there exists a free resolution

· · · → L2 → L1 → L0 →M → 0

where each (Lj , F•Lj) is a free R-module with a good filtration, and the differentials
in the resolution respect the filtrations. Moreover,

(a) each grFLj is free over S, of the same rank as Lj, and
(b) the complex of S-modules

· · · → grFL2 → grFL1 → grFL0 → grFM → 0

is exact.

Proof. For any e ∈ Z, define R(e) = R, but with the good filtration FjR(e) =
Fj+eR. We are going to construct a resolution in which each Lj is a direct sum of
copies of R(e) for various values of e.

We start by building L0. Since grFM is a finitely generated graded S-module, we
can choose homogeneous generators [m1], . . . , [mr], of degrees e1, . . . , er, meaning
that mi ∈ FeiM . Then

grFj M =

r∑
i=1

Sj−ei [mi],

and an easy argument shows that therefore

FjM =

r∑
i=1

Fj−eiR ·mi

for every j ≥ 0. This means exactly that we have a surjective morphism of left
R-modules

L0 =

r⊕
i=1

R(−ei)→M

compatible with the good filtrations on both terms, such that grFL0 → grFM is
also surjective. Let M ′ be the kernel of L0 →M , with the induced filtration. Then
the sequence

0→ grFM ′ → grFL0 → grFM → 0

is short exact, and since S is noetherian, it follows that grFM ′ is finitely generated;
in other words, M ′ is finitely generated, and F•M

′ is a good filtration. Now apply
the same argument to (M ′, F•M

′) to construct L1, and continue step by step to
create the desired free resolution for M . �

Let · · · → L2 → L1 → L0 be a filtered free resolution of M with the properties in
the proposition. If we set L∗j = HomR(Lj , R), then the complex of right R-modules

0→ L∗0 → L∗1 → L∗2 → · · ·

can be used to compute ExtjR(M,R). In fact, each term in this complex again has
a natural compatible filtration (in the sense of right R-modules).

Definition 6.6. Let L be a finitely generated left R-module with a good filtration
F•L. On the right R-module L∗ = HomR(L,R), we define

FjL
∗ =

{
φ ∈ L∗

∣∣ φ(FiL) ⊆ Fi+jR for every i ≥ 0
}

for every j ∈ Z.
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Lemma 6.7. Suppose that L is a finitely generated left R-module with a good
filtration F•L. Then L∗ is a finitely generated right R-module, and the filtration
F•L

∗ is again good.

Proof. Since L is finitely generated, L∗ is clearly again finitely generated. It is easy
to see that FjL

∗ · FkR ⊆ Fj+kL∗. Indeed, if φ ∈ FjL∗ and r ∈ FkR, then we have

(φ · r)(x) = φ(x) · r
and this belongs to Fi+jR · FkR ⊆ Fi+(j+k)R. We also need to prove that the
filtration on L∗ is exhaustive. Let φ ∈ HomR(L,R) be arbitrary. Since the filtration
on L is good, there exists some j0 ≥ 0 such that Fj+j0L = FjR · Fj0L for every
j ≥ 0. Since φ is left R-linear, we get

φ(Fj+j0L) ⊆ FjR · φ(Fj0L).

Now Fj0L is finitely generated over F0R, and therefore φ(Fj0L) ⊆ Fj1R for some
j1 ≥ 0. We now obtain

φ(Fj+j0L) ⊆ FjR · Fj1R ⊆ Fj+j1R,
which is enough to conclude that φ ∈ Fj1L∗. The proof that the filtration F•L

∗ is
good is left as an exercise. �

Exercises.

Exercise 6.1. Let S be a local ring, M a finitely generated S-module. Suppose that
ExtjS(M,S) = 0 for every j ≥ 0. Prove that M = 0.

Exercise 6.2. Let L = R(`), as a left R-module. Show that L∗ is isomorphic to
R(−`) as a right R-module (with the filtration defined in class).

Exercise 6.3. Let L be a finitely generated left R-module with a good filtration
F•L. Show that the natural morphism

grFL∗ → HomS

(
grFL, S)

is injective, and use this to prove that grFL∗ is finitely generated over S.
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Lecture 7: February 25

Review from last time. Let me briefly recall where we are at. The general setting
is that R is a (non-commutative) ring with 1, endowed with a filtration F•R, such
that the associated graded ring S = grF R is commutative and nonsingular of
dimension dimS = 2n. The prototypical example is of course R = An(K), with S
being the polynomial ring in 2n variables. Given a finitely generated left R-module
M , together with a good filtration F•M , we are trying to compare

ExtjR(M,R) and ExtjS(grFM,S).

More precisely, we want to show that the two integers

j(M) = min
{
j ≥ 0

∣∣ ExtjR(M,R) 6= 0
}

j(grFM) = min
{
j ≥ 0

∣∣ ExtjS(grFM,S) 6= 0
}

are always equal to each other. To this end, we had constructed a resolution

(7.1) · · · → L2 → L1 → L0 →M → 0

of M by free left R-modules, such that (1) each Lj has a good filtration; (2) the
morphisms in the resolution respect the filtrations; (3) the induced complex

(7.2) · · · → grFL2 → grFL1 → grFL0 → grFM → 0

is still exact, and therefore gives a resolution of grFM by free S-modules. In fact,
each Lj was a direct sum of copies of R(e), for different values of e ∈ Z, where
R(e) = R as a left R-module, but with the good filtration FiR(e) = Fe+iR.

Now each L∗j = HomR(Lj , R) is a right R-module, and the j-th cohomology of
the complex of right R-modules

0→ L∗0 → L∗1 → L∗2 → · · ·

is equal to ExtjR(M,R). We further showed that each L∗j again has a good filtration
(as a right R-module) – in fact, each L∗j is again a direct sum of copies of R(e),
viewed as a right R-module, by one of the exercises from Lecture 6. One has

grFL∗j
∼= HomS

(
grFL, S

)
,

and because of the exactness of (7.2), it follows that the j-th cohomology of the
complex of graded S-modules

0→ grFL∗0 → grFL∗1 → grFL∗2 → · · ·

is equal to ExtjS(grFM,S). So our problem comes down to comparing the coho-
mology of a filtered complex to the cohomology of the associated graded complex.
This can be done using the formalism of spectral sequences.

The spectral sequence of a filtered complex. Generally speaking, a spectral
sequence is a sequence of complexes (

E•` , d`
)
,

indexed by ` ∈ N. Here each E•` is a complex of vector spaces, modules, or whatever,

and the differentials d` : E•` → E•+1
` are morphisms in the appropriate category.

The complex E•` is often called the “`-th page” of the spectral sequence. What
makes a sequence of complexes into a spectral sequence is that each E•`+1 is obtained
from the previous complex E•` by taking cohomology:

En`+1
∼= Hn

(
E•`
)

=
ker
(
d` : En` → En+1

`

)
im
(
d` : En−1

` → En`
)

Of course, taking cohomology kills the differentials, and so the new differential d`+1

has to come from somewhere else.
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Typically, there is some quantity that one would like to compute, and the initial
page of the spectral sequence is a known (or easily obtained) “approximation” to
this quantity. As ` gets larger, the approximation gets better and better, and things
eventually “converge” to the quantity one is trying to compute. This is of course
just a rough description; I am going to make it more precise later on.

In my opinion, the best example for understanding spectral sequences is the
spectral sequence of a filtered complex. Suppose then that we have a complex
(K•, d), consisting of vector spaces, modules, or whatever:

· · · → Kn−1 d−→ Kn d−→ Kn+1 → · · ·

We are interested in computing the cohomology

Hn(K•) =
ker
(
d : Kn → Kn+1

)
im
(
d : Kn−1 → Kn

)
of this complex. Suppose also that the complex is filtered, meaning that each Kn

has an increasing filtration F•K
n, possibly infinite in both directions,

· · · ⊆ FjKn ⊆ Fj+1K
n ⊆ · · ·

that is compatible with the differentials in the complex, meaning that d(FjK
n) ⊆

FjK
n+1. We also assume that

(7.3)
⋃
j∈Z

FjK
n = Kn and FjKn = 0 for j � 0.

The compatibility with the differential means that each FjK
• is a subcomplex of

K•, and so we obtain a filtration on the cohomology of K• by setting

FjH
n(K•) = im

(
Hn(FjK

•)→ Hn(K•)
)
.

In fact, it is not hard to see that

FjH
n(K•) =

FjK
n ∩ ker d+ d(Kn−1)

d(Kn−1)
∼=

FjK
n ∩ ker d

FjKn ∩ d(Kn−1)
.

and hence that that the associated graded object is given by

grFj H
n(K•) ∼=

FjK
n ∩ ker d

Fj−1Kn ∩ ker d+ FjKn ∩ d(Kn−1)
.

The spectral sequence is going to let us compute not Hn(K•) itself, but the graded
pieces for the above filtration. The first approximation to this – and the starting
point for the spectral sequence – is the associated graded complex grFK•, with the
induced differential, and terms

· · · → grFKn−1 d−→ grFKn d−→ grFKn+1 → · · ·

Again, it is not hard to show that

Hn
(
grFj K

•) =
ker
(
d : grFj K

n → grFj K
n+1
)

im
(
d : grFj K

n−1 → grFj K
n
) ∼= FjK

n ∩ d−1(Fj−1K
n+1)

Fj−1Kn + d(FjKn)
.

Note that this is usually not the same as grFj H
n(K•).

Example 7.4. Here is a typical example of a filtered complex. Let (A,m) be a local
ring, and suppose that K• is a complex of free A-modules of finite rank. We can
filter each Kn by powers of the maximal ideal,

Kn ⊇ mKn ⊇ m2Kn ⊇ · · · ,
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which amounts to setting F0K
n = Kn and F−jK

n = mjKn for j ≥ 0. Here the
second condition in (7.3) does not hold, but it turns out that one can weaken this
to the condition that ⋂

j∈Z
(FjK

n + L) = L

for every submodule L ⊆ Kn, which does hold in this example (by Krull’s theorem).
In particular, the intersection of all FjK

n equals zero, which makes sense if we think
of elements of mj as functions that vanish to order j; going further down in the
filtration on Kn therefore means getting closer to zero.

Example 7.5. The long exact sequence in cohomology is a toy example of a spectral
sequence. Suppose that we just have one subcomplex K•0 ⊆ K•. Together with the
quotient complex, this makes a short exact sequence

0→ K•0 → K• → K•1 → 0

and so we get a long exact sequence in cohomology:

· · · → Hn−1
(
K•1
)
→ Hn

(
K•0
)
→ Hn

(
K•
)
→ Hn

(
K•1
)
→ Hn+1

(
K•0
)
→ · · ·

This tells us how the cohomology of K• is related to the cohomology of the subcom-
plex and the quotient complex: there are additional maps Hn(K•1 ) → Hn+1(K•0 ),
and the two graded pieces of Hn(K•) are the cokernel respectively kernel of these
maps. If the filtration is longer, then the picture is still similar, but it takes more
steps to get from the cohomology of the associated graded complex to the associated
graded of the cohomology of K•.

As explained above, we may think of elements of FjK
n as being “close to zero”

when j � 0. The idea behind the spectral sequence is to “approximate” the
condition x ∈ FjKn and dx = 0 by the weaker condition dx ∈ Fj−`Kn, and then
increasing the value of ` ≥ 0. In other words, we are approximating FjK

n ∩ ker d
by the decreasing sequence of submodules FjK

n ∩ d−1(Fj−`K
n+1) for ` ≥ 0; this

makes sense because of the condition in (7.3). With this in mind, we can now give
the precise definition of the spectral sequence of a filtered complex.

For each n, j ∈ Z and each ` ∈ N, we define

Zn`,j = FjK
n ∩ d−1

(
Fj−`K

n+1
)
.

In other words, an element x ∈ FjK
n belongs to Zn`,j iff dx ∈ Fj−`K

n+1. By

construction, the differential d : Kn → Kn+1 induces a morphism

d` : Zn`,j → Zn+1
`,j−`, x 7→ dx.

Similarly, for each n, j ∈ Z and each ` ∈ N, we define

Bn`,j = Zn`,j ∩
(
Fj−1K

n + d
(
Fj+`−1K

n−1
))

= Fj−1K
n ∩ d−1

(
Fj−`K

n+1
)

+ FjK
n ∩ d

(
Fj+`−1K

n−1
)

= Zn`−1,j−1 + d
(
Zn−1
`−1,j+`−1

)
.

We can then form the quotient

En`,j = Zn`,j/B
n
`,j ,

and observe that d` maps Bn`,j into Bn+1
`,j−`, and therefore induces a morphism

d` : En`,j → En+1
`,j−`

with the property that d` ◦ d` = 0.
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To obtain a complex (E•` , d`), we consider the graded modules

En` =
⊕
j∈Z

En`,j .

By construction, the differential d` : En` → En+1
` reduces the degree by `.

Example 7.6. For ` = 0, we have

Zn0,j = FjK
n and Bn0,j = Fj−1K

n,

since d(FjK
n) ⊆ FjKn+1 by assumption. Consequently,

En0,j =
FjKn

Fj−1Kn
= grFj K

n,

with differential d0 induced by d. Given (7.3), it also makes sense to set

Zn∞,j = FjK
n ∩ ker d and Bn∞,j = Fj−1K

n ∩ ker d+ FjK
n ∩ d

(
Kn−1

)
,

which extends the above notation (formally) to ` =∞. Then

En∞,j =
FjK

n

Fj−1Kn ∩ ker d+ FjKn ∩ d(Kn−1)
∼= grFj H

n(K•),

according to our earlier calculation.

Now let us show that the complexes (E•` , d`) really form a spectral sequence.

Proposition 7.7. For each n, j ∈ Z and each ` ∈ N, one has

En`+1,j
∼= Hn

(
E•`,j , d`

)
.

Proof. Set Hn
`,j = Hn(E•`,j), and recall that this is the cohomology of the complex

Zn−1
`,j+`/B

n−1
`,j+`

d`−→ Zn`,j/B
n
`,j

d`−→ Zn+1
`,j−`/B

n+1
`,j−`.

We start by defining a function

φ : En`+1,j → Hn
`,j .

Suppose that x ∈ Zn`+1,j . Then also x ∈ Zn`,j and

d`x = dx ∈ d
(
Zn`+1,j

)
⊆ Bn+1

`,j−`,

and so x defines a class φ(x) ∈ Hn
`,j . This class does not depend on the choice of

representative, because

Bn`+1,j = Zn`+1,j ∩
(
Bn`,j + d

(
Zn−1
`,j+`

))
by the lemma below. Indeed, we see that x ∈ Bn`+1,j if and only if its image in Hn

`,j

is zero, and so φ is well-defined and injective.
It remains to argue that φ is also surjective. Any class in Hn

`,j can be represented

by an element x ∈ Zn`,j with d`x ∈ Bn+1
`,j−`. After unwinding the definitions, this is

saying that x ∈ FjKn and dx ∈ Fj−`Kn+1 and

dx = dx′ + y

for some x′ ∈ Fj−1K
n with dx′ ∈ Fj−`Kn+1 and some y ∈ Fj−`−1K

n+1. Thus

x− x′ ∈ FjKn ∩ d−1
(
Fj−`−1K

n+1
)

= Zn`+1,j ,

and after replacing x by x−x′, we can assume from the beginning that x ∈ Zn`+1,j .
But this means exactly that the given class is in the image of φ. �

Lemma 7.8. One has

Bn`+1,j = Zn`+1,j ∩
(
Bn`,j + d

(
Zn−1
`,j+`

))
for every j, n ∈ Z and every ` ∈ N.
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Proof. Unwinding the definitions shows that

Bn`,j + d
(
Zn−1
`,j+`

)
= Fj−1K

n ∩ d−1
(
Fj−`K

n+1
)

+ FjK
n ∩ d

(
Fj+`K

n−1
)

and so the intersection with Zn`+1,j = FjK
n ∩ d−1(Fj−`−1K

n+1) equals

Fj−1K
n ∩ d−1

(
Fj−`−1K

n+1
)

+ FjK
n ∩ d

(
Fj+`K

n−1
)

= Bn`+1,j . �

In what sense does the spectral sequence of a filtered complex “converge”? Note
that the Zn`,j form a decreasing chain of submodules of FjK

n with

Zn∞,j =
⋂
`∈N

Zn`,j .

Proposition 7.7 shows that En`+1,j is a subquotient of En`,j , but there is in general
no natural morphism from one to the other, which means that one cannot take a
(direct or inverse) limit in the algebraic sense. Fortunately, what happens almost
always in practice is that, for each fixed j, n ∈ Z, the modules En`,j stabilize for
sufficiently large `. In fact, one has the following necessary and sufficient condition
for stabilization, in terms of the filtration on the complex.

Proposition 7.9. Fix some n ∈ Z. The differential d` : En` → En+1
` vanishes for

every ` ≥ `0 if, and only if, the filtration satisfies

FjK
n+1 ∩ d

(
Kn
)

= FjK
n+1 ∩ d

(
Fj+`0−1K

n
)

for every j ∈ Z.

Proof. The differential d` : En` → En+1
` vanishes for every ` ≥ `0 exactly when

d(Zn`,j) ⊆ Bn+1
`,j−` for every ` ≥ `0 and every j ∈ Z. After replacing j by j + `, this

translates into the condition that

FjK
n+1 ∩ d

(
Fj+`K

n
)

⊆ Fj−1K
n+1 ∩ d−1

(
Fj−`K

n+2
)

+ FjK
n+1 ∩ d

(
Fj+`−1K

n
)
,

or after intersecting with d(Fj+`K
n),

FjK
n+1 ∩ d

(
Fj+`K

n
)

= Fj−1K
n+1 ∩ d

(
Fj+`K

n
)

+ FjK
n+1 ∩ d

(
Fj+`−1K

n
)
.

Recursively applying this identity (for ` ≥ `0), and using the fact that the filtration
on Kn is exhaustive, we can rewrite this in the equivalent form

FjK
n+1 ∩ d

(
Kn
)

= Fj−1K
n+1 ∩ d

(
Kn
)

+ FjK
n+1 ∩ d

(
Fj+`0−1K

n
)
.

According to (7.3), there is some j0 ∈ Z with Fj0K
n+1 = 0. We now get the desired

conclusion by recursively applying the identity above (for j ≥ j0). �

Corollary 7.10. If there is some `0 ∈ N with the property that

FjK
n+1 ∩ d

(
Kn
)

= FjK
n+1 ∩ d

(
Fj+`0−1K

n
)

FjK
n ∩ d

(
Kn−1

)
= FjK

n ∩ d
(
Fj+`0−1K

n−1
)

for every j ∈ Z, then one has En`0 = En∞.

For example, one has En1 = En∞ exactly when the differential d is strictly com-
patible with the filtration, in the sense that FjK

n ∩ d(Kn−1) = d(FjK
n−1) (and

the same condition with n+ 1 in place of n).

Note. I have been using the “natural” indexing for the spectral sequence, where n
is the position in the complex K•, and j the degree with respect to the filtration on
Kn. For historical reasons, people usually index their spectral sequences differently,
and our En`,j is usually denoted by E−j,n+j

` . (This looks more natural in the special

case of a double complex.)
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Application to our problem. Now we return to the case of a finitely generated
left R-module M , endowed with a good filtration F•M . If we apply the spectral
sequence formalism to the complex of right R-modules

0→ L∗0 → L∗1 → L∗2 → · · · ,
with the good filtration F•L

∗
j constructed earlier, we obtain a spectral sequence

with Ej0 = grFL∗j and with differential d0 induced by the differential in the original
complex. It follows that

Ej1 = ExtjS
(
grFM,S

)
,

because the complex in (7.2) is a free resolution of grFM . On the other hand, the
complex in (7.1) is a free resolution of M , and so we get

Ej∞ = grFExtjR(M,R).

Recall that we are trying to prove the identity j(M) = j(grFM). The first thing
we should do is check that the spectral sequence converges, in the sense that each
Ej` stabilizes for ` � 0. This is a consequence of the following lemma about good
filtrations.

Lemma 7.11. Let (K•, d) be a complex of left (or right) R-modules, and suppose
that each Kn has a good filtration F•K

n such that d(FjK
n) ⊆ FjK

n+1 for every
j, n ∈ Z. Then for every n ∈ Z, there is some j0 ∈ N such that

FjK
n+1 ∩ d

(
Kn
)

= FjK
n+1 ∩ d

(
Fj+j0K

n
)
.

Proof. On the submodule d(Kn) ⊆ Kn+1, we have two good filtrations, one induced
by the good filtration on Kn+1, the other by the good filtration on Kn. Let us
denote these by

Fjd(Kn) = FjK
n+1 ∩ d(Kn) and Gjd(Kn) = d(FjK

n).

The first filtration is good because grF d(Kn) is a submodule of the finitely generated
S-module grFKn+1; the second filtration is good because grGd(Kn) is a quotient
module of the finitely generated S-module grFKn. In both cases, we are using the
fact that S is noetherian. By Corollary 2.15, there is an integer j0 ≥ 0 such that

Fjd(Kn) ⊆ Gj+j0d(Kn)

for every j ∈ Z. We get the result by intersecting both sides with FjK
n+1. �

Together with the convergence criterion in Corollary 7.10, this shows that En` =
En∞ for `� 0, and so our spectral sequence does indeed converge. Now recall that

Ej1 = ExtjS(grFM,S).

We can use the results about Ej1 from Proposition 6.4, plus the spectral sequence,
to prove the following theorem.

Theorem 7.12. Let M be a finitely generated R-module with a good filtration F•M .

(a) One has j(grFM) = j(M), and thus ExtjR(M,R) = 0 for j < j(grFM).

(b) One has d
(
ExtjR(M,R)

)
≤ 2n− j for every j ≥ 0.

(c) One has d
(
Ext

j(M)
R (M,R)

)
= 2n− j(M).

Proof. To simplify the notation, let me set j0 = j(grFM), which means that Ej1 = 0
for all j < j0. According to Proposition 6.4, we have

d(Ej1) ≤ 2n− j
for every j ≥ 0, with equality for j = j0. Here d(M) = dimS/J(M) is the dimension
of the support.
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Since Ej`+1 is a subquotient of Ej` , it follows that Ej` = 0 for j < j0 and ` ≥ 1.

But Ej∞ = Ej` for `� 0, and so Ej∞ = 0 for j < j0. Remembering that

Ej∞ = grF ExtjR(M,R),

we deduce that ExtjR(M,R) = 0 for j < j0, and hence that j(M) ≥ j0. This gives
us one half of (a), namely

j(M) ≥ j(grFM).

By the same reasoning, d(Ej1) ≤ 2n− j implies that d(Ej∞) ≤ 2n− j, and therefore

d
(
ExtjR(M,R)

)
≤ 2n− j

for every j ≥ 0, which is (b). Lastly, we have d(Ej01 ) = 2n− j0, but Ej0−1
1 = 0 and

d(Ej0+1
1 ) ≤ 2n− j0 − 1. Therefore

Ej02
∼= ker

(
d1 : Ej01 → Ej0+1

1

)
,

and since d(Ej0+1
1 ) ≤ 2n− j0− 1, we see that d(Ej02 ) = 2n− j0. Continuing in this

way, we get d(Ej0` ) = 2n− j0 for every ` ≥ 1, and therefore

d
(
Extj0R (M,R)

)
= 2n− j0.

In particular, Extj0R (M,R) 6= 0, and so j0 ≥ j(M). This gives us the other inequality

j(grFM) ≥ j(M),

and so (a) and (c) are proved. �

Exercises.

Exercise 7.1. Generalize the proof of Proposition 7.9 to the case where the filtration
on each module Kn in the complex satisfies⋂

j∈Z
(FjK

n + L) = L

for every submodule L ⊆ Kn.
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Lecture 8: February 27

Holonomic modules and duality. Recall that R is a filtered ring, whose as-
sociated graded ring S = grFR is commutative, noetherian, and nonsingular of
dimension dimS = 2n. Last time, we proved the following theorem about finitely
generated (left or right) R-modules.

Theorem. Let M be a finitely generated R-module with a good filtration F•M .

(a) One has j(grFM) = j(M), and thus ExtjR(M,R) = 0 for j < j(grFM).

(b) One has d
(
ExtjR(M,R)

)
≤ 2n− j for every j ≥ 0.

(c) One has d
(
Ext

j(M)
R (M,R)

)
= 2n− j(M).

As I explained before, the fact that j(grFM) = j(M), together with the identity
d(grFM) + j(M) = 2n, implies that

d(M) + j(M) = 2n

for every finitely generated R-module.

Example 8.1. In the case of the Weyl algebra An, this says that the two notions
of dimension (with respect to the Bernstein filtration and the degree filtration) are
the same. Since we know from Bernstein’s inequality that dB(M) ≥ n for every
nonzero finitely generated An-module M , it follows that also ddeg(M) ≥ n.

Let us now assume that Bernstein’s inequality holds: Every finitely generated
left or right R-module M satisfies d(M) ≥ n, provided that M 6= 0. We saw earlier
that this holds when R = An. An equivalent formulation is that every finitely
generated left or right R-module satisfies j(M) ≤ n, meaning that ExtjR(M,R) 6= 0
for some j ≤ n, again provided that M 6= 0. Bernstein’s inequality, together with
the above theorem, has some remarkable consequences.

Corollary 8.2. If M is a finitely generated R-module, then ExtjR(M,R) = 0 for
j > n.

Proof. Let M be a finitely generated left (or right) R-module. Then each Ej =

ExtjR(M,R) is a finitely generated right (or left) R-module, and the theorem gives
d(Ej) ≤ 2n− j. But Bernstein’s inequality says that d(Ej) ≥ n whenever Ej 6= 0,
and so the conclusion is that Ej = 0 for j > n. �

Note that this is completely false for finitely generated S-modules, where Extj

can be nonzero in the range 0 ≤ j ≤ 2n.
The most interesting R-modules are clearly those for which the dimension d(M)

is minimal (or where the quantity j(M) = 2n − d(M) is maximal). By analogy
with the case R = An, we call such modules holonomic.

Definition 8.3. A finitely generated left (or right) R-module M is called holonomic
if either M = 0, or M 6= 0 and d(M) = n.

An equivalent definition is that M is holonomic if either M = 0, or M 6= 0 and
j(M) = n. Since ExtjR(M,R) = 0 for j > n, we obtain the following alternative
characterization of holonomic R-modules.

Corollary 8.4. A finitely generated R-module M is holonomic if and only if
ExtjR(M,R) = 0 for every j 6= n.

Given any holonomic left (or right) R-module M , we therefore get another right
(or left) R-module

M∗ = ExtjR(M,R).

This is called the holonomic dual. Let us investigate the properties of M∗.
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Lemma 8.5. If M is holonomic, then M∗ is also holonomic.

Proof. Since j(M) = n, the theorem from last time shows that

d(M∗) = d
(
Ext

j(M)
R (M,R)

)
= 2n− j(M) = n.

This says that M∗ is again holonomic. �

The association M 7→ M∗ is contravariant functor from the category of holo-
nomic left (or right) R-modules to the category of holonomic right (or left) R-
modules. Indeed, given a morphism of left R-modules f : M → N between two
holonomic R-modules M and N , the functoriality of Ext shows that we have a
morphism of right R-modules

f∗ : ExtnR(N,R)→ ExtnR(M,R)

in the opposite direction, and it is not hard to see that (f ◦ g)∗ = g∗ ◦ f∗. As a
contravariant functor, the holonomic dual is also exact: if

0→M1 →M2 →M3 → 0

is a short exact sequence of holonomic left (or right) R-modules, then the long exact

sequence for ExtjR(−, R) becomes a short exact sequence

0→ ExtnR(M3, R)→ ExtnR(M2, R)→ ExtnR(M1, R)→ 0,

due to the vanishing of ExtjR(Mi, R) for j 6= n. In other words,

0→M∗3 →M∗2 →M∗1 → 0

is again a short exact sequence.

Proposition 8.6. We have M ∼= M∗∗ for every holonomic left (or right) R-module
M , and hence the holonomic dual gives an equivalence of categories

(holonomic left R-modules) ∼= (holonomic right R-modules)op.

Proof. Let M be a holonomic left R-module. Choose a free resolution

· · · → L2 → L1 → L0 →M → 0

by free left R-modules of finite rank. The complex of right R-modules

0→ L∗0 → L∗1 → L∗2 → · · ·
is then exact except in degree n, where the cohomology is M∗ = ExtnR(M,R).
Choose another free resolution

· · · → K2 → K1 → K0 →M∗ → 0

by free right R-modules of finite rank. By a general lemma in homological algebra,
there is a morphism of complexes of right R-modules

· · · K1 K0 0 · · ·

· · · L∗n−1 L∗n L∗n+1 · · ·

d

f1 f0

d d

that induces an isomorphism on cohomology. (Such morphisms are called quasi-
isomorphisms.) Let me briefly recall the construction. Since M∗ is the cohomology
in degree n of the complex, we have M∗ = ker d/ im d, and so the submodule
ker d ⊆ L∗n maps onto M∗. Because K0 is a free R-module, we can find a lifting

K0

ker d M∗
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indicated by the dashed arrow, and we denote by f0 : K0 → L∗n the composition.
By construction, d◦f0 = 0, and so the first square in the diagram below commutes:

· · · K1 K0 0 · · ·

· · · L∗n−1 L∗n L∗n+1 · · ·

d

f0

d d

Since the composition K1 → K0 → M∗ is zero, the morphism f0 ◦ d maps K1

into the submodule im d ⊆ ker d ⊆ L∗n. This submodule is the image of L∗n−1, and
because K1 is a free R-module, and so we can again find a lifting

K1

L∗n−1 im d

f1

d

which now makes the second square in the diagram commute:

· · · K1 K0 0 · · ·

· · · L∗n−1 L∗n L∗n+1 · · ·

d

f1 f0

d d

Continuing in this manner produces the desired morphism of complexes. If we now
apply the functor HomR(−, R) a second time, we obtain a morphism of complexes
of left R-modules

· · · Ln+1 Ln Ln−1 · · ·

· · · 0 K∗0 K∗1 · · ·

One can show that this morphism still induces an isomorphism on cohomology.
Now the complex in the first row is a resolution of M , and therefore only has
cohomology at L0. Likewise, because M∗ is holonomic, the complex in the second
row only has cohomology at K∗n, where the cohomology is M∗∗. In this way, we
obtain a morphism of left R-modules M → M∗∗, which is an isomorphism by the
comment above. �

We can use this result to compare the characteristic varieties of M and M∗.

Corollary 8.7. If M is holonomic, then Ch(M) = Ch(M∗).

Proof. Choose a good filtration F•M and recall that Ch(M) is the closed subset
of SpecS defined by the radical of AnnS(grFM), or equivalently, the support of
the finitely generated S-module grFM . The filtered free resolution from last time
induces a good filtration on M∗ = ExtnR(M,R); in fact, using the spectral sequence
from last time, En∞ = grFExtnR(M,R) = grFM∗. Since the spectral sequence
converges, En∞ is a subquotient of En1 = ExtnS(grFM,S), and therefore

Ch(M∗) = SuppEn∞ ⊆ SuppEn1 ⊆ Supp(grFM) = Ch(M).

But then we also have Ch(M) = Ch(M∗∗) ⊆ Ch(M∗), and so the two characteristic
varieties are in fact equal. �

The existence of the holonomic dual gives another explanation for the fact that
the category of holonomic An-modules is both artinian and noetherian. In fact,
recall that we showed earlier, using the notion of multiplicity, that every ascending
or descending chain of submodules of a holonomic An-module M has finite length
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(bounded by the multiplicity of M). Since the holonomic dual takes ascending
chains of submodules of M to descending chains of submodules of M∗, both chain
conditions are equivalent in this case. This is again unlike the commutative case.

Exercises.

Exercise 8.1. Let R be a ring with 1. Let A• and B• be two complexes of free
R-modules of finite rank. Suppose that we have a morphism of complexes

· · · An−1 An An+1 · · ·

· · · Bn−1 Bn Bn+1 · · ·

fn−1 fn fn+1

that induces isomorphisms on cohomology. Show that the same thing is true after
applying the functor (−)∗ = HomR(−, R): the induced morphism of complexes

· · · B∗n+1 B∗n B∗n+1 · · ·

· · · A∗n+1 A∗n A∗n+1 · · ·

f∗n+1 f∗n f∗n−1

is again a quasi-isomorphism. (Hint: Use the mapping cone. Show that the mapping
cone of f is an exact complex of free R-modules, and therefore homotopic to zero.
Show that this property is preserved by the functor HomR(−, R), and conclude
that the morphism between the dual complexes is also a quasi-isomorphism.)



42

Lecture 9: March 4

Local coordinates on algebraic varieties. Let X be an algebraic variety over
a field k, with structure sheaf OX . More precisely, X is a scheme of finite type over
k, meaning that for every affine open subset U ⊆ X, the ring of functions Γ(U,OX)
is a finitely generated k-algebra, or in other words, a quotient of a polynomial ring.
We say that X is nonsingular of dimension n if, at each closed point x ∈ X, the
stalk

OX,x = lim
U3x

Γ(U,OX)

is a regular local ring of dimension n; in other words, if mx ⊆ OX,x denotes the
maximal ideal, then

dimOX,x/mx mx/m
2
x = n = dim OX,x.

When the field k is perfect (which is always the case in characteristic zero), an
equivalent condition is that the sheaf of Kähler differentials Ω1

X/k is locally free of

rank n.
Since we are going to need this in a moment, let me briefly review derivations

and Kähler differentials. Let A be a finitely generated k-algebra. A derivation
from A into an A-module M is a k-linear mapping D : A → M such that δ(fg) =
fδ(g) + gδ(f) for every f, g ∈ A. We denote by Derk(A,M) the set of all such
derivations; this is an A-module in the obvious way. In the special case M = A,
we use the notation Derk(A) for the derivations from A to itself. In view of the
formula δ(fg) = fδ(g) + gδ(f), such a derivation is the algebraic analogue of a
vector field, acting on the set of functions in A. We have Derk(A) ⊆ Endk(A), and
one can check that if δ1, δ2 ∈ Derk(A), then their commutator

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1 ∈ Endk(A)

is again a derivation. It is the analogue of the Lie bracket on complex manifolds.
The module of Kähler differentials Ω1

A/k represents the functorM 7→ Derk(A,M),

in the sense that one has a functorial isomorphism

Derk(A,M) ∼= HomA

(
Ω1
A/k,M

)
.

In other words, Ω1
A/k is an A-module, together with a derivation d : A→ Ω1

A/k, such

that every derivation δ ∈ Derk(A,M) factors uniquely as δ = δ̃ ◦ d for a unique

A-linear map δ̃ : Ω1
A/k → M . Concretely, Ω1

A/k can be constructed by taking the

free A-module on the set of generators df , for f ∈ A, and imposing the relations
d(fg) = fdg + gdf and d(f + g) = df + dg for every f, g ∈ A, and df = 0 for every
f ∈ k. By construction, one has

Derk(A) ∼= HomA(Ω1
A/k, A),

which makes the module of Kähler differentials dual to the module of derivations.
Globally, Ω1

X/k is a coherent sheaf of OX -modules, such that for every affine open

subset U ⊆ X, one has Γ(U,Ω1
X/k) = Ω1

A/k, where A = Γ(U,OX). There is again

a universal derivation d : OX → Ω1
X/k. Think of Ω1

X/k as an algebraic analogue of

the sheaf of holomorphic one-forms on a complex manifold. The tangent sheaf

TX = HomOX (Ω1
X/k,OX)

is defined as the dual of the sheaf of Kähler differentials; on affines, one has
Γ(U,TX) = Derk(A), using the notation from above. This is an algebraic ana-
logue of the sheaf of holomorphic tangent vector fields on a complex manifold.

Now suppose that X is nonsingular of dimension n, or equivalently, that Ω1
X/k is

locally free of rank n. At every closed point x ∈ X, one can choose local coordinates
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in the following way: there is an affine open neighborhood U of x, together with n
regular functions x1, . . . , xn ∈ Γ(U,OX), such that

Ω1
X/k

∣∣
U
∼=

n⊕
i=1

OX
∣∣
U
· dx i.

Dually, we have derivations ∂1, . . . , ∂n ∈ Derk
(
Γ(U,OX)

)
, such that

TX

∣∣
U
∼=

n⊕
i=1

OX
∣∣
U
· ∂i.

This says that df = ∂1(f) · dx 1 + · · ·+ ∂n(f) · dxn for every f ∈ Γ(U,OX), and so
the derivation ∂i plays the role of the partial derivative operator ∂/∂xi. One can
choose the functions x1, . . . , xn ∈ Γ(U,OX) in such a way that they generate the
maximal ideal mx ⊆ OX,x. Keep in mind that the morphism U → Ank defined by
the local coordinates is étale, but not usually an embedding (because open sets in
the Zariski topology are too big).

The sheaf of differential operators. Let X be a nonsingular algebraic variety.
Our goal is to define the sheaf of differential operators DX , which is a global ana-
logue of the Weyl algebra An(k). This will be a quasi-coherent sheaf of OX -modules
DX , together with an increasing filtration F•DX by coherent OX -modules, where
FjDX consists of differential operators of order ≤ j.

We start by considering the affine case. So let U ⊆ X be an affine open subset,
and set A = Γ(U,OX), which is a finitely generated k-algebra. We are going to
define an A-module D(A) ⊆ Endk(A), whose elements are the algebraic differential
operators of finite order on A. It will satisfy

D(A) =

∞⋃
j=0

FjD(A),

where FjD(A) is the submodule of operators of order≤ j. The idea is that operators
of order 0 should be multiplication by elements in A, and that if P ∈ FiD(A) and
Q ∈ FjD(A), then their commutator [P,Q] = P ◦ Q − Q ◦ P ∈ Endk(A) should
belong to Fi+j−1D(A). This is consistent with what happens for the Weyl algebra.

For an element f ∈ A, we also use the symbol f ∈ Endk(A) to denote the
operator of multiplication by f . Observe that P ∈ Endk(A) is multiplication by
the element P (1) ∈ A if and only if P is A-linear if and only if [P, f ] = 0 for every
f ∈ A. We can therefore define

F0D(A) =
{
P ∈ Endk(A)

∣∣ [P, f ] = 0 for every f ∈ A
} ∼= A.

We then define FjD(A) recursively by saying that

FjD(A) =
{
P ∈ Endk(A)

∣∣ [P, f ] ∈ Fj−1D(A) for every f ∈ A
}
.

This construction of differential operators is due to Grothendieck.

Example 9.1. Let us work out the relationship between F1D(A) and Derk(A). Every
derivation δ ∈ Derk(A) is also a differential operator of order 1, because

[δ, f ](g) = δ(fg)− fδ(g) = δ(f) · g
for every f, g ∈ A, which shows that [δ, f ] = δ(f) ∈ F0D(A). Conversely, suppose
that we have some P ∈ F1D(A). By definition, for every f ∈ A, there exists some
pf ∈ A such that [P, f ] = pf . Concretely, this means that

P (fg)− fP (g) = pf · g
for every f, g ∈ A. Taking g = 1, we get pf = P (f)− fP (1), and so

P (fg)− fP (g)− gP (f) + fgP (1) = 0.
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It is then easy to check that P − P (1) is a derivation. The conclusion is that

F1D(A) ∼= A⊕Derk(A)

with P ∈ F1D(A) corresponding to the pair
(
P (1), P − P (1)

)
.

It is easy to see that each FjD(A) is a finitely generated A-module, and that
composition in Endk(A) has the following effect: if P ∈ FiD(A) and Q ∈ FjD(A),
then P ◦Q ∈ Fi+jD(A) and [P,Q] ∈ Fi+j−1D(A). With some more work, one can
prove the following result.

Proposition 9.2. Let A be a finitely generated k-algebra. If A is nonsingular of
dimension n, then the following is true:

(a) As an A-algebra, D(A) ⊆ Endk(A) is generated by Derk(A), subject to the
relations [δ, f ] = δ(f) for every δ ∈ Derk(A) and every f ∈ A.

(b) One has FjD(A)/Fj−1D(A) ∼= Symj Derk(A) for j ≥ 0.
(c) One has an isomorphism of graded A-algebras

grFD(A) =

∞⊕
j=0

FjD(A)/Fj−1D(A) ∼= Sym Derk(A)

between the associated graded algebra of D(A) and the symmetric algebra
on Derk(A).

Here, for any A-module M , the j-th symmetric power SymjM is the A-module
obtained by quotienting M ⊗A · · · ⊗AM by the submodule generated by elements
of the form m1 ⊗ · · ·mj − mσ(1) ⊗ · · ·mσ(j), for all permutations σ ∈ Sj . The
symmetric algebra on M is the graded A-algebra

SymM =

∞⊕
j=0

SymjM.

It has the following universal property: if B is any A-algebra, then every morphism
of A-modules M → B extends uniquely to a morphism of A-algebras SymM → B.
For example, one has SymA⊕r ∼= A[x1, . . . , xr].

Let us give a concrete description of differential operators in local coordinates.
Let U ⊆ X be an affine open, with local coordinates x1, . . . , xn, and set A =
Γ(U,OX). The A-module Derk(A) is free of rank n, generated by the derivations
∂1, . . . , ∂n, and so D(A) is freely generated over A by products of these. In other
words, every P ∈ FjD(A) can be written uniquely in the form

P =
∑
|α|≤j

fα∂
α,

where ∂α = ∂α1
1 · · · ∂αnn and where fα ∈ A. The only difference with the case of

the Weyl algebra is that the coefficients now belong to the ring A, instead of to the
polynomial ring.

Example 9.3. In the case A = k[x1, . . . , xn], we have D(A) = An(k), and the
filtration F•D(A) agrees with the order filtration.

Now we would like to say that DX is the unique sheaf of OX -modules with the
property that Γ(U,DX) = D

(
Γ(U,OX)

)
for every affine open U ⊆ X. For this to

work, one needs the following compatibility result.

Proposition 9.4. Let A be a finitely generated k-algebra that is nonsingular of
dimension n. For nonzero f ∈ A, set Af = A[f−1]. Then one has isomorphisms

D(Af ) ∼= Af ⊗A D(A) and FjD(Af ) ∼= Af ⊗A FjD(A).



45

The content of this is that every differential operator on Af extends, after mul-
tiplication by a sufficiently large power of f , to a differential operator on A. (The
analogous result for Kähler differentials is that Ω1

Af/k
∼= Af ⊗A Ω1

A/k; you can find

this in Hartshorne, who quotes Matsumura for the proof.)

Note. Unless X is affine, Γ(X,DX) does not embed into the k-linear endomor-
phisms of Γ(X,OX). For example, we shall see below that there are many algebraic
differential operators on Pnk , but since Pnk is proper, every regular function on Pnk is
constant. This is why differential operators are defined locally.

The proposition implies that DX is a quasi-coherent sheaf of OX -modules, and
that each FjDX is coherent. Indeed, recall that a sheaf of OX -modules F is called
quasi-coherent if, for every affine open subset U ⊆ X, the restriction of F to U
is the sheaf of OX -modules associated with the Γ(U,OX)-module Γ(U,F ). On an
affine scheme SpecA, a necessary and sufficient condition for F to be quasi-coherent
is that

Γ
(
D(f),F

) ∼= Af ⊗A Γ(SpecA,F )

for every f ∈ A, where D(f) ⊆ SpecA denotes the principal affine open defined by
f . When X is noetherian, which is the case for schemes of finite type over a field, F
is coherent if each Γ(U,F ) is finitely generated over Γ(U,OX). So the proposition
says exactly that DX is quasi-coherent and that each FjDX is coherent.

The isomorphisms in Proposition 9.2 globalize as follows. One has F0DX = OX ,
and for every j ≥ 0, one has

grFj DX = FjDX/Fj−1DX
∼= Symj TX ,

where TX is the tangent sheaf. One also has an isomorphism of graded OX -algebras

grFDX
∼= Sym TX ,

and so the associated graded algebra of DX is again commutative, as in the case
of the Weyl algebra. Since X is nonsingular, TX is locally free of rank n, and the
symmetric algebra on TX can be interpreted as the sheaf of algebraic functions on
the cotangent bundle. Let us denote by p : T ∗X → X the cotangent bundle of X,
with its natural projection to X. This is again a nonsingular algebraic variety, now
of dimension 2n, locally isomorphic to the product of X and affine space Ank . By the
correspondence between vector bundles and locally free sheaves (from Hartshorne’s
book), one has an isomorphism

T ∗X ∼= V(TX) = SpecX Sym TX ,

and therefore p∗OT∗X ∼= Sym TX as OX -algebras. This is why people sometimes
refer to DX as a “noncommutative deformation” of the cotangent bundle.

Example 9.5. Let us consider the example X = Pnk . The k-vector space Γ(X,DX)
of global differential operators on projective space is infinite-dimensional. There
are several ways to see this. One way is by diagram chasing. We have F0DX = OX ,
and therefore Γ(X,F0DX) = k. For each j ≥ 1, we have a short exact sequence

0→ Fj−1DX → FjDX → Symj TX → 0.

One can show by induction that H1(X,FjDX) = 0 for j ≥ 0, and so

H0(X,FjDX)/H0(X,Fj−1DX) ∼= H0(X,Symj TX).

These vector spaces can then be computed using the Euler sequence

0→ OX → OX(1)⊕(n+1) → TX → 0.

For example, dimH0(X,TX) = (n+ 1)2 − 1, and so dimH0(X,F1DX) = (n+ 1)2.
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Another way is to use the standard open covering X = U0 ∪U1 ∪ · · · ∪Un. Since
each Ui is isomorphic to Ank , one has Γ(Ui,DX) ∼= An(k), and so an element of
Γ(X,DX) can be described by (n+1) elements of the Weyl algebra that are related
to each other by the coordinate transformations among the Ui. (See the exercises.)

The third way is to use the presentation of X as a quotient of An+1
k minus the

origin, by identifying points of Pnk with lines in An+1
k . Recall how this works in the

case of the Euler sequence. Once n ≥ 1, a vector field on An+1
k minus the origin is

the same thing as a vector field on An+1
k , hence of the form

f0∂0 + f1∂1 + · · ·+ fn∂n,

for polynomials f0, . . . , fn ∈ k[x0, . . . , xn]. Such a vector field descends to X if and
only if it is homogeneous of degree 0, where deg xj = 1 and deg ∂j = −1. At the
same time, the Euler vector field

x0∂0 + x1∂1 + · · ·+ xn∂n

is tangent to the lines through the origin, and therefore descends to the zero vector
field. This shows that Γ(X,TX) is generated by the (n + 1)2 vector fields xi∂j ,
subject to the single relation x0∂0 + · · · + xn∂n = 0. In the same way, one can
show that Γ(X,DX) is isomorphic to the space of differential operators on An+1

k

that are homogeneous of degree 0, modulo the ideal generated by the Euler vector
field. Concretely, an element P ∈ Γ(X,FjDX) can be written in the form

P =
∑

|α|=|β|≤j

cαx
α0
0 · · ·xαnn ∂β0

0 · · · ∂βnn

and this expression is unique modulo multiples of x0∂0 + · · ·+xn∂n. The restriction
of P to the standard affine open U0 is obtained by setting x0 = 1 and using the
relation ∂0 = −(x1∂1 + · · ·+ xn∂n).

Algebraic DX-modules. Let me end with the following definition. An algebraic
D-module on a nonsingular algebraic variety X is a quasi-coherent sheaf of OX -
modulesM, together with a (left or right) action by the sheaf of differential opera-
tors DX . In other words, for every affine open subset U ⊆ X, with A = Γ(U,OX),
we get an A-module M , together with a (left or right) action by the module of
differential operators D(A).

Exercises.

Exercise 9.1. Show that one has Derk(Af ) ∼= Af ⊗A Derk(A) for every f ∈ A.

Exercise 9.2. For X = Pnk , compute dimk Γ(X,FjDX) as a function of j ≥ 0.

Exercise 9.3. Consider the example X = P1
k. If we use the symbol x0 for the

coordinate on U0 = A1
k, and x1 for the coordinate on U1 = A1

k, then Γ(U0,DX) is
the Weyl algebra on x0 and ∂0, and Γ(U1,DX) is the Weyl algebra on x1 and ∂1.
Using the coordinate change x1 = x−1

0 , decide when two differential operators

P =
∑
i,j

ai,jx
i
0∂
j
0 and Q =

∑
i,j

bi,jx
i
1∂
j
1

have the same restriction to U0 ∩ U1. Use this to describe the space Γ(X,DX) of
global differential operators on P1

k.
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Lecture 10: March 6

Algebraic D-modules. Let me first recall the definition of an algebraic D-module
from last time. As before, X is an algebraic variety over a field k, nonsingular of
constant dimension n. We denote by DX the sheaf of algebraic differential operators
on X, and by FjDX the subsheaf of operators of order ≤ j. Then each FjDX is a
coherent sheaf of OX -modules, and DX itself is quasi-coherent.

Definition 10.1. An algebraic D-module is a quasi-coherent sheaf of OX -modules
M, together with a left (or right) action by DX .

Since DX is noncommutative, we again have to distinguish between left and right
modules. In the case of a left D-module M, the set of sections M = Γ(U,M) over
any affine open subset U ⊆ X is thus a left module over the algebra of differential
operators D(A), where A = Γ(U,OX). The quasi-coherence condition means that
the restriction ofM to the open set U is uniquely determined by this D(A)-module.
Recall from Lecture 9 that the algebra D(A) is generated, as an A-subalgebra of
Endk(A), by the derivations Derk(A), subject to the relation [δ, f ] = δ(f) for all
δ ∈ Derk(A) and all f ∈ A. The left D(A)-action on M is therefore the same thing
as a k-linear mapping

Derk(A)⊗kM →M, δ ⊗m 7→ δm,

such that (fδ)m = f(δm), δ(fm) = fδ(m) + δ(f)m and δ(ηm) − η(δm) = [δ, η]m
for all δ, η ∈ Derk(A), all f ∈ A, and all m ∈M . Globally, to turn a quasi-coherent
sheaf of OX -modules M into a left DX -module, we need a k-linear morphism

TX ⊗kM→M

that satisfies those three conditions locally. (You can work out for yourself what
happens for right D-modules.)

Example 10.2. Since the algebra of differential operators on the affine space Ank is
the Weyl algebra An(k), an algebraic D-module on Ank is (up to the equivalence
between quasi-coherent sheaves and modules) the same thing as a left (or right)
module over An(k).

Here are some examples of left and right D-modules.

Example 10.3. The structure sheaf OX is a left DX -module. Indeed, for every affine
open subset U ⊆ X, the algebra of differential operatorsD(A) acts onA = Γ(U,OX)
by construction.

Example 10.4. Every algebraic vector bundle with integrable connection is a left
DX -module. Let E be the corresponding locally free sheaf of OX -modules; in
Hartshorne’s notation, the vector bundle is then V(E ∗). A connection is a k-linear
morphism ∇ : E → Ω1

X/k ⊗OX E that satisfies the Leibniz rule. In other words,

for every affine open subset U ⊆ X and every pair of sections s ∈ Γ(U,E ) and
f ∈ Γ(U,OX), the connection should satisfy

∇(fs) = f∇(s) + df ⊗ s.

We can also regard the connection as a k-linear morphism ∇ : TX ⊗k E → E , but
we use the differential geometry notation ∇θ(s) instead of ∇(θ⊗s) for θ ∈ Γ(U,TX)
and s ∈ Γ(U,E ). In this notation, we have

(10.5) ∇fθ(s) = f∇θ(s),

and the Leibniz rule becomes

(10.6) ∇θ(fs) = f∇θ(s) + θ(f)s.
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The connection is called integrable if

(10.7) ∇θ ◦ ∇η −∇η ◦ ∇θ = ∇[θ,η]

for every pair of vector fields θ, η ∈ Γ(U,TX). This is equivalent to the vanishing
of the curvature operator in Ω2

X/k ⊗OX EndOX (E ). The conditions in (10.5), (10.6)

and (10.7) are exactly saying that the action of TX on E extends to a left action
by the sheaf of differential operators DX , and so E becomes a left D-module.

In general, the left action of DX on a left D-module M may be considered
(formally) as a connection operator∇ : M→ Ω1

X/k⊗OXM that satisfies the Leibniz

rule and is integrable, in the sense that it locally satisfies the conditions expressed
in (10.5), (10.6) and (10.7).

Example 10.8. Unlike in the case of affine space, we cannot turn left D-modules
into right D-modules by changing signs, since we might not be able to do this
consistently on all affine open subsets. Instead, the primary example of a right
D-module is the canonical bundle ωX =

∧n
Ω1
X/k, whose sections are the algebraic

n-forms. If U ⊆ X is an affine open subset with local coordinates x1, . . . , xn, then
ωX is locally free of rank one, spanned by dx 1 ∧ · · · ∧ dxn. The tangent sheaf TX

acts on ωX by Lie differentiation. Given ω ∈ Γ(U, ωX) and θ, θ1, . . . , θn ∈ Γ(U,TX),
the formula for the Lie derivative is

(Lieθ ω)(θ1, . . . , θn) = θ · ω(θ1, . . . , θn)−
n∑
i=1

ω
(
θ1, . . . , [θ, θi], . . . , θn

)
.

One can check quite easily that the following relations hold:

Lieθ(fω) = f Lieθ ω + θ(f)ω = Liefθ ω

Lie[θ,η] ω = Lieθ Lieη ω − Lieη Lieθ ω

This almost looks like ωX should be a left DX -module, but note that (10.5) is not
satisfied since Liefθ ω 6= f Lieθ ω. But if we instead define

ωX ⊗k TX → ωX , ω ⊗ θ 7→ ω · θ = −Lieθ(ω)

and also write the OX -action on ωX on the right, we obtain

ω · θ(f) = (−Lieθ ω)f + Lieθ(ωf) = (ω · θ)f − (ωf) · θ
ω · [θ, η] = −Lie[θ,η] ω = Lieθ Lieη ω − Lieη Lieθ ω = (ω · θ) · η − (ω · η) · θ.

These are exactly the relations defining DX , and so we obtain on ωX the structure
of a right DX -module. In local coordinates, we have

(fdx 1 ∧ · · · ∧ dxn) · P = (Pσf)dx 1 ∧ · · · ∧ dxn,

where Pσ =
∑

(−∂)αfα is the formal adjoint of P =
∑
fα∂

α. In local coordinates,
the left D-module structure on OX and the right D-module structure on ωX are
therefore related to each other exactly as in the case of the Weyl algebra.

Good filtrations and characteristic variety. As in the case of the Weyl al-
gebra, we study D-modules using filtrations. Let M be a left DX -module. We
consider increasing filtrations F•M by coherent OX -submodules FjM such that

FiDX · FjM⊆ Fi+jM

for all i, j ∈ Z. We also assume that the filtration is exhaustive, meaning that⋃
j∈Z

FjM =M.
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Note that each FjM is assumed to be coherent over OX . We say that such a
filtration is good if the associated graded module

grFM =
⊕
j∈Z

FjM/Fj−1M

is locally finitely generated over grFDX . This implies that FjM = 0 for j � 0.
Now suppose that U ⊆ X is an affine open subset, and set A = Γ(U,OX) and

M = Γ(U,M). By the same argument as in the case of the Weyl algebra, one shows
that M is finitely generated over D(A) if and only if admits a good filtration F•M
by finitely generated A-modules; again, this means that FiD(A) ·FjM ·Fi+jM and
grFM is finitely generated over grFD(A).

Definition 10.9. We say that a left (or right) DX -module is coherent if it is locally
finitely generated over DX .

Note that this is not the same thing as being OX -coherent; in fact, most coherent
DX -modules are not coherent over OX . Every coherent DX -module has a good
filtration locally, meaning on each affine open subset; in fact, we will see next time
that coherent DX -modules always admit a global good filtration F•M.

Given a good filtration F•M (globally or locally), the associated graded grFM
is coherent over the sheaf of OX -algebras

grFDX
∼= Sym TX

∼= p∗OT∗X ,

where p : T ∗X → X again means the cotangent bundle. By the correspondence
between coherent sheaves on T ∗X and finitely generated modules over p∗OT∗X , we
thus obtain a coherent sheaf of OT∗X -modules on the cotangent bundle that we

denote by the symbol ‡grFM.

Definition 10.10. The characteristic variety Ch(M) is the closed algebraic subset

of T ∗X given by the support of ‡grFM, with the reduced scheme structure.

As in the case of the Weyl algebra, any two good filtrations onM are comparable;
for the same reason as before, this implies that the subsheaf√

AnngrFDX grFM⊆ grFDX

is independent of the choice of good filtration. If we denote by JM ⊆ OT∗X the
corresponding coherent sheaf of ideals on the cotangent bundle, then Ch(M) is the
closed subscheme defined by JM. We are going to show later on that Bernstein’s
inequality carries over to arbitrary coherent D-modules: as long as M 6= 0, every
irreducible component of Ch(M) has dimension at least n.

Example 10.11. If E is the left DX -module determined by a vector bundle with
integrable connection, then Ch(E ) is the zero section. The reason is that E is
coherent over OX , which means that setting FjE = 0 for j < 0 and FjE = E for
j ≥ 0 gives a good filtration. Here

AnngrFDX grFE =
⊕
j≥1

grFj DX ,

and so JE is the ideal of the zero section. Of course, this works more generally for
any D-module that is coherent over OX .

The example has a useful converse.

Proposition 10.12. Let M be a coherent DX-module. If M is coherent over OX ,
then M is actually a locally free OX-module of finite rank (and therefore comes
from a vector bundle with integrable connection).
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Proof. Since M is a quasi-coherent OX -module, it suffices to check that the local-
ization OX,x ⊗OX M at every closed point x ∈ X is a free OX,x-module of finite
rank. This reduces the problem to the following special case: A is a regular local
ring of dimension n, containing a field k, with maximal ideal m and residue field
A/m ∼= k, and M is a left D(A)-module that is finitely generated over A. Here
D(A) is again the algebra of k-linear differential operators on A. We need to prove
that M is a free A-module of finite rank.

First, some preparations. Since A is regular of dimension n, the maximal ideal
m is generated by n elements x1, . . . , xn whose images in m/m2 are linearly inde-
pendent over k. Let ∂1, . . . , ∂n ∈ Derk(A) be the corresponding derivations, which
freely generate Derk(A) as an A-module. For every nonzero f ∈ A, we define the
order of vanishing as

ord(f) = max
{
` ≥ 0

∣∣ f ∈ m`
}

;

this makes sense because the intersection of all powers of the maximal ideal is trivial.
If f = 0, we formally set ord(f) = +∞. The key point is that we can reduce the
order of vanishing of f by applying a suitable derivation. Indeed, suppose that
ord(f) = `. The ideal m` is generated by all monomials of degree ` in x1, . . . , xn,
and so we can write

f =
∑
|α|=`

fαx
α,

with at least one fα ∈ A being a unit (because otherwise f ∈ m`+1). Choose a
multi-index α such that fα is a unit, and then choose i = 1, . . . , n such that αi ≥ 1.
Since ∂i(xj) = δi,j , we get

∂i(f) =
∑
|α|=`

(
∂i(fα)xα + fααix

α−ei
)
,

and this expression clearly belongs to m`−1 but not to m`. Hence ord(∂i(f)) = `−1.
As I said, we need to prove that M is a free A-module of finite rank. To do

this, pick a minimal set of generators m1, . . . ,mr ∈ M , whose images in M/mM
are linearly independent over k. This gives us a surjective morphism of A-modules

A⊕r →M, (f1, . . . , fr) 7→ f1m1 + · · ·+ frmr,

and we are going to show that it is also injective, hence an isomorphism. Suppose
that there was a nontrivial relation f1m1 + · · · + frmr = 0. Then f1, . . . , fr ∈ m,
because m1, . . . ,mr are linearly independent modulo mM . In other words, we have

` = min
{

ord(f1), . . . , ord(fr)
}
≥ 1.

Now the idea is to use the D(A)-module structure to create another relation for
which the value of ` is strictly smaller. By repeating this, we eventually arrive at a
relation with ` = 0, contradicting the fact that m1, . . . ,mr are linearly independent
modulo mM . Here we go. If we apply ∂i to our relation, we obtain

0 = ∂i ·
r∑
j=1

fjmj =

r∑
j=1

[∂i, fj ]mj +

r∑
j=1

fj(∂imj) =

r∑
j=1

∂i(fj)mj +

r∑
j=1

fj(∂imj).

We can write each ∂imj in terms of the generators m1, . . . ,mr as

∂imj =

r∑
k=1

ai,j,kmk,

and after reindexing, we get the new relation
r∑
j=1

(
∂i(fj) +

r∑
k=1

ai,k,jfk

)
mj = 0.
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If we now choose j such that ord(fj) = `, and then choose i such that ord(∂i(fj)) =
` − 1, then the j-th coefficient in the new relation belongs to m`−1 but not to m`,
as desired. �

We showed in Lecture 5 thatM is coherent over OX if and only if its character-
istic variety is contained in the zero section of the cotangent bundle. This means
that ifM is a coherent DX -module with Ch(M) contained in the zero section, then
M is a locally free OX -module of finite rank, and the DX -module structure is the
same as the datum of an integrable connection on M.
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Lecture 11: March 11

Global good filtrations. Let us return for the moment to the topic of good
filtrations. I said last time that, by the same argument as in the case of An, every
coherent DX -module locally admits a good filtration. But in fact, good filtrations
also exist globally, because of the finiteness inherent in the definitions.

Lemma 11.1. Let M be an algebraic DX-module. If M is coherent, then there
exists a good filtration F•M by coherent OX-modules.

Proof. It will be enough to construct an OX -submodule F ⊆ M that is coherent
over OX and that generatesM as a DX -module. Once we have that, we can define
a filtration by setting

FjM = FjDX ·F ⊆M,

and for the same reason as in the case of the Weyl algebra, each FjM is coherent
over OX , and the filtration F•M is good.

Since X is of finite type over k, it is quasi-compact, and so we can cover X
by finitely many affine open subsets U1, . . . , Um. Then Γ(Ui,M) is finitely gen-
erated over Γ(Ui,DX), and after choosing a finite set of generators and taking
the Γ(Ui,OX)-submodule of Γ(Ui,M) generated by this set, we certainly obtain a
coherent OUi -module FUi ⊆M

∣∣
Ui

that has the desired properties on Ui.

To turn these locally defined subsheaves into global objects, we use the following
fact from Hartshorne’s book: Suppose that G is a quasi-coherent sheaf on an alge-
braic varietyX. If we have a nonempty open subset U ⊆ X, and a coherent subsheaf
FU ⊆ G

∣∣
U

, then there is a coherent subsheaf F ⊆ G such that F
∣∣
U

= FU . When
applied to our situation, this says that there are coherent OX -modules F1, . . . ,Fn

such that Fi

∣∣
Ui

= FUi . Then the image of

F1 ⊕ · · ·+⊕Fm →M
is an OX -submodule of M that is coherent over OX (because it is the image of a
coherent OX -module) and generates M as a DX -module. �

This result is peculiar to the algebraic setting, and does not hold at all for
analytic D-modules.

Characteristic varieties are involutive. Recall the definition of the character-
istic variety from last time. IfM is a coherent DX -module, we can choose a global
good filtration F•M, which makes the associated graded module grFM coherent

over grFDX
∼= Sym TX . If ‡grFM denotes the corresponding coherent sheaf on the

cotangent bundle T ∗X, then

Ch(M) = Supp ‡grFM.

Equivalently, the characteristic variety is the reduced closed subscheme of the cotan-
gent bundle corresponding to the homegeneous ideal√

AnngrFDX grFM⊆ grFDX .

The most important result about the characteristic variety is the following theorem.

Theorem 11.2. Ch(M) is involutive with respect to the natural symplectic struc-
ture on T ∗X. In particular, every irreducible component of Ch(M) has dimension
≥ n.

Note that this gives a lot more information about the characteristic variety than
Bernstein’s inequality. This result was first proved by analytic methods, but Gabber
later discovered an algebraic proof. Bernstein’s inequality can of course be proved
by more elementary means. We are not going to prove Theorem 11.2; instead, I
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will review some basic facts about symplectic geometry, so that we can understand
at least the statement, and where the difficulties lie.

Symplectic vector spaces. Let us start with a brief discussion of symplectic
vector spaces. Let V be a finite-dimensional vector space over a field k. Usually, k
will be field of real or complex numbers, but the definition works over any field of
characteristic 6= 2. A symplectic form is a bilinear form

σ : V ⊗k V → k

that is anti-symmetric and non-degenerate. In other words, one has σ(v, w) =
−σ(w, v) for every v, w ∈ V , and if we denote by V ∗ = Homk(V, k) the dual vector
space, then the induced linear mapping

V → V ∗, w 7→ σ(−, w),

is an isomorphism (called the “Hamiltonian isomorphism”). For every linear func-
tional θ ∈ V ∗, one therefore has a unique element Hθ ∈ V such that θ(v) = σ(v,Hθ)
for all v ∈ V .

The dimension of a symplectic vector space is always an even number. One way
to see this is as follows. Pick a nonzero vector w ∈ V , and consider the linear
subspace L = k · w ⊆ V . Since σ(w,w) = 0, one has L contained in the subspace

L⊥ =
{
v ∈ V

∣∣ σ(v, w) = 0
}
.

The fact that σ is nondegenerate implies that L⊥ = dimV − 1. One easily checks
that the quotient space L⊥/L, with the bilinear form induced by σ, is again a
symplectic vector space. Since dimV = 2 + dimL⊥/L, the claim now follows by
induction.

Example 11.3. If V is any finite-dimensional k-vector space, then V ⊕ V ∗ is a
symplectic vector space, with symplectic form given by(

(v1, θ1), (v2, θ2)
)
7→ θ1(v2)− θ2(v1).

In fact, every symplectic vector space is isomorphic to this model (after a suitable
choice of basis).

Given a subspace W ⊆ V , one defines

W⊥ =
{
v ∈ V

∣∣ σ(v, w) = 0 for every w ∈W
}
.

Under the Hamiltonian isomorphism V ∼= V ∗, the subspaceW⊥ corresponds exactly
to the kernel of the restriction homomorphism V ∗ →W ∗, and therefore

dimW + dimW⊥ = dimV.

Definition 11.4. Let W ⊆ V be a linear subspace.

(1) W is called involutive if W⊥ ⊆W ; then dimW ≥ 1
2 dimV .

(2) W is called Lagrangian if W⊥ = W ; then dimW = 1
2 dimV .

(3) W is called isotropic if W⊥ ⊇W ; then dimW ≤ 1
2 dimV .

Note that an involutive (or isotropic) subspace is Lagrangian iff dimW = 1
2 dimV .

Example 11.5. Consider the symplectic vector space V ⊕V ∗. If W ⊆ V is any linear
subspace, then W ⊕ ker(V ∗ → W ∗) is always a Lagrangian subspace of V ⊕ V ∗.
It is clearly isotropic: if v1, v2 are vectors in W , and θ1, θ2 are linear functionals
whose restriction to W is trivial, then θ1(v2)− θ2(v1) = 0. Since

dimW + dim ker(V ∗ →W ∗) = dimV

is exactly half the dimension of V ⊕ V ∗, it follows that the subspace is Lagragian.
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Symplectic algebraic varieties. A nonsingular algebraic variety X is called sym-
plectic if the tangent space TxX at every closed point x ∈ X is a symplectic vector
space, and the symplectic forms vary in an algebraic way from point to point. More
precisely, there should exist a global algebraic two-form σ ∈ Γ(X,Ω2

X/k) whose re-

striction σx : TxX ⊗k TxX → k gives a symplectic form on TxX for every closed
point x ∈ X. Of course, this implies that dimX is even.

Example 11.6. The example we care about is the cotangent bundle T ∗X of a non-
singular algebraic variety X of dimension n. Note that dimT ∗X = 2n. If we choose
local coordinates x1, . . . , xn on X, then the differentials dx 1, . . . , dxn give a local
trivialization for Ω1

X/k, and so we obtain local coordinates x1, . . . , xn, ξ1, . . . , ξn on

the cotangent bundle. In these coordinates,

σX =

n∑
i=1

dξi ∧ dx i

is a symplectic form. Indeed, at any closed point (x, ξ) ∈ T ∗X, we have

T(x,ξ)

(
T ∗X

)
= TxX ⊕ (TxX)∗,

because the fiber of p : T ∗X → X over the point x is the cotangent space (TxX)∗,
and because a vector space is isomorphic to its own tangent space. Under this
isomorphism, the two-form σX corresponds exactly to the standard symplectic form
in Example 11.3. In more functorial language, one can describe σX as follows. As
with any vector bundle, the pullback p∗Ω1

X/k has a tautological global section,

whose image under p∗Ω1
X/k → Ω1

T∗X/k gives a one-form

αX ∈ Γ
(
T ∗X,Ω1

T∗X/k

)
.

In local coordinates as above, one has αX =
∑
i ξidx i. Then

σX = dαX ∈ Γ
(
T ∗X,Ω2

T∗X/k

)
is the symplectic form from above.

Let X be a nonsingular algebraic variety with a symplectic form σ. Then σx
induces an isomorphism between the tangent space TxX and the cotangent space
(TxX)∗ at every closed point x ∈ X, and this allows us to convert one-forms into
vector fields and vice versa. In particular, every function f ∈ Γ(U,OX) determines
a vector field Hf ∈ Γ(U,TX), with the property that df = σ(−, Hf ) as one-forms
on U . The Poisson bracket of two functions f, g ∈ Γ(U,OX) is defined by

{f, g} = Hf (g) = dg(Hf ) = σ(Hf , Hg) ∈ Γ(U,OX).

If dσ = 0, then one has [Hf , Hg] = H{f,g}.

Example 11.7. In local coordinates x1, . . . , xn, ξ1, . . . , ξn on the cotangent bundle,
the Hamiltonian vector field of a function f is given by

Hf =

n∑
i=1

(
∂f

∂ξi

∂

∂xi
− ∂f

∂xi

∂

∂ξi

)
,

and consequently, the Poisson bracket can be calculated as

{f, g} =

n∑
i=1

(
∂f

∂ξi

∂g

∂xi
− ∂f

∂xi

∂g

∂ξi

)
.

We can extend the notion of involutive (or Lagrangian or isotropic) to subvari-
eties of X by looking at their tangent spaces at nonsingular points. Thus a reduced
algebraic subvariety Y ⊆ X is called involutive (or Lagrangian or isotropic) if at
every nonsingular closed point x ∈ Y , the tangent space TxY ⊆ TxX is involutive
(or Lagrangian or isotropic).
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Example 11.8. In the case of the cotangent bundle T ∗X, the conormal bundle of a
nonsingular subvariety Z ⊆ X is a nonsingular Lagrangian subvariety. At a closed
point x ∈ Z, the fiber of the conormal bundle consists of all those cotangent vectors
in (TxX)∗ that vanish on the subspace TxZ. As a subspace of

T(x,ξ)

(
T ∗X

)
= TxX ⊕ (TxX)∗,

the tangent space to the conormal bundle is therefore

TxZ ⊕ ker
(
(TxX)∗ → (TxZ)∗

)
,

and this is a Lagrangian subspace by Example 11.5 from above. If we choose local
coordinates x1, . . . , xn on X such that Z is defined by xk+1 = · · · = xn = 0, then
the conormal bundle is defined by ξ1 = · · · = ξk = xk+1 = · · · = xn = 0 in the
corresponding coordinates on the cotangent bundle.

The following lemma gives a way to check whether a reduced subvariety Y ⊆ X
is involutive by using the ideal sheaf IY ⊆ OX .

Lemma 11.9. Let X be a nonsingular algebraic variety with a symplectic form,
and Y ⊆ X a reduced algebraic subvariety. The following conditions are equivalent:

(a) The subvariety Y is involutive.
(b) The ideal sheaf IY is closed under the Poisson bracket, {IY , IY } ⊆ IY .

Proof. Without loss of generality, we may assume that X is affine, and that Y is
the closed subvariety defined by an ideal I ⊆ Γ(X,OX). Note that Y is assumed
to be reduced. We start with a general observation. Let x ∈ Y be a nonsingular
point, and let σx be the symplectic form on TxX. Then

(TxY )⊥ =
{
v ∈ TxX

∣∣ σx(v, w) = 0 for every w ∈ TxY
}

is spanned by the values at x of the Hamiltonian vector fields Hf , as f ranges over
the elements of the ideal I. Indeed, since x ∈ Y is a nonsingular point, a tangent
vector v ∈ TxX belongs to the subspace TxY exactly when df(v) = 0 for every
f ∈ I. Under the Hamiltonian isomorphism, this condition becomes

σx(v,Hf ) = df(v) = 0,

whence the claim.
Now let us show that {I, I} ⊆ I implies that Y is involutive. If x ∈ Y is a

nonsingular point, we need to argue that (TxY )⊥ ⊆ TxY . In light of the observation
from above, this amounts to saying that, for every f, g ∈ I, the function dg(Hf )
vanishes at the point x. But this is the case, because dg(Hf ) = Hf (g) = {f, g} ∈ I.

For the converse, suppose that Y is involutive, so that (TxY )⊥ ⊆ TxY at every
nonsingular point x ∈ Y . Then we again have {f, g} = dg(Hf ) = 0 at every
nonsingular point of Y , and hence on all of Y because {f, g} is a regular function
and the set of nonsingular points is Zariski-open and dense in Y . Because Y is
reduced, it follows that {f, g} ∈ I. �

Involutivity of the characteristic variety. We return to the characteristic va-
rieties of coherent DX -modules. If p : T ∗X → X is the cotangent bundle, then

p∗OT∗X ∼= grFDX ,

and one can use this isomorphism to describe the Poisson bracket in terms of
differential operators. For each j ≥ 0, we denote by

σj : FjDX → grFj DX
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the “principal symbol” operator. If P is a local section of FiDX , and Q a local
section of FjDX , then their commutator [P,Q] is a local section of Fi+j−1DX . One
can show, using the description of the Poisson bracket in local coordinates, that

{σi(P ), σj(Q)} = σi+j−1

(
[P,Q]

)
.

Now suppose that M is a coherent left DX -module, and that F•M is a good
filtration. It is easy to see, using the alternative description of the Poisson bracket,
that the ideal

AnngrFDX grFM⊆ grFDX

is closed under the Poisson bracket. This is a local question, and so we may restrict
everything to an affine open subset U ⊆ X. If we set A = Γ(U,OX) and R = D(A),
we then have a finitely generated left R-module M , together with a good filtration
F•M , such that grFM is finitely generated over S = grFR. The claim is that the
homogeneous ideal

I = I(M,F•M) = AnnS grFM

is closed under the Poisson bracket on S. Suppose that we have two elements
P ∈ FiR and Q ∈ FjR such that σi(P ) and σj(Q) belong to the ideal I. Recall
from Lecture 5 that this is equivalent to having

P · FkM ⊆ Fi+k−1M and Q · FkM ⊆ Fj+k−1M

for every k ∈ Z. But then

[P,Q] · FkM ⊆ P · Fj+k−1M +Q · Fi+k−1M ⊆ F(i+j−1)+k−1M,

and therefore σi+j−1([P,Q]) ∈ I. This shows that {I, I} ⊆ I.
Why does this argument not prove Theorem 11.2? The issue is that the ideal of

the characteristic variety is not I itself, but
√
I, because the characteristic variety

is by definition reduced. For non-reduced ideals, being closed under the Poisson
bracket does not correspond to the geometric notion of being involutive, because
all points of a nonreduced subscheme can be singular. And the fact that an ideal is
closed under the Poisson bracket does not imply the same property for its radical.
This is what makes Theorem 11.2 nontrivial.

Exercises.

Exercise 11.1. Let X be a nonsingular affine variety with a symplectic form. Prove
the following three identities involving the Poisson bracket: for all f, g, h ∈ Γ(X,OX),

{f, g}+ {g, f} = 0

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

{f, gh} = {f, g}h+ g{f, h}.
The first two identities are saying that Γ(X,OX) is a Lie algebra under the operation
(f, g) 7→ {f, g}. The third identity is saying that {f,−} is a derivation of Γ(X,OX).

Exercise 11.2. Show that if dσ = 0, then one has [Hf , Hg] = H{f,g}.

Exercise 11.3. LetX be a nonsingular affine variety with local coordinates x1, . . . , xn.
Use the description of the Poisson bracket on T ∗X to prove that

{σi(P ), σj(Q)} = σi+j−1

(
[P,Q]

)
,

for every P ∈ FiD(A) and every Q ∈ FjD(A), where A = Γ(X,OX).



57

Lecture 12: March 13

Gabber’s theorem. Last time, we talked about the result that the characteristic
variety Ch(M) of a coherent DX -module M is involutive (with respect to the
natural symplectic structure on the cotangent bundle). We saw that the ideal

AnngrFDX grFM⊆ grFDX

is closed under the Poisson bracket, and that Theorem 11.2 is equivalent to the
radical being closed under the Poisson bracket. This is a problem in algebra, albeit
a very difficult one, and there is a purely algebraic proof, due to Gabber.

In fact, Gabber works in the following more general setup. Suppose that R is
a Q-algebra, with an increasing algebra filtration F•R, such that the associated
graded ring S = grFR is commutative and noetherian. This means that if u ∈ FiR
and v ∈ FjR, then their commutator [u, v] = uv − vu ∈ Fi+j−1R. If we again
use the notation σi : FiR → Si for the “symbol” homomorphism, we can therefore
define the Poisson bracket of two homogeneous elements of S by the formula

{σi(u), σj(v)} = σi+j−1

(
[u, v]

)
.

After extending this bilinearly, we obtain a Poisson bracket {−,−} : S ⊗Q S → S,
and one can check that it satisfies the same identities as the Poisson bracket on a
symplectic manifold. But note that this is more general than the case R = D(A),
because Gabber is not assuming that S is nonsingular.

Theorem 12.1 (Gabber). Using the notation from above, suppose that M is a
finitely generated R-module with a good filtration F•M , and consider the ideal

J =
√

AnngrFR grFM ⊆ grFR.

If P ⊆ grFR is minimal among prime ideals containing J , then {P, P} ⊆ P . In
particular, one has {J, J} ⊆ J .

The minimal primes containing the ideal J correspond, geometrically, to the irre-
ducible components of Supp grFM inside the scheme SpecS. So Gabber’s theorem
is saying that every irreducible component of the support is “involutive”, in the
sense that its ideal is closed under the Poisson bracket. In the case of D-modules,
this is saying that every irreducible component of the characteristic variety of a
coherent D-module is involutive.

Holonomic D-modules. One consequence of Theorem 11.2 is that Bernstein’s
inequality holds for algebraic D-modules: If X is a nonsingular algebraic variety of
dimension n, andM a coherent DX -module, then eitherM = 0, or every irreducible
component of Ch(M) has dimension ≥ n. As in the case of the Weyl algebra, the
most important D-modules are those for which the dimension of the characteristic
variety is as small as possible.

Definition 12.2. A coherent DX -module M is called holonomic if M 6= 0 and
dim Ch(M) = n, or if M = 0.

If M is nonzero and holonomic, then each irreducible component of its charac-
teristic variety has dimension n, and is therefore (by Theorem 11.2) a Lagrangian
subvariety of T ∗X. Since the ideal defining Ch(M) is homogeneous, these La-
grangians are moreover conical, that is, closed under the natural Gm-action on
T ∗X by rescaling in the fiber direction. Here are some typical examples of conical
Lagrangian subvarieties.

Example 12.3. If Y ⊆ X is a nonsingular subvariety, then the conormal bundle
N∗Y |X is a nonsingular Lagrangian subvariety of T ∗X. Since it is a vector bundle
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of rank dimX − dimY over Y , it is clearly conical. More generally, suppose that
Y ⊆ X is an arbitrary reduced and irreducible subvariety. The set of nonsingular
points Yreg is Zariski-open and dense in Y , and so the conormal bundle N∗Yreg|X is

locally closed, conical, and Lagrangian. Its Zariski closure

T ∗YX = N∗Yreg|X

is therefore a conical Lagrangian subvariety of T ∗X. It is called the conormal
variety of Y in X.

In fact, every conical Lagrangian subvariety of T ∗X is a conormal variety.

Proposition 12.4. Let W ⊆ T ∗X be an irreducible subvariety that is conical and
Lagrangian. Then Y = p(W ) is an irreducible subvariety of X, and W = T ∗YX.

Proof. The statement is local, and so we may assume that X = SpecA is affine
and that T ∗X = X ×Ank . Since W ⊆ X ×Ank is conical, it is defined by an ideal in
A[ξ1, . . . , ξn] that is homogeneous in the variables ξ1, . . . , ξn. This ideal also defines

a closed subvariety W̃ ⊆ X × Pn−1
k , and since the projection p1 : X × Pn−1

k → X

is proper, it follows that Y = p(W ) = p1(W̃ ) is an irreducible subvariety of X.
It remains to show that W = T ∗YX. Since both subvarieties are irreducible of
dimension n, it will be enough to show that the general point of W is contained in
the conormal bundle to Yreg.

Let (x, ξ) ∈W be a general nonsingular point. By generic smoothness, we have
x ∈ Yreg and the map on tangent spaces T(x,ξ)W → TxY is surjective. Choose local
coordinates x1, . . . , xn in a neighborhood of the point x, such that Y is defined by
the equations xk+1 = · · · = xn = 0. If we again denote by x1, . . . , xn, ξ1, . . . , ξn
the resulting coordinates on T ∗X,then the conormal bundle to Yreg is defined by
the equations ξ1 = · · · = ξk = xk+1 = · · · = xn = 0. Since W is a Lagrangian
subvariety, the subspace

T(x,ξ)W ⊆ T(x,ξ)

(
T ∗X

)
= TxX ⊕ (TxX)∗

is n-dimensional and Lagrangian. Its image under the projection to TxX is the
subspace TxY . If we denote vectors in TxX ⊕ (TxX)∗ by (a1, . . . , an, b1, . . . , bn),
then this image is the set of vectors with ak+1 = · · · = an = 0. For dimension
reasons, T(x,ξ)W must contain an (n− k)-dimensional space of vectors of the form
(0, . . . , 0, b1, . . . , bn), and from the Lagrangian condition, we get b1 = · · · = bk = 0.

Now we use the fact that W is conical. Since (x, ξ) ∈W , the entire line (x, k ·ξ) is
contained in W , and so the tangent vector to the line, which is (0, . . . , 0, ξ1, . . . , ξn),
must belong to T(x,ξ)W . But as we saw, this implies that ξ1 = · · · = ξk = 0, and
so (x, ξ) lies on the conormal bundle to Yreg. Since (x, ξ) was a general point of W ,
we deduce that W ⊆ T ∗YX, which suffices to conclude the proof. �

This proposition has interesting implications for holonomic D-modules. Suppose
that M is a nonzero holonomic DX -module. Its characteristic variety is a finite
union of conical Lagrangian subvarieties, and so there are finitely many irreducible
subvarieties Y1, . . . , Ym ⊆ X, without loss of generality distinct, such that

Ch(M) =

m⋃
i=1

T ∗YiX.

Now there are two possibilities. If say Y1 = X, then U = X \ (Y2 ∪ · · · ∪ Ym) is
a dense Zariski-open subset, and the restriction of M to U has its characteristic
variety equal to the zero section. By Proposition 10.12, it follows that M

∣∣
U

is
locally free of finite rank, and therefore a vector bundle with integrable connection.
The connection acquires some kind of singularities at the remaining subvarieties
Y2, . . . , Yn. The other possibility is that Y1, . . . , Yn 6= X. In that case, the restriction
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of M to X \ (Y1 ∪ · · · ∪ Yn) is trivial, which says that M is supported on the
union Y1 ∪ · · · ∪ Yn. Either way, M is generically a vector bundle with integrable
connection.

Holonomic D-modules and duality. Our earlier results about duality for holo-
nomic modules still hold in this context; indeed, the assumptions we made in Lec-
ture 6 apply to the case R = D(A). In general, if M is a coherent left (or right)
DX -module, then each

ExtjDX (M,DX)

is again a coherent right (or left) DX -module. On an affine open subset U ⊆ X with

A = Γ(U,OX), the corresponding D(A)-module is of course ExtjD(A)

(
M,D(A)

)
,

where M = Γ(U,M). One then has

ExtjDX (M,DX) = 0 for j ≥ n+ 1,

as well as the useful identity

min
{
j ≥ 0

∣∣∣ ExtjDX (M,DX) 6= 0
}

+ dim Ch(M) = 2n.

IfM is a nonzero holonomic DX -module, then ExtjDX (M,DX) = 0 for every j 6= n,
and one can again define the holonomic dual by

M∗ = ExtnDX (M,DX).

As before, one has (M∗)∗ ∼= M, and Ch(M∗) = Ch(M). The holonomic dual is
again an exact contravariant functor from the category of left (or right) holonomic
DX -modules to the category of right (or left) holonomic DX -modules.

Direct images under closed embeddings. In the next few lectures, we are going
to look at various operations on algebraic D-modules, such as pushing forward or
pulling back along a morphism of algebraic varieties. This will also give us many
new examples of D-modules. We will be especially interested in the effect of these
functors on holonomic D-modules. Things are somewhat similar to the case of
coherent sheaves, formally, but there are also some interesting differences. Let us
start with the simplest case, namely pushing forward along a closed embedding.

Example 12.5. Consider the closed embedding i : An−1
k → Ank defined by the equa-

tion xn = 0. If M is a D-module on An−1
k , then its pushforward i∗M is not a

D-module on Ank . The problem is that x1, . . . , xn and ∂1, . . . , ∂n−1 act in a natural
way on i∗M, but we don’t know what to do with ∂n. In terms of rings and modules,
the closed embedding corresponds to the quotient morphism k[x1, . . . , xn−1, xn]→
k[x1, . . . , xn−1], and the D-module to a module M over the Weyl algebra An−1(k).
We can consider M as a module over k[x1, . . . , xn], with xn acting trivially, but we
cannot let ∂n act trivially this would violate the commutator relation [∂n, xn] = 1.

Suppose that i : X → Y is a closed embedding between two nonsingular algebraic
varieties, and M an algebraic DX -module. For the same reason as above, i∗M is
not in general a DY -module. To motivate the correct definition, let us first look at
the example of distributions.

Example 12.6. Consider the closed embedding

i : Rk → Rn, i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

Suppose that we have a distribution D on Rk; recall that D is a continuous linear
functional on the space of compactly supported smooth functions C∞0 (Rk), and
that 〈D,ϕ〉 denotes the real number obtained by evaluating D on a test function
ϕ. The pushforward distribution i∗D is defined in the obvious way:

〈i∗D,ψ〉 = 〈D,ψ
∣∣
Rk〉,
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for any ψ ∈ C∞0 (Rn). The point is of course that we know how to pull back
functions. Now suppose that D satisfies a system of partial differential equations.
Can we figure out the partial differential equations satisfied by i∗D?

Recall that the Weyl algebra Ak(R) acts on the space of distributions by formal
integration by parts: if ϕ ∈ C∞0 (Rk) and P ∈ Ak(R), then

〈D · P,ϕ〉 = 〈D,Pϕ〉.

Therefore D determines a right ideal

I(D) =
{
P ∈ Ak(R)

∣∣ D · P = 0
}
⊆ Ak(R),

and also a right Ak(n)-module Ak(n)/I(D). In these terms, we are trying to find
the right ideal I(i∗D) from I(D). This is actually fairly easy.

First, the functions xk+1, . . . , xn vanish on Rk, and so every differential operator
of the form Q = xk+1Qk+1 + · · ·+ xnQn ∈ An(R) annihilates i∗D, because

〈
i∗D ·Q,ψ

〉
=

n∑
j=k+1

〈
i∗D · xjQj , ψ

〉
=

n∑
j=k+1

〈
D,xjQjψ

∣∣
Rk
〉

= 0.

We can write any Q ∈ An(R) in the form

Q = xk+1Qk+1 + · · ·+ xnQn +
∑

α∈Nn−k
Pα∂

αk+1

k+1 · · · ∂
αn
n

where Pα ∈ Ak(R) only involves x1, . . . , xk, ∂1, . . . , ∂k. Suppose that Q ∈ I(i∗D).
If we act on a test function of the form ϕη, with ϕ ∈ C∞0 (Rk) and η ∈ C∞0 (Rn−k),
we obtain 〈

i∗D ·Q,ϕη
〉

=
∑

α∈Nn−k

∂αk+1+···+αnη

∂x
αk+1

k+1 · · · ∂x
αn
n

(0) ·
〈
D,Pαϕ

〉
.

By choosing η appropriately, we can pick out the individual terms, and so

0 = 〈D,Pαϕ〉 = 〈D · Pα, ϕ〉

for every α ∈ Nn−k and every ϕ ∈ C∞0 (Rk). In other words, each Pα belongs to
I(D). It is easy to see that the converse is also true, and so we conclude that

I(i∗D) = (xk+1, . . . , xn)An(R) + I(D)An(R).

Here is another way to put this. Remembering that right (and left) ideals in the
Weyl algebra are finitely generated, we have I(D) = (P1, . . . , Pr)Ak(R), and so the
right Ak(R)-module determined by the distribution D is

Ak(R)/(P1, . . . , Pr)Ak(R).

Then the right An(R)-module determined by the distribution i∗D is

An(R)/(P1, . . . , Pr, xk+1, . . . , xn)An(R).

This is much larger than the other module, but has a natural action by An(R).

The example suggest that pushing forward works naturally for right D-modules.
The reason is that distributions give rise to right D-modules, whereas functions give
rise to left D-modules, and one can push forward distributions, but not functions. It
also suggests how to define the pushforward, at least in the special case of modules
over the Weyl algebra.
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The transfer module. Let me now show you the actual definition. Suppose that
i : X → Y is a closed embedding between two nonsingular algebraic varieties; since
X and Y are both nonsingular, X is locally a complete intersection in Y . We will
see next time that

DX→Y = OX ⊗i−1OY i
−1DY

is a (DX , i
−1DY )-bimodule, which is to say that it has both a left action by DX

and a right action by i−1DY , and the two actions commute. The right action by
i−1DY is the obvious one; the left action by DX is less obvious and involves both
factors in the tensor product. Given a right DX -module M, one then defines its
pushforward as

i+M = i∗
(
M⊗DX DX→Y

)
;

this becomes a right DY -module through the natural morphism DY → i∗i
−1DY .

We will see next time that, in local coordinates, this definition agrees with what
happens for distributions.

Exercises.

Exercise 12.1. Let M be a left DX -module and N a right DX -module. Show that
the tensor product N ⊗OX M is naturally a right DX -module.

Exercise 12.2. Recall that the canonical line bundle ωX is a right DX -module. Show
that the tensor product Dω

X = ωX ⊗OX DX is a right DX -module in two different
ways. Show that the two right DX -module structures commute with each other,
and that there is an automorphism of Dω

X that interchanges them.

Exercise 12.3. The previous exercise gives a way to convert left D-modules into
right D-modules and back. Show that if M is a left DX -module, then

Dω
X ⊗DX M

is a right DX -module; here one right DX -module structure on Dω
X is used to define

the tensor product, and the other one is used to turn the tensor product into a
right DX -module. Conversely, show that if N is a right DX -module, then

HomDX

(
Dω
X ,N

)
is a left DX -module; here one right DX -module structure on Dω

X is used to define
HomDX , and the other one is used to turn HomDX into a left DX -module. Finally,
show that the obvious morphism

M→HomDX

(
Dω
X ,D

ω
X ⊗DX M

)
is an isomorphism of left DX -modules.
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Lecture 13: March 25

The transfer module. Last time, we looked at the example of distributions
to understand what the pushforward of an algebraic D-module under a closed
embedding should be. In the case of i : Rk ↪→ Rn, defined by i(x1, . . . , xk) =
(x1, . . . , xk, 0, . . . , 0), we concluded that the pushforward of a right Ak(R)-module
of the form

Ak(R)/(P1, . . . , Pm)Ak(R)

should be the right An(R)-module

An(R)/(P1, . . . , Pm, xk+1, . . . , xn)An(R).

Let me know explain how to define the pushforward under a closed embedding in
general. Let i : Y ↪→ X be a closed embedding, with X nonsingular of dimension n
and Y nonsingular of dimension r. The definition uses the transfer module

DY→X = OY ⊗i−1OX i
−1DX ,

which is a (DY , i
−1DX)-bimodule. In other words, DY→X is both a left DY -module

and a right i−1DX -module, and the two structures commute with each other. The
right i−1DX -module structure is the obvious one, induced by right multiplication
on the second factor of the tensor product. The left DY -module structure is less
obvious, and involves both factors. Remember that since X and Y are both non-
singular, we have a short exact sequence

0→ TY
δi−→ i∗TX = OY ⊗i−1OX i

−1TX → NY |X → 0,

where NY |X is the normal bundle of Y in X, a locally free OY -module of rank
dimX − dimY . Now TY acts on DY→X as follows:

θ · (f ⊗ P ) = θ(f)⊗ P + f · δi(θ) · (1⊗ P ),

where θ ∈ TY , f ∈ OY , and P ∈ i−1DX are local sections. I will leave it as an
exercise to show that this extends to a left DY -module structure.

Example 13.1. Let us write out everything in local coordinates. Choose local
coordinates x1, . . . , xn on X, in such a way that Y is defined by the equations
xr+1 = · · · = xn = 0. We write ∂1, . . . , ∂n for the corresponding vector fields on X;
then y1 = x1, . . . , yr = xr are local coordinates on Y , with vector fields ∂y1 , . . . , ∂yr .
The morphism δi : TY → i∗TX sends ∂yj to 1⊗ ∂j , and so we get

∂yj · (f ⊗ P ) = ∂yjf ⊗ P + f ⊗ ∂jP,

where ∂jP is the product in DX .

Lemma 13.2. The transfer module DY→X contains a copy of DY and is a locally
free left DY -module of infinite rank.

Proof. Since DY→X = OY ⊗i−1OX i
−1DX , the transfer module has a global section

given by 1⊗ 1. This embeds a copy of DY into DY→X , by letting DY act on 1⊗ 1.
In local coordinates as above, we have

∂yj · (1⊗ 1) = 1⊗ ∂j .

More generally, for any differential operator Q =
∑
α fα∂

α
y on Y , we get

Q · (1⊗ 1) =
∑
α

fα ⊗ ∂α =
∑
α

fα ⊗ ∂α1
1 · · · ∂αrr .

This shows that the resulting morphism DY → DY→X is injective.
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Since we are working locally, every differential operator P on X can be written
uniquely in the form P =

∑
β gβ∂

β , where β ∈ Nn. By restriction, each gβ ∈
Γ(X,OX) defines an element ḡβ ∈ Γ(Y,OY ), and we have

f ⊗ P =
∑
β

f ⊗ gβ∂β =
∑

βr+1,...,βn

 ∑
β1,...,βr

fḡβ ⊗ ∂β1

1 · · · ∂βrr

 · ∂βr+1

r+1 · · · ∂βnn .

This shows that the morphism DY ⊗k k[∂r+1, . . . , ∂n]→ DY→X , given by multipli-
cation, is an isomorphism. More formally, consider the subalgebra

DY
X =

⊕
α∈Nr

OX · ∂α1
1 · · · ∂αrr ⊆ DX .

Then we have DX
∼= DY

X ⊗k k[∂r+1, . . . , ∂n], and therefore

DY→X ∼= (OY ⊗i−1OX i
−1DY

X )⊗k k[∂r+1, . . . , ∂n],

and the discussion above shows that OY ⊗i−1OX i
−1DY

X identifies with the copy of
DY inside DY→X . �

Definition 13.3. The pushforward of a right DY -module is defined as

i+M = i∗
(
M⊗DY DY→X

)
;

it becomes a right DX -module through the morphism DX → i∗i
−1DX .

Note that the pushforward is an exact functor, in the sense that if

0→M′ →M→M′′ → 0

is a short exact sequence of right DY -modules, then

0→ i+M′ → i+M→ i+M′′ → 0

is a short exact sequence of right DX -modules. The reason is that the tensor
product over DY is exact (because DY→X is locally free as a left DY -module) and
that i∗ is exact (because i : Y ↪→ X is a closed embedding).

The inclusion DY ↪→ DY→X induces an inclusion of i∗M into the pushforward
i+M. In local coordinates as in the lemma, we get

i+M∼= i∗M⊗k k[∂r+1, . . . , ∂n],

and so the problem that i∗M is not a DX -module is solved by simply creating
a new copy of i∗M for every monomial in ∂r+1, . . . , ∂n. Note the the submodule
i∗M is annihilated by the equations xr+1, . . . , xn of Y , but because of the relation
[∂j , xj ] = 1, this is no longer true for i+M. In general, every section of i∗M is
annihilated by the ideal sheaf IY ⊆ OX , and every section of i+M is annihilated
by some power of IY .

Example 13.4. Let’s compute the pushforward of DY . We have

i+DY = i∗
(
DY ⊗DY DY→X

)
= i∗DY→X = i∗

(
OY ⊗i−1OX i

−1DX

)
.

The natural morphism DX → i+DY , given by sending P ∈ DX to 1⊗ P , is clearly
surjective, and its kernel is exactly the right ideal IY DX . Thus i+DY

∼= DX/IY DX .

Example 13.5. Let us compare the definition with the calculation from last time.
Consider the closed embedding i : Ark ↪→ Ank , corresponding to the quotient mor-
phism k[x1, . . . , xn] → k[x1, . . . , xr]. Let’s compute the pushforward of the right
Ar-module M = Ar/(P1, . . . , Pm)Ar. By the previous example, the pushforward of
Ar itself is given by An/(xr+1, . . . , xn)An. Using the presentation

A⊕mr Ar
(P1,...,Pm)
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for M and the exactness of i+, we see that the pushforward of M is the cokernel
of the induced morphism(

An/(xr+1, . . . , xn)An
)⊕m

An/(xr+1, . . . , xn)An.

One then checks that for the endomorphism of Ar given by left multiplication by
a differential operator P ∈ Ar, the induced endomorphism of An/(xr+1, . . . , xn)An
is still left multiplication by P . Thus that the pushforward of M is isomorphic to

An/(P1, . . . , Pm, xr+1, . . . , xn)An,

in agreement with the calculation we did for distributions last time.

Coherence and characteristic variety. Now let us study the effect of the push-
forward functor on coherence and on the characteristic variety.

Lemma 13.6. If M is a coherent right DY -module, then i+M is a coherent right
DX-module.

Proof. Since M is coherent over DY , we can find a coherent OY -module F ⊆ M
such that F · DY = M. Using the embedding of i∗M into i+M, the coherent
OX -module i∗F embeds into i+M, and one checks in local coordinates that it
generates i+M as a right DX -module. Therefore i+M is coherent. �

To understand the effect of pushing forward on the characteristic variety, we
need to investigate in more detail what happens to a good filtration. Suppose
that M is a coherent right DY -module, and choose a good filtration F•M, so
that each FjM is a coherent OY -module. Using the embedding of i∗M into the
pushforward i+M = i∗(M⊗DY DY→X), each FjM therefore defines a subsheaf
i∗(FjM) ⊆ i+M. To get a filtration that is compatible with the DX -module
structure, we now define

(13.7) Fj(i+M) = i∗(FjM) + i∗(Fj−1M) · F1DX + i∗(Fj−2M) · F2DX + · · ·

Since FjM = 0 for j � 0, there are only finitely many terms, and so each Fj(i+M)
is a coherent OX -module. To check that this gives a good filtration, we work in
local coordinates. So let U ⊆ X be an affine open subset, with local coordinates
x1, . . . , xn ∈ A = Γ(U,OX), such that Y is defined by the ideal I = (xr+1, . . . , xn).
Set B = A/I, and let M = Γ(U ∩ Y,DY ); this is a right D(B)-module, of course,
but we may also consider it as an A-module on which I acts trivially. From our
earlier discussion,

Γ(U, i+M) ∼= M ⊗k k[∂r+1, . . . , ∂n] =
def

M̃,

and the above filtration is given by

FjM̃ = FjM ⊗ 1 + (Fj−1M ⊗ 1) · F1D(A) + (Fj−2M ⊗ 1) · F2D(A) + · · · .

We can write this in more compact notation as

FjM̃ =
∑
α

Fj−|α|M ⊗ ∂
αr+1

r+1 · · · ∂αnn .

The associated graded module is therefore given by

(13.8) grF M̃ = grFM ⊗k k[∂r+1, . . . , ∂n],

with the grading in which every ∂j has degree 1. Concretely,

grFj M̃ =
⊕
α

grFj−|α|M ⊗ ∂
αr+1

r+1 · · · ∂αnn .
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Now grF M̃ is a graded module over grFD(A) ∼= A[∂1, . . . , ∂n]. Let us describe the
module structure in more detail. Recall that grFM is a finitely generated graded
module over grFD(B) ∼= B[∂1, . . . , ∂r]. From (13.8), we get

grF M̃ ∼= grFM ⊗B[∂1,...,∂r] B[∂1, . . . , ∂n],

and since I ⊆ A acts trivially on grF M̃ by construction, this is actually an isomor-
phism of A[∂1, . . . , ∂n]-modules. Since grFM is finitely generated over B[∂1, . . . , ∂r],

this shows that grF M̃ is finitely generated over grFD(A), and so the filtration in
(13.7) is indeed good.

The calculation we have just done has the following geometric interpretation.
The closed embedding i : Y ↪→ X gives rise to two morphisms between the cotangent
bundles of X and Y :

Y ×X T ∗X T ∗Y

T ∗X

p2

di

Here the morphism di : Y ×X T ∗X → T ∗Y corresponds to the pullback morphism
i∗Ω1

X/k → Ω1
Y/k between Kähler differentials, and is therefore a morphism of vector

bundles, with kernel the conormal bundle of Y in X. In particular, it is a smooth

morphism of relative dimension dimX−dimY . If we denote by ‡grFM the coherent
OT∗Y -module corresponding to grFM, then the above isomorphism takes the form

(13.9) ‰�grF(i+M) ∼= (p2)∗di∗‡grFM.

The reason is that, in local coordinates, the morphisms of k-algebras corresponding
to the morphisms between cotangent bundles are

B[∂1, . . . , ∂n] B[∂1, . . . , ∂r]

A[∂1, . . . , ∂n]

and so pulling back via di corresponds to tensoring the B[∂1, . . . , ∂r-module grFM
by B[∂1, . . . , ∂n], and pushing forward via p2 corresponds to consider the result as
a module over A[∂1, . . . , ∂n]. The calculation from above shows that the result is

isomorphic to grF M̃ . Let us summarize the conclusion.

Proposition 13.10. Let i : Y → X be a closed embedding, andM a coherent right
DY -module. Then the pushforward i+M satisfies

Ch(i+M) = p2

(
di−1 Ch(M)

)
,

and so dim Ch(i+M) = dim Ch(M) + dimX − dimY .

Proof. Since the characteristic variety of M is the support of ‡grFM, the formula
for the characteristic variety is an immediate consequence of (13.9). Because di is
a smooth morphism of relative dimension dimY − dimX, whereas p2 is a closed
embedding, the asserted formula for the dimension of the characteristic variety
follows from this. �

The formula for the characteristic variety of the pushforward has several useful
consequences. Firstly, it implies that M is holonomic if and only if i+M is holo-
nomic. The reason is of course that dim Ch(i+M)−dimX = dim Ch(M)−dimY .
Secondly, it gives another proof for Bernstein’s inequality dim Ch(M) ≥ dimX,
independently of symplectic geometry. Recall that, back in Lecture 3, we proved
Bernstein’s inequality for finitely generated modules over the Weyl algebra, by look-
ing at Hilbert functions. We can now deduce from this that Bernstein’s inequality
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holds for all algebraic D-modules. Suppose then that M is a finitely generated
right DX -module, where X is a nonsingular algebraic variety. Since the question
is local, we may assume that X is affine. We can then choose a closed embedding
i : X ↪→ Amk into affine space. By Proposition 13.10, we have

dim Ch(M)− dimX = dim Ch(i+M)−m ≥ 0,

where the inequality is a consequence of Bernstein’s inequality for the Weyl algebra.
Thus dim Ch(M) ≥ dimX.

Kashiwara’s equivalence. Let i : Y ↪→ X be a closed embedding. We had al-
ready noted that

i+ : (coherent right DY -modules)→ (coherent right DX -modules)

is an exact functor. One of the first results that Kashiwara proved in his thesis is
a description of the image of this functor. Clearly, every right DX -module of the
form i+M is supported on Y , in the following sense.

Definition 13.11. The support of a coherent right DX -module N is defined as

SuppN = p
(
Ch(N )

)
,

where p : T ∗X → X is the projection.

Since Ch(N ) is conical, its image in X is always a closed algebraic subset. It
follows that SuppN is the complement of the largest Zariski-open subset U ⊆ X
such that N

∣∣
U

is trivial. Since every section of i+M is annihilated by a sufficiently

large power of IY , it is clear that Supp(i+M) ⊆ Y . (This allows follows from
Proposition 13.10, of course.)

Theorem 13.12 (Kashiwara’s equivalence). The functor i+ is an equivalence of
categories between the category of (coherent) right DY -modules and the category of
(coherent) right DX-modules with support contained in Y .

We will give the proof next time.

Exercises.

Exercise 13.1. Suppose that X = SpecA is affine, and that Y is the closed sub-
scheme defined by an ideal I ⊆ A, so that Y = SpecB for B = A/I. Show that
the morphism Derk(B) → B ⊗A Derk(A) puts a left D(B)-module structure on
B ⊗A D(A), and that it commutes with the natural right D(A)-module structure.

Exercise 13.2. Let X = SpecA, with local coordinates x1, . . . , xn ∈ A, and let
I = (xr+1, . . . , xn). Show that if M is a finitely generated right D(B)-module,
where B = A/I, then M ⊗k k[∂r+1, . . . , xn] is finitely generated as a right D(A)-
module.

Exercise 13.3. Let M be a graded B[∂1, . . . , ∂r]-module. Show that

AnnA[∂1,...,∂n]

(
M ⊗k k[∂r+1, . . . , ∂n]

)
= (xr+1, . . . , xn) +A[∂1, . . . , ∂n] ·AnnB[∂1,...,∂r]M,

as ideals in A[∂1, . . . , ∂n].
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Lecture 14: March 27

Kashiwara’s equivalence. Let us start by giving the proof of Kashiwara’s equiv-
alence from last time. Here is the statement again.

Theorem (Kashiwara’s equivalence). Let i : Y ↪→ X be a closed embedding between
nonsingular algebraic varieties. The functor i+ gives an equivalence between the cat-
egory of coherent right DY -modules and the category of coherent right DX-modules
with support cotained in Y .

Proof. Recall that if M is a coherent right DY -module, we defined

i+M = i∗
(
M⊗DY DY→X

)
,

where the transfer module DY→X = OY ⊗i−1OX i
−1DX is a (DY , i

−1DX)-bimodule.
The first step is to construct an inverse for the functor i+. We have seen that i+M
always contains a copy of the OX -module i∗M, and from the local description, it
is clear that i∗M is exactly the subsheaf of i+M that is annihilated by the ideal
sheaf IY ⊆ OX . Thus the inverse functor should take a coherent right DX -module
N to the subsheaf of sections that are annihilated by IY . An efficient way to do
this is as follows. Given a coherent right DX -module N , we define

i]N = Homi−1DX

(
DY→X , i

−1N
)
.

Here we use the right i−1DX -module structure on the transfer module forHomi−1DX .
The left DY -module on DY→X then induces a right DY -module structure on i]N .
We can rewrite the above definition as

i]N = Homi−1DX

(
OY ⊗i−1OX i

−1DX , i
−1N

) ∼= Homi−1OX (OY , i
−1N ),

using the adjunction between Hom and the tensor product. From the short exact
sequence 0→ i−1IY → i−1OX → OY → 0, we obtain an exact sequence

0→ i]N → i−1N → Homi−1OX (i−1IY , i−1N )

and so i]N is exactly the subsheaf of i−1N annihilated by i−1IY . I will leave
it as an exercise to check that this isomorphism is compatible with the natural
DY -module structure on both sides.

Now the claim is that the natural morphism i]i+M→M is an isomorphism for
every coherent right DY -module M, and that the natural morphism N → i+i

]N
is an isomorphism for every coherent right DX -module N such that SuppN ⊆ Y .
This can be checked locally, and so we may assume without loss of generality
that X = SpecA is affine, with coordinates x1, . . . , xn ∈ A, and that the closed
embedding is defined by the ideal I = (xr+1, . . . , xn) ⊆ A. If we set B = A/I, we
then have Y = SpecB. In this setting, the pushforward of a right D(B)-module
M is isomorphic to M ⊗k k[∂r+1, . . . , ∂n], and it is easy to see from this description
that the submodule annihilated by the ideal I is exactly M ⊗ 1 ∼= M . This proves
the first isomorphism.

The proof of the second isomorphism is more interesting. Suppose that N is
a right D(A)-module with SuppN contained in the closed subscheme V (I). This
means that every s ∈ N is annihilated by a sufficiently large power of I. Our goal
is to prove that N ∼= N0 ⊗k k[∂r+1, . . . , ∂n], where N0 =

{
s ∈ N

∣∣ sI = 0
}

. For
this, we consider the effect of the operators

Tj = xj∂j

on the module N . The point is that

Tj · ∂er+1

r+1 · · · ∂enn = ∂
er+1

r+1 · · · ∂enn · (Tj − ej),
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and since Tj acts trivially on the submodule N0, we have

s⊗ ∂er+1

r+1 · · · ∂enn · (Tj − ej) = 0

for every s ∈ N0. This means that we can read off the exponents of each monomial
from the eigenvalues of the operators Tr+1, . . . , Tn.

Now let us make this precise. The operators Tr+1, . . . , Tn commute, and a short
calculation shows that

Tj(Tj − 1) · · · (Tj − e) = xe+1
j ∂e+1

j

for every e ≥ 0. For any s ∈ N , we have sxe+1
j = 0 for e� 0, and therefore

sTj(Tj − 1) · · · (Tj − e) = sxe+1
j ∂e+1

j = 0.

This means that s can be written as a sum of eigenvectors of Tj with eigenvalues
in N. Since Tr+1, . . . , Tn commute, we therefore obtain a decomposition

N =
⊕

er+1,...,en∈N
Ner+1,...,en

into simultaneous eigenspaces, where Tj acts on Ner+1,...,en as multiplication by
ej . Now the claim is that N0,...,0 = N0, and that this decomposition gives us an
isomorphism N ∼= N0 ⊗k k[∂r+1, . . . , ∂n] between N and the pushforward of N0.

To simplify the notation, let me assume that r = n− 1, meaning that I = (xn)
is principal. Then the eigenspace decomposition becomes

N =
⊕
e∈N

Ne,

where the operator Tn = xn∂n acts onNe as multiplication by e. Since Tn commutes
with x1, . . . , xn−1, ∂1, . . . , ∂n−1, each Ne is a D(B)-module. Suppose that we have
s ∈ Ne. Then we get s∂n ∈ Ne+1, because

s∂nTn = s(∂nxn)∂n = s(xn∂n + 1)∂n = s∂n(e+ 1);

likewise, we get sxn ∈ Ne−1, because

sxnTn = sxn(xn∂n) = sxn(∂nxn − 1) = sxne− sxn = sxn(e− 1).

Since Ne is trivial for e ≤ −1, we conclude that N0 =
{
s ∈ N

∣∣ sxn = 0
}

;
moreover, we see that for e ≥ 0, the morphism

N0 → Ne, s 7→ s∂en,

is an isomorphism of D(B)-modules. It is now easy to check that

N0 ⊗k k[∂n]→ N,
∑
e∈N

se ⊗ ∂en 7→
∑
e∈N

se∂
e
n,

is an isomorphism of D(A)-modules. This proves the second isomorphism. �

Example 14.1. Kashiwara’s equivalence implies that D-modules, unlike O-modules,
never have nontrivial nilpotents. For example, the A1-module A1/x

3A1 is isomor-
phic to three copies of A1/xA1.

Kashiwara’s equivalence suggests the following definition of the category of alge-
braic D-modules on a singular algebraic variety. Suppose that X is a nonsingular
algebraic variety, and Y ⊆ X any closed subvariety. Then an algebraic DY -module
is defined to be an algebraic DX -module whose support is contained in Y . One can
use Kashiwara’s equivalence to show that the resulting category is, up to equiva-
lence, independent of the choice of nonsingular ambient variety X.
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Pulling back. Suppose that f : X → Y is a morphism between two nonsingular
algebraic varieties. It is not hard to construct a pullback functor from algebraic
DY -modules to algebraic DX -modules. Recall that we have a natural morphism

δf : TX → f∗TY = OX ⊗f−1OY f
−1TY ,

dual to the pullback morphism f∗Ω1
Y/k → Ω1

X/k on Kähler differentials. Now if M
is any left DY -module, then this morphism gives

f∗M = OX ⊗f−1OY f
−1M

the structure of a left DX -module. The formula is the same as in the case of the
transfer module: one has

θ · (g ⊗ u) = θ(g)⊗ u+ g · δf (θ) · (1⊗ u),

where θ ∈ TX , g ∈ OX , and u ∈ f−1M are local sections. We can say this more
compactly by noting that

f∗M∼=
(
OX ⊗f−1OY f

−1DY

)
⊗f−1DY f

−1M = DX→Y ⊗f−1DY f
−1M.

The transfer module DX→Y is a (DX , f
−1DY )-bimodule, and f∗M becomes a left

DX -module through the left DX -module structure on DX→Y . Since the pullback of
a quasi-coherent OY -module is a quasi-coherent OX -module, it is clear that f∗M
is again an algebraic DX -module.

Now the functor f−1 is exact, but tensor product is only right-exact, and so
makes sense to consider also the right derived functors.

Definition 14.2. We define the inverse image of a left DY -module M by the
formula f∗M = DX→Y ⊗f−1DY f

−1M. For j ≥ 0, we define L−jf∗M as the j-th
right derived functor of f∗.

As usual, L−jf∗M is computed by choosing a resolution of M by DY -modules
that are locally free (or flat) over OY ; alternatively, we can choose a resolution of
DX→Y .

Example 14.3. Suppose that E is a locally free OY -module with an integrable
connection ∇ : E → Ω1

Y/k ⊗OY E , viewed as a left DY -module. The inverse image

is then simply the usual pullback f∗E , together with the integrable connection

f∗∇ : f∗E → f∗Ω1
Y/k ⊗OX f

∗E → Ω1
X/k ⊗OX f

∗E ,

viewed as a left DX -module.

Example 14.4. Consider the left A1-module M = A1/A1x and its pullback to the
origin in A1

k. The corresponding morphism of k-algebras is k[x]→ k; using the free
resolution

k[x]
x−→ k[x]

for k, the derived functors of the pullback are computed by the complex

A1/A1x
x−→ A1/A1x,

where the map is P 7→ xP . The kernel is isomorphic to k, generated by the image
of 1 ∈ A1; the cokernel is trivial, because 1 = −x∂ modulo A1x. Thus L0i∗M = 0
and L−1i∗M = k.

In Lecture 12, I said that the definition of the pushforward functor (in the case
of a closed embedding) was motivated by the pushforward of distributions. So why
do I not talk about pulling back functions before introducing the pullback functor?
The reason is that pulling back D-modules does not correspond to pulling back
functions; as we will see next week, the actual meaning is much more interesting.
For now, let me just point out one difference between the two functors: pulling
back does not necessarily preserve coherence.
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Example 14.5. Consider the embedding Spec k ↪→ A1
k of the origin, corresponding

to the morphism of k-algebras k[x] → k. The pullback of DA1
k

is the k-module

k ⊗k[x] A1(k) = A1(k)/xA1(k). This is infinite-dimensional, because the elements

1, ∂, ∂2, . . . are all linearly independent, and in particular, it is not coherent over k.

In general, the pullback of a DX -module of the form DX/DX(P1, . . . , Pm) is not
coherent, and so we cannot interpret it as pulling back functions and looking at the
differential equations they satisfy.

The following lemma is obvious from the definition.

Lemma 14.6. If f : X → Y and g : Y → Z are morphisms between nonsingular
algebraic varieties, then one has a natural isomorphism of functors (g ◦f)∗ = f∗g∗.

We can factor any morphism f : X → Y through its graph as

X X × Y Y
if p2

as a closed embedding if followed by a smooth morphism p2 (actually, a projection
in a product). Because of the lemma, this means that it suffices to understand the
pullback functor in the case of closed embeddings and smooth morphisms.

Non-characteristic inverse image. I am now going to describe a condition un-
der which f∗ preserves coherence. This will also help us understand what the pull-
back functor is doing in terms of differential equations. To do this, we revisit a very
pretty classical result about differential equations, called the Cauchy-Kovalevskaya
theorem. Let’s begin with the case of ordinary differential equations.

Theorem 14.7 (Cauchy-Kovalevskaya). Consider the initial value problem

du

dt
= F (u), u(0) = 0,

for a real function u. If F : (−ε, ε)→ R is real-analytic near 0, then the solution u
is also real-analytic near 0.

Proof. Although it is not directly connected with D-modules, let me show you the
proof, because it is very beautiful. The proof is basically Cauchy’s original proof.
How do we show that u is real-analytic? We have to prove that the Taylor series

∞∑
n=0

u(n)(0)
tn

n!

converges in a neighborhood of 0, and for that, we need to compute the values of
all the derivatives u(n)(0). The differential equation gives

u′ = F (u)

u′′ = F ′(u)u′ = F ′(u)F (u)

u′′′ = F ′′(u)u′F (u) + (F ′(u))2u′ = F ′′(u)(F (u))2 + (F ′(u))2F (u).

and so on. In principle, we can compute u(n)(0) for every n ≥ 0, but the formulas
get very complicated, and so trying to prove the convergence of the series looks
pretty hopeless. Still, what we get is that

u(n) = Pn
(
F (u), F ′(u), . . . , F (n−1)(u)

)
,

where Pn is a polynomial with nonnegative integer coefficients. These polynomials
are universal, in the sense that they do not depend on the given function F . For
example, P2(x, y) = yx and P3(x, y, z) = zx2 + y2x. Because Pn has nonnegative
coefficients, this gives us an upper bound

|u(n)(0)| ≤ Pn
(
|F (0)|, |F ′(0)|, . . . , |F (n−1)(0)|

)
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on the derivatives of u, using the initial condition u(0) = 0. Now Cauchy makes
the following brilliant observation. Suppose that we have another function G with
the property that |F (n)(0)| ≤ G(n)(0) for every n ≥ 0. Then

|u(n)(0)| ≤ Pn
(
G(0), G′(0), . . . , G(n−1)(0)

)
= v(n)(0),

where v is the solution to the initial value problem

dv

dt
= G(v), v(0) = 0.

The reason is again that Pn has nonnegative coefficients, and that the same poly-
nomial Pn works for both F and G. Such a function G is called a “majorant”, and
the proof is known as the method of majorants. Suppose that we manage to find G
in such a way that the function v is real-analytic. Then the Taylor series

∞∑
n=0

v(n)(0)
tn

n!

has a positive radius of convergence, and since |u(n)(0)| ≤ v(n)(0) for every n ≥ 0,
the same is true for the series

∞∑
n=0

|u(n)(0)| t
n

n!
.

This is sufficient to conclude that u is real-analytic in a neighborhood of 0.
It remains to construct a suitable majorant G. By assumption, F is real-analytic

near 0, and so its Taylor series
∞∑
n=0

F (n)(0)
tn

n!

has a positive radius of convergence. By comparing this series with a geometric
series, we find that there are constants C > 0 and r > 0 such that |F (n)(0)| ≤
Cn!/rn for every n ≥ 0. We can then take

G(t) = C

∞∑
n=0

(
t

r

)n
=

Cr

r − t
,

because G(n)(0) = Cn!/rn ≥ |F (n)(0)| by construction. The solution of the corre-
sponding initial value problem

dv

dt
=

Cr

r − v
, v(0) = 0,

is easily found using separation of variables; the result is that v = r−r
√

1− 2Ct/r.
This is evidently real-analytic for |t| < r/2C, and so we are done. �

Exercises.

Exercise 14.1. Let X = SpecA and Y = SpecB, where B = A/I for an ideal I ⊆ A
and both A and B are nonsingular. Let N be a right D(A)-module.

(a) Show that N0 =
{
s ∈ N

∣∣ sI = 0
}

is a B-module, and that the map

N0 ⊗B TB → N0, s⊗ θ 7→ s · δ(θ),
makes N0 into a right D(B)-module, where δ : Derk(B) → B ⊗A Derk(A)
is the induced morphism between derivations.

(b) Check that the isomorphism of B-modules

HomD(A)

(
B ⊗A D(A), N

) ∼= HomA(B,N) ∼= N0

is actually an isomorphism of right D(B)-modules.
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Exercise 14.2. If T = x∂, prove the identities

T∂e = ∂e(T − e) and T (T − 1) · · · (T − e) = xe+1∂e+1

for every e ≥ 0.
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Lecture 15: April 1

The Cauchy-Kovalevskaya theorem. Last time, we showed that the solution
to the initial value problem

du

dt
= F (u), u(0) = 0,

is real-analytic near t = 0, provided that this is true for the function F . I also
showed you Cauchy’s proof, using the “method of majorants”. Today, we are going
to generalize this result to partial differential equations. We work on Rn, with
coordinates x1, . . . , xn, and consider a partial differential equation of the form

Pu =
∑
|α|≤k

fα∂
αu = 0,

where each fα is a real-analytic function in a neighborhood of the origin, say.
(And ∂j = ∂/∂xj , as usual.) In other words, P is a linear differential operator of
order k with real-analytic coefficients. We will specify the initial conditions on the
hyperplane xn = 0, which is a copy of Rn−1. They are

u
∣∣
Rn−1 = g0, ∂nu

∣∣
Rn−1 = g1, . . . , ∂k−1

n u
∣∣
Rn−1 = gk−1,

where g0, g1, . . . , gk−1 are real-analytic in a neighborhood of the origin in Rn−1.
From this data, we can of course compute all partial derivatives of u of order at
most k − 1 on Rn−1; indeed, if α ∈ Nn is a multi-index, then

(15.1) ∂αu
∣∣
Rn−1 = ∂α1

1 · · · ∂
αn−1

n−1 gαn ,

provided that αn ≤ k − 1.
The goal is to show that the solution u is real-analytic near the origin. For

that to be true, the Taylor series of u at the origin needs to be determined by
the equation Pu = 0 plus the initial conditions, and so we had better be able to
compute all partial derivatives of u at the origin. Since we can always differentiate
along Rn−1, the real question is how to find

∂jnu
∣∣
Rn−1

for j ≥ k. Clearly, this information has to come from Pu = 0. Since P has order
k, we can rewrite Pu = 0 as

f(0,...,0,k) · ∂knu = −
∑

αn≤k−1

fα∂
αu,

and in view of (15.1), we can solve this for ∂knu
∣∣
Rn−1 if and only if the restriction

of the coefficient function f(0,...,0,k) to Rn−1 is everywhere nonzero. (If we only
care about what happens at the origin, then the condition is that f(0,...,0,k) should
be nonzero at the origin.) If that is the case, we can of course divide through by
f(0,...,0,k) and arrange that ∂kn appears with coefficient 1.

Definition 15.2. We say that P is non-characteristic with respect to the hyper-
surface xn = 0 if the coefficient function f(0,...,0,k) is everywhere nonzero on Rn−1.

Assuming that P is non-characteristic (and f(0,...,0,k) = 1), we can rewrite the
equation Pu = 0 in the form

∂knu = Qu,

where Q is a differential operator of order k in which ∂kn does not appear. We can
now use this equation recursively, together with (15.1), to compute ∂αu

∣∣
Rn−1 for

every α ∈ Nn. In particular, assuming that P is non-characteristic, the equation
Pu = 0 together with the initial conditions on Rn−1 give enough information to
compute the Taylor series for u at the origin. We can now state the PDE version
of the Cauchy-Kovalevskaya theorem.
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Theorem 15.3 (Cauchy-Kovalevskaya). Let P be a linear partial differential op-
erator of order k whose coefficients are real-analytic near the origin in Rn. If P is
non-characteristic with respect to xn = 0, then the boundary-value problem

Pu = 0, u
∣∣
Rn−1 = g0, ∂nu

∣∣
Rn−1 = g1, . . . , ∂k−1

n u
∣∣
Rn−1 = gk−1,

has a unique real-analytic solution u near the origin in Rn, for every choice of
functions g0, g1, . . . , gk−1 real-analytic near the origin in Rn−1.

Example 15.4. Here is an example to show that the solution can fail to be real-
analytic if P is “characteristic”. This example is due to Kovalevskaya herself.
Consider the heat equation ∂tu = ∂2

xu in R2, with coordinates (x, t). Since the
equation is first-order in t, we only need a single initial condition u(x, 0) = g(x).
Note that the operator P = ∂t − ∂2

x is characteristic with respect to t = 0, because
it has order 2, but no term involving ∂2

t . Here is a heuristic reason why we cannot
expect u to be real-analytic in general. From the equation, we get

∂nt u = ∂2n
x u,

and at (x, t) = (0, 0), this evaluates to g(2n)(0). If the Taylor series of g at the
origin has a finite radius of convergence, then

|g(2n)(0)| ≥ C (2n)!

r2n

for some C, r > 0. But this means that the function h(t) = u(0, t) cannot be
real-analytic in t: indeed, from the above, we deduce that

|h(n)(0)| ≥ C (2n)!

r2n
,

and since (2n)! grows so much faster than n!, the Taylor series of h(t) has radius of
convergence equal to zero. For an actual example, take g(x) = 1/(x2 + 1).

Now let me give an outline of the proof of Theorem 15.3. As explained above,
we can rewrite the equation Pu = 0 in the form

∂knu = Qu,

where Q is a differential operator of order k with real-analytic coefficients, such that
Q has order at most k−1 in ∂n. Moreover, we can subtract a suitable real-analytic
function from u to arrange that g0 = g1 = . . . = gk−1 = 0. We now rewrite the

problem as a system of first-order PDE for N =
(
n+k−1
n

)
+ 1 unknown functions

u1, . . . , uN . These functions are the N − 1 partial derivatives ∂αu for |α| ≤ k − 1,
and the auxiliary uN = xn. In vector notation, the system takes the form

(15.5)
∂u

∂xn
=

n−1∑
j=1

Bj(x1, . . . , xn−1)
∂u

∂xj
+B0(x1, . . . , xn−1)u,

where u = (u1, . . . , uN ), and where the coefficient matrices B0, . . . , Bn−1 are derived
from Q, hence real-analytic near the origin. Note that we threw in the function
uN = xn in order to make the coefficients be independent of xn; of course, the
corresponding equation is simply ∂uN/∂xn = 1. The initial condition is that u is
the zero vector for xn = 0.

Now one can again use the method of majorants to prove that u is real-analytic
near the origin in Rn. From (15.5), all partial derivatives of u at the origin are given
by (very complicated) universal polynomials with nonnegative integer coefficients
in the partial derivatives of B0, . . . , Bn−1 at the origin. Using the fact that the
coefficient matrices are real-analytic near the origin, one can again write down
simple majorants for each of them, and then explicitely solve the resulting system
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of first-order PDE to show that its solution v, and hence also u, is real-analytic
near the origin.

Non-characteristic D-modules. Here is a geometric interpretation for the con-
dition that P is non-characteristic with respect to xn = 0. If P =

∑
α fα∂

α has
order k as above, then its principal symbol

σk(P ) =
∑
|α|=k

fα(x1, . . . , xn) · ξα1
1 · · · ξαnn

is a homogeneous polynomial of degree k in the variables ξ1, . . . , ξn. We said that
P is non-characteristic iff f(0,...,0,k)(x1, . . . , xn−1, 0) 6= 0 for every x1, . . . , xn−1.
Another way of saying this is that if we set xn = 0 and assign arbitrary values to
the variables x1, . . . , xn−1, ξ1, . . . , ξn−1, then σk(P ), considered as a polynomial in
the remaining variable ξn, always has degree exactly k. The geometric meaning of
this condition is as follows. We have the usual maps between the cotangent bundles
T ∗Rn = Rn × Rn and T ∗Rn−1 = Rn−1 × Rn−1:

Rn−1 ×Rn T
∗Rn T ∗Rn−1

T ∗Rn

di

p2

Using x1, . . . , xn, ξ1, . . . , ξn as coordinates on T ∗Rn, the maps are just

p2(x1, . . . , xn−1, ξ1, . . . , ξn) = (x1, . . . , xn−1, 0, ξ1, . . . , ξn)

di(x1, . . . , xn−1, ξ1, . . . , ξn) = (x1, . . . , xn−1, ξ1, . . . , ξn−1).

Consider the subset Ch(P ) ⊆ T ∗Rn defined by the equation σk(P ) = 0. Setting
xn = 0 and prescribing values for x1, . . . , xn−1, ξ1, . . . , ξn−1 amounts to looking at
the fibers of p−1

2 Ch(P ) over T ∗Rn−1, and so P is non-characteristic exactly when
the projection from p−1

2 Ch(P ) to T ∗Rn−1 is a finite morphism of degree k. If we
observe that Ch(P ) is the characteristic variety of the D-module An(R)/An(R)P ,
this finiteness condition makes sense for arbitrary coherent D-modules.

Let me now give the general definition. Suppose that f : X → Y is a morphism
between two nonsingular algebraic varieties. Here is the diagram of the induced
morphisms between cotangent bundles:

X ×Y T ∗Y T ∗X

T ∗Y

df

p2

Definition 15.6. Let M be a coherent left DY -module. We say that M is non-
characteristic with respect to f : X → Y if the morphism

df : p−1
2 Ch(M)→ T ∗X

is finite over its image.

Example 15.7. Consider the closed embedding i : An−1
k ↪→ Ank , defined by xn = 0.

Our earlier discusion shows that if P ∈ An is nonzero, then the left An-module
An/AnP is non-characteristic with respect to i if and only if the differential operator
P is non-characteristic with respect to xn = 0 in the classical sense.

Example 15.8. If f : X → Y is a smooth morphism, then every coherent DY -module
is non-characteristic with respect to f . Indeed, smoothness means that we have a
short exact sequence

0→ f∗Ω1
Y/k → Ω1

X/k → Ω1
X/Y → 0,
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with Ω1
X/Y locally free of rank dimX − dimY . But this says that

df : X ×Y T ∗Y → T ∗X

is a closed embedding (of codimension dimX−dimY ), and so p−1
2 Ch(M) is trivially

finite over its image in T ∗X.

In the following example, we compute the pullback of an An-module of the form
An/AnP to the hypersurface xn = 0, in the case where P is non-characteristic.

Example 15.9. Consider the left An-module M = An/AnP , where P ∈ An is a
nonzero differential operator of order r ≥ 0. Suppose that M is non-characteristic
with respect to the closed embedding i : An−1 ↪→ An defined by the equation xn = 0.
We claim that, in this case, the pullback i∗M is not only coherent, but actually a
free An-module of rank r. The definition of the pullback gives

(15.10) i∗M = k[x1, . . . , xn−1]⊗k[x1,...,xn] M ∼= An/(xnAn +AnP ),

where the right-hand side is a left An−1-module in the obvious way. We have a
morphism of left An−1-modules

ϕ : A⊕rn−1 → An/(xnAn +AnP )

(Q0, Q1, . . . , Qr−1) 7→ Q0 +Q1∂n + · · ·+Qr−1∂
r−1
n .

We will show that ϕ is an isomorphism. Let us first argue that ∂rn is in the image.
We can write our differential operator P ∈ An uniquely in the form

P = f∂rn − Pr−1∂
r−1
n − · · · − P1∂n − P0,

where f ∈ k[x1, . . . , xn] and where P0, . . . , Pr−1 ∈ An do not involve ∂n. The
fact that P is non-characteristic means that f is nowhere vanishing on An−1; after
rescaling, we can assume that f = 1 − xng. Writing Pj = Qn + xnRj , with
Qj ∈ An−1, we get

(15.11) ∂rn =

r−1∑
j=0

Qj∂
j
n + xn

(
g∂rn +

r−1∑
j=0

Rj∂
j
n

)
+ P,

and so ∂rn belongs to the image of ϕ. Using the relation in (15.11) repeatedly, we
see that this is true for all powers of ∂n, and so ϕ is surjective.

It remains to prove that ϕ is injective. This is equivalent to saying that if

Q0 +Q1∂n + · · ·+Qr−1∂
r−1
n = xnS + TP

for some Q0, . . . , Qr−1 ∈ An−1 and S, T ∈ An, then actually Q0 = · · · = Qr−1 = 0.
We can write T = xnT0 + T1, in such a way that xn does not appear in T1; since
xnS + TP = xn(S + T0) + T1P , we can therefore assume without loss of generality
that T does not involve xn. Now suppose, for the sake of contradiction, that T 6= 0.
On the right-hand side of the equation, ∂rn appears with a nonzero coefficient:
indeed, P contains (1− xng)∂rn, and since T does not involve xn, it is not possible
to cancel this term against anything from xnS. But this clearly contradicts the
fact that ∂rn does not appear on the left-hand side of the equation. The conclusion
is that T = 0; and then also Q0 = · · · = Qr−1 = 0, because the right-hand side is
divisible by xn, whereas the left-hand side does not involve xn.

The preceding example, together with the Cauchy-Kovalevskaya theorem, sheds
some light on what the pullback of D-modules has to do with differential equations.

Example 15.12. Continuing with the previous example, let us take k = R. Set
M = DRn/DRnP . Let us denote by RRn the sheaf of real-analytic functions on Rn;
it is a left DRn-module in the obvious way. Recall from Lecture 1 that real-analytic
solutions to the equation Pu = 0 on an open subset U ⊆ Rn correspond naturally
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to morphisms of left DRn -modulesM→ RRn over U ; here the morphism takes the
generator 1 ∈ Γ(U,DRn) to the corresponding function u ∈ Γ(U,RRn).

In this notation, the Cauchy-Kovalevskaya theorem says that if V ⊆ Rn−1 is an
open subset, and g0, g1, . . . , gr−1 ∈ Γ(V,RRn−1) are arbitrary real-analytic functions
on V , there is an open subset U ⊆ Rn with U ∩ Rn−1 = V , and a real-analytic
function u ∈ Γ(U,RRn), such that Pu = 0 and

∂jnu
∣∣
Rn−1 = gj for j = 0, 1, . . . , r − 1.

By what we have just said, u may be viewed as a section of the sheaf

i−1HomDRn

(
M,RRn

)
on the open subset V . Now we have a natural morphism of sheaves

i−1HomDRn

(
M,RRn

)
→ HomDRn−1

(
i∗M, i∗RRn

)
→ HomDRn−1

(
i∗M,RRn−1

)
;

it works by applying the pullback functor i∗ to a morphism of left DRn -modules
M → RRn , and then composing with the restriction morphism i∗RRn → RRn−1 .
The preceding example shows that i∗M is a free DRn−1 -module of rank r, generated
by the images of 1, ∂n, . . . , ∂

r−1
n . Thus

HomDRn−1

(
i∗M,RRn−1

) ∼= R⊕rRn−1 ,

and one checks that the resulting morphism

i−1HomDRn

(
M,RRn

)
→ R⊕rRn−1

takes u to its boundary values

u
∣∣
Rn−1 , ∂nu

∣∣
Rn−1 , · · · , ∂r−1

n u
∣∣
Rn−1 .

This means that we can interpret the Cauchy-Kovalevskaya theorem, in more fancy
language, as the statement that the morphism

i−1HomDRn

(
M,RRn

)
→ HomDRn−1

(
i∗M,RRn−1

)
is an isomorphism of sheaves on Rn−1. This tells us that the D-module pullback
i∗M has to do with the boundary conditions for the partial differential equation
Pu = 0; the fact that i∗M is free of rank r means that we can specify r independent
real-analytic functions as boundary conditions.

Non-characteristic pullback. Our next goal is to show that if f : X → Y is
a morphism between nonsingular algebraic varieties, and if M is a coherent left
DY -module that is non-characteristic with respect to f , then the pullback f∗M is
coherent over DX . To simplify the analysis, we are going to factor f through its
graph. Let us see how this factorization interacts with being non-characteristic.

Suppose for a moment that we have an arbitrary factorization

X Z Y
g

f

h

with Z nonsingular. We can then draw the following big diagram of induced mor-
phisms between cotangent bundles:

X ×Y T ∗Y X ×Z T ∗Z T ∗X

Z ×Y T ∗Y T ∗Z

T ∗Y

q

df

g×id p2

dg

dh

p2
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If h : Z → Y is a smooth morphism, then dh is a closed embedding, and so its base
change along g : X → Z, which is denoted by q in the diagram above, is also a closed
embedding. Since df = dg ◦ q, we see that the subset p−1

2 Ch(M) of X ×Y T ∗Y is
finite over T ∗Z if and only if its image under q is finite over T ∗Z. This observation
can be used to reduce the study of non-characteristic pullback to two special cases:
smooth morphisms and closed embeddings.

Exercises.

Exercise 15.1. On Rn, we use coordinates x1, . . . , xn. LetM = DRn/DRnP , where
P is a differential operator of order r that is non-characteristic with respect to
xn = 0. Show that the morphism

i−1HomDRn

(
M,RRn

)
→ R⊕rRn−1

in Example 15.12 takes a real-analytic solution to the equation Pu = 0 to the
r-vector of its normal derivatives

u
∣∣
Rn−1 , ∂nu

∣∣
Rn−1 , · · · , ∂r−1

n u
∣∣
Rn−1 .
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Lecture 16: April 8

Non-characteristic pullback and coherence. Recall that if f : X → Y is a
morphism between nonsingular algebraic varieties, we have the following morphisms
between cotangent bundles:

(16.1)

X ×Y T ∗Y T ∗X

T ∗Y

df

p2

We said last time that a coherent left DY -module M is called non-characteristic
with respect to f if p−1

2 Ch(M) is finite over its image in T ∗X (under the morphism
df). Here are three typical examples.

Example 16.2. If f is a smooth morphism, then df is a closed embedding, and so
every coherent left DY -module is noncharacteristic with respect to f .

Example 16.3. If M is a vector bundle with integrable connection, then Ch(M) is
the zero section in T ∗Y . Since the zero section in X ×Y T ∗Y and in T ∗X are both
isomorphic to X, the restriction of df to p−1

2 Ch(M) is an isomorphism, and soM
is non-characteristic with respect to any morphism f . So being non-characteristic
is really a condition on the other components of the characteristic variety.

Example 16.4. The left DY -module DY is never non-characteristic with respect to a
closed embedding f : X ↪→ Y (as long as dimX < dimY ). Indeed, Ch(M) = T ∗Y
in this case, and since df has positive-dimensional fibers, p−1

2 Ch(M) is not finite
over its image.

Our goal for today is to show that pulling back preserves coherence in the non-
characteristic setting.

Theorem 16.5. Let f : X → Y be a morphism between nonsingular algebraic
varieties, andM a coherent left DY -module. IfM is non-characteristic with respect
to f , then the following is true.

(a) The pullback f∗M is a coherent left DX-module.
(b) One has L−jf∗M = 0 for j ≥ 1.
(c) One has Ch(f∗M) = df

(
p−1

2 Ch(M)
)
.

Note that since df : p−1
2 Ch(M)→ T ∗X is a finite morphism, the image is again

a closed algebraic subset of T ∗X. Thus the statement in (c) makes sense.
For the proof, the idea is to factor f : X → Y as a closed embedding followed by

a smooth morphism, and to analyze the two cases separately.

Smooth morphisms. Suppose that f : X → Y is a smooth morphism. In the
diagram in (16.1), the morphism p2 is then also smooth, and the morphism df is a
closed embedding. Now let M be a coherent left DY -module. We have

f∗M = DX→Y ⊗f−1DY f
−1M∼= OX ⊗f−1OY f

−1M,

and since smooth morphisms are flat, the tensor product with OX is exact. In
particular, the higher derived functors of the tensor product are zero, and so
L−jf∗M = 0 for j ≥ 1. This proves (b). Next, we show that f∗M is coher-
ent over DX . By assumption, M is coherent over DY , and so f−1M is coherent
over f−1DY . Since the left DX -module structure on f∗M comes from DX→Y , it is
therefore enough to show that the morphism

DX → DX→Y = OX ⊗f−1OY f
−1DY , P 7→ P · (1⊗ 1)
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is surjective. This can be done locally. We can therefore assume that X and
Y are affine, and we can choose local coordinates x1, . . . , xn+r ∈ Γ(X,OX) and
y1, . . . , yn ∈ Γ(Y,OY ), in such a way that the morphism on tangent sheaves

TX → f∗TY = OX ⊗f−1OY f
−1TY

maps ∂xj to 1 ⊗ ∂yj for 1 ≤ j ≤ n, and to zero otherwise. (This means that
∂xn+1

, . . . , ∂xn+r
generate the relative tangent sheaf TX/Y .) Now every element of

Γ(X,DX→Y ) can be written in the form∑
α∈Nn

gα ⊗ ∂α1
y1 · · · ∂

αn
yn ,

with gα ∈ Γ(X,OX), and because of how we defined the DX -module structure on
the transfer module, this expression equals∑

α∈Nn
gα∂

α1
x1
· · · ∂αnxn · (1⊗ 1).

Thus DX → DX→Y is indeed surjective, with kernel generated by the relative
tangent sheaf TX/Y .

It remains to prove that Ch(f∗M) = df
(
p−1

2 Ch(M)
)
. Choose a good filtration

F•M, and observe that because f is flat, we have f∗FjM ⊆ f∗M. If we set
N = f∗M, we thus get a filtration with terms FjN = f∗FjM. It is clear that each
FjN is a coherent OX -module; moreover, flatness of f gives

grFj N = FjN/Fj−1N ∼= f∗ grFjM.

Once we check that F•N is a good filtration, we can use it to compute Ch(N ).
Working locally, we can assume that X and Y are affine, and that we have local
coordinates x1, . . . , xn+r ∈ Γ(X,OX) and y1, . . . , yn ∈ Γ(Y,OY ) as above. To
abbreviate, set A = Γ(X,OX) and B = Γ(Y,OY ); then A is a smooth B-algebra.
We shall use the same symbol ∂j to denote both ∂xj and ∂yj ; then the morphism
on tangent sheaves takes ∂j to 1⊗ ∂j for 1 ≤ j ≤ n, and to zero otherwise.

Let us set M = Γ(Y,M) and N = Γ(X,N ). By construction,

N = A⊗B M and FjN = A⊗B FjM and grFj N = A⊗B grFj M.

As the filtration on M is good, the associated graded grFM is finitely generated
over grFD(B) = B[∂1, . . . , ∂n]. The left D(A)-module structure on N is given by

∂j(a⊗m) =

{
∂ja⊗m+ a⊗ ∂jm if 1 ≤ j ≤ n,

∂ja⊗m if n+ 1 ≤ j ≤ n+ r.

This formula shows that the filtration F•N is compatible with the action by D(A).
It also shows that ∂n+1, . . . , ∂n+r act trivially on

grFN = A⊗B grFM,

and that ∂1, . . . , ∂n only act on the second factor. Said differentialy, we have an
isomorphism of graded A[∂1, . . . , ∂n+r]-modules

(16.6) grFN ∼= A[∂1, . . . , ∂n]⊗B[∂1,...,∂n] grFM,

with A[∂1, . . . , ∂n+r] acting on the first factor in the obvious way. This says that
grFN is finitely generated over A[∂1, . . . , ∂n+r], and so F•N is a good filtration.
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It is now easy to compute the characteristic variety Ch(N ). If we rewrite the
diagram in (16.1) in terms of rings, we get

SpecA[∂1, . . . , ∂n] SpecA[∂1, . . . , ∂n+r]

SpecB[∂1, . . . , ∂n]

df

p2

with p2 induced by the morphism of rings B → A, and df induced by the quotient
morphism A[∂1, . . . , ∂n+r] → A[∂1, . . . , ∂n]. Thus (16.6) says that the coherent
sheaf on T ∗X = SpecA[∂1, . . . , ∂n+r] corresponding to grFN is obtained by first
pulling back grFM along p2, and then pushing forward along df . Globally,flgrFN ∼= df∗p

∗
2
‡grFM,

and since p2 is surjective and df a closed embedding, we get

Ch(N ) = df
(
p−1

2 Ch(M)
)
,

proving (c) for all smooth morphisms.

Factorizing through the graph. Using the graph embedding, we can write any
morphism f : X → Y as the composition of a closed embedding i : X ↪→ Z and a
smooth morphism g : Z → Y . (Here Z = X × Y , of course, but let me write Z to
simplify the notation.) We already know that N = g∗M is coherent over DZ , and
that Ch(N ) = dg

(
p−1

2 Ch(M)
)
. Using the big diagram

X ×Y T ∗Y X ×Z T ∗Z T ∗Z

Z ×Y T ∗Y T ∗Z

T ∗Y

df

i×id p2

di

dg

p2

from last time, we see that p−1
2 Ch(N ) is finite over its image in T ∗X (under the

morphism di); this says that N is non-characteristic with respect to the closed
embedding i : X ↪→ Z. As f∗M∼= i∗N , this reduces the proof of Theorem 16.5 to
the case of a closed embedding.

Closed embeddings. Suppose now that f : X → Y is a closed embedding. We
are only going to treat the case where dimX = dimY − 1; to go from there to the
general case, one uses the fact that f can be locally factored as a composition of
dimY − dimX closed embeddings of codimension one (because closed embeddings
between nonsingular algebraic varieties are locally complete intersections).

The problem is local, and so we can assume that Y is affine, with B = Γ(Y,OY ).
Choose local coordinates y0, y1, . . . , yn ∈ B, in such a way that X is defined by the
equation y0 = 0; then A = Γ(X,OX) ∼= B/By0, and the images x1, . . . , xn ∈ A of
y1, . . . , yn ∈ B are local coordinates on X. The morphism on tangent sheaves

TX → f∗TY = OX ⊗f−1OY f
−1TY

takes ∂xj to 1 ⊗ ∂yj for 1 ≤ j ≤ n. (The remaining vector field ∂y0 is not in the
image; it generates the normal bundle.) We again write ∂j for both ∂xj and ∂yj , so
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that the morphism on tangent sheaves takes ∂j to 1⊗ ∂j . With this notation, the
diagram in (16.1) becomes

(16.7)

SpecA[∂0, . . . , ∂n] SpecA[∂1, . . . , ∂n]

SpecB[∂0, . . . , ∂n].

df

p2

This time, p2 is a closed embedding and df is smooth of relative dimension one.
We are going to use the following basic fact from algebraic geometry.

Lemma 16.8. Let B be a finitely generated A-algebra.

(1) If B is integral over A, then every finitely generated B-module M is also
finitely generated as an A-module.

(2) If M is a finitely generated B-module such that SuppM is finite over
SpecA, then M is also finitely generated as an A-module.

Proof. The first assertion follows from the fact that B itself is finitely generated
as an A-module. To prove the second assertion, we may replace B by the quotient
ring B/AnnB(M) and assume without loss of generality that AnnB(M) = 0. The
support of M is then the reduced closed subscheme defined by the nilradical of B,
and so the hypothesis says that B/NilB is integral over A. This means that for
every b ∈ B, there is a monic polynomial h(t) ∈ A[t] such that h(b) ∈ NilB. But
then h(b)m = 0 for some m ≥ 1, and so b is integral over A. We now conclude from
the first assertion that M is finitely generated as an A-module. �

Now letM be a coherent left DY -module that is non-characteristic with respect
to f . Set M = Γ(Y,M), which is a finitely generated module over the ring of
differential operators D(B) = Γ(Y,DY ). The following lemma expresses the non-
characteristic property of M in terms of differential operators.

Lemma 16.9. For every u ∈ M , there exists a nontrivial differential operator
P ∈ D(B) that is non-characteristic with respect to y0 = 0 and satisfies Pu = 0.

Proof. The submodule D(B)u ⊆M is isomorphic to D(B)/I, where

I =
{
P ∈ D(B)

∣∣ Pu = 0
}

is a left ideal in D(B). The characteristic variety of D(B)/I is contained in that
of M , and so D(B)/I is again non-characteristic with respect to f . As a subset of
T ∗Y = SpecB[∂0, . . . , ∂n], the characteristic variety of D(B)/I is cut out by the
principal symbols σ(P ) ∈ B[∂0, . . . , ∂n] of all the differential operators P ∈ I. Its
preimage under p2 is therefore cut out by their images in A[∂0, . . . , ∂n]. Because this
subset is finite over SpecA[∂1, . . . , ∂n], we can argue as in the preceding lemma to
show that there is a monic polynomial h(t) of some degree d ≥ 1, with coefficients in
the ring A[∂1, . . . , ∂n], such that h(∂0) ∈ A[∂0, . . . , ∂n] belongs to the ideal generated
by σ(P ) for P ∈ I. Keeping all terms in h(∂0) that are homogeneous of degree d,
we conclude that there exists a differential operator P ∈ I of order d, such that the
image of σ(P ) in A[∂0, . . . , ∂n] contains the term ∂d0 . But this says exactly that P
is non-characteristic with respect to y0 = 0. �

Note. Since M is finitely generated over D(B), the lemma implies that there exist
finitely many differential operators P1, . . . , Pr ∈ D(B), all non-characteristic with
respect to y0 = 0, and a surjective morphism

r⊕
i=1

D(B)/D(B)Pi →M.
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By applying the same observation to the kernel, one can in fact show that M admits
a resolution by non-characteristic D(B)-modules of the form D(B)/D(B)P .

Now let us continue with the proof of Theorem 16.5. The derived functors
L−jf∗M are computed, in our local coordinates, by the complex of D(A)-modules

M M.
y0

To show that L−jf∗M = 0 for every j ≥ 1, we only have to argue that multipli-
cation by y0 is injective. Suppose that we have some u ∈M with y0u = 0. By the
lemma, we can find a differential operator P ∈ D(B), say of degree d ≥ 0, such that
Pu = 0 and such that P is non-characteristic with respect to y0 = 0. Concretely,
this means that the coefficient of ∂d0 is constant modulo y0. As y0u = 0, we can
therefore assume without loss of generality that ∂d0 appear with coefficient 1 in P .
Let us choose P in such a way that d is minimal. The commutator [y0, P ] contains

the term −d∂d−1
0 , and since

[y0, P ]u = y0Pu− Py0u = 0,

we conclude by minimality that d = 0, and hence that u = 0. This proves (b).
To prove the other two assertions, we choose a good filtration F•M , with grFM

finitely generated over grFD(B) = B[∂0, . . . , ∂n]. Set N = f∗M and N = Γ(X,N ),
so that

N = A⊗B M.

This time, tensoring with A is no longer an exact functor, but we can still define a
filtration on N by setting

FjN = im
(
A⊗B FjM → A⊗B M

)
.

With this definition, each grFj N is a quotient of B⊗AgrFj M , and by exactly the same

calculation as before, the A[∂1, . . . , ∂n]-module grFN is a quotient of A⊗B grFM ,
considered as an A[∂1, . . . , ∂n]-module through the morphism in (16.7).

Now I claim that A ⊗B grFM is finitely generated over A[∂1, . . . , ∂n]. Indeed,
grFM is finitely generated over B[∂0, . . . , ∂n] (because F•M is good), and so A⊗B
grFM is finitely generated over A[∂0, . . . , ∂n]. By the non-characteristic property,
the support inside SpecA[∂0, . . . , ∂n] is finite over SpecA[∂1, . . . , ∂n], and so the
claim follows from Lemma 16.9. Therefore grFN , which is a quotient, is also
finitely generated over A[∂1, . . . , ∂n], proving that N = f∗M is coherent over DX .
This argument also shows that

Ch(N ) ⊆ df
(
p−1

2 Ch(M)
)
,

because the support of A ⊗B grFM contains the support of the quotient module
grFN . Some extra work is required to show that the two sides are actually equal.
(In brief, one has to construct a good filtration F•M such that grFj N = A⊗BgrFj M .)

Exercises.

Exercise 16.1. Suppose that X ⊆ An is a nonsingular subvariety. Determine the
set of hyperplanes H ⊆ An such that p−1

2 (T ∗XAn) is finite over its image in T ∗H.

H ×An T
∗An T ∗H

T ∗An
p2
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Lecture 17: April 10

Direct images in general. We are now going to define the direct image functor
for (right) D-modules for an arbitrary morphism f : X → Y between nonsingular
algebraic varieties. Let M be a right DX -module. By analogy with the case of
closed embeddings, the direct image should be

f∗
(
M⊗DX DX→Y

)
.

Recall that the transfer module DX→Y = OX ⊗f−1OY f
−1DY is a (DX , f

−1DY )-
bimodule, and so the direct image is again a right DY -module. The problem with
this definition is that the resulting functor is neither right nor left exact, and there-
fore not suitable from a homological algebra standpoint. (The reason is that we are
mixing the right exact functor ⊗ with the left exact functor f∗.) This problem can
be fixed by working in the derived category; in fact, Sato, who founded algebraic
analysis, independently invented the theory of derived categories for his needs.

Derived categories. Let me very briefly review some basic facts. Let X be a
topological space, and RX a sheaf of (maybe noncommutative) rings on X. We
denote by Mod(RX) the category of (sheaves of) left RX -modules; this is an abelian
category. Note that right RX -modules are the same thing as left modules over the
opposite ring Rop

X . We use the notation

Db(RX)

for the derived category of cohomologically bounded complexes of left RX -modules.
The objects of this category are complexes of left RX -modules, with the property
that only finitely many of the cohomology sheaves are nonzero. The set of mor-
phisms between two objects takes more time to describe, and this is where the
action is happening. Recall that when we compute a derived functor, we have to
replace a sheaf (or complex of sheaves) by a suitable resolution: injective resolu-
tions in the case of pushforward, flat resolutions in the case of tensor product, etc.
The reason for introducing the derived category is that one wants to have a place
where a sheaf (or complex of sheaves) is isomorphic to any of its resolutions.

Example 17.1. Suppose that we choose an injective resolution

0→ F → I0 → I1 → · · ·
for a sheaf of OX -modules, say. Homological algebra shows that any two such
resolutions are the same up to homotopy, meaning that if J • is another injective
resolution of F , then there is a morphism of complexes I• → J •, unique up to
homotopy; and its composition with the morphism going the other way is homotopic
to the identity morphism. But F is not isomorphic to the complex I•; all one has is
a quasi-isomorphism, meaning a morphism of complexes that induces isomorphisms
on cohomology sheaves. So if we want F to be isomorphic to I•, then we need to
work up to homotopy and somehow create an inverse for the morphism F → I•.

Back to Db(RX). The set of morphisms between two objects is obtained by a
two-step procedure: starting from all morphisms of complexes, one first identifies
morphisms that are homotopy equivalent, and then one formally adjoins inverses
for all quasi-isomorphisms. As I said, this construction makes sure that a sheaf (or
complex of sheaves) is isomorphic to any of its resolutions by a unique isomorphism.

Concerning the existence of resolutions, one has the following basic fact:

(1) Every RX -module can be embedded into an injective RX -module.
(2) Every RX -module is a quotient of a flat RX -module.

One can then use the Cartan-Eilenberg construction to show that every cohomo-
logically bounded complex of RX -modules has both injective and flat resolutions.
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The direct image functor. We can now define the direct image functor for an
arbitrary morphism f : X → Y between nonsingular algebraic varieties. The con-
struction is done in two stages. First, we have a functor

Db(Dop
X )→ Db(f−1Dop

Y ), M• 7→ M•
L
⊗DX DX→Y ,

obtained by taking the derived tensor product with the transfer module DX→Y .
Concretely, this means that we choose a flat resolution for the complex of right
DX -modulesM•, and then tensor this resolution with DX→Y . For the time being,
we do not make any quasi-coherence assumptions. Second, we have a functor

Db(f−1Dop
Y )→ Db(Dop

Y ), N • 7→ Rf∗N •,

obtained by applying the derived pushforward functor for sheaves. Concretely,
this means that we choose an injective resolution for the complex of right f−1DY -
modules N •, and then apply the usual pushforward functor f∗ to each sheaf in
the complex. Each sheaf in the resulting complex is naturally a right DY -module
through the morphism DY → f∗f

−1DY .
One has to show that both functors are well-defined and “exact”, meaning that

they preserve distinguished triangles (which are the derived category version of
short exact sequences of complexes). We define the pushforward functor as the
composition of the two functors above.

Definition 17.2. Let f : X → Y be a morphism between nonsingular algebraic
varieties. The pushforward is the exact functor

f+ : Db(Dop
X )→ Db(Dop

Y ), f+M• = Rf∗
(
M•

L
⊗DX DX→Y

)
between derived categories.

Note that the general definition involves first choosing a flat resolution for the

complexM•, and then a second injective resolution forM•
L
⊗DX DX→Y . Of course,

this is only for theoretical purposes; in practice, we factor f into a closed embed-
ding followed by a projection, and there are simple formulas for computing the
pushforward in both cases.

Example 17.3. Another word about resolutions. In the case of DX -modules, one can
use results about OX -modules to get resolutions very easily. For example, suppose
that we want to represent a quasi-coherent right DX -module M as a quotient of a
flat DX -module. Pick a quasi-coherent OX -module F ⊆ M that generates M as
a DX -module. If M is a coherent DX -module, we can choose F to be a coherent
OX -module; in general, F =M will always do the job. Now pick a flat OX -module
E that maps onto F . Then the composition

E ⊗OX DX → F ⊗OX DX →M

is surjective, and E ⊗OX DX is flat as a right DX -module.

Here are some concrete examples of the pushforward functor.

Example 17.4. Suppose that i : X ↪→ Y is a closed embedding. In this case, the
transfer module DX→Y is locally free (as a left DX -module), and tensoring with
DX→Y is therefore exact. The pushforward functor i∗ is also exact, and so we have

i+M• = i∗
(
M• ⊗DX DX→Y

)
.

This agrees with our earlier definition in the case of a single DX -module; in the
case of a complex, we simply apply the naive pushforward functor for a closed
embedding term by term.
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Example 17.5. Suppose that j : U ↪→ Y is an open embedding. Then

DU→Y = OU ⊗j−1OY j
−1DY

∼= DU ,

by the basic properties of DY from Lecture 9. This shows that the pushforward
functor agrees with Rj∗ in this case. Generally speaking, j∗ is exact when the com-
plement Y \ U is a divisor; otherwise, there might be higher derived functors. The
localization k[x1, . . . , xn, p

−1] that we analyzed in Lecture 3 is a concrete example,
namely the pushforward of k[x1, . . . , xn] along the open embedding An\Z(p) ↪→ An.

Example 17.6. Let’s consider the case where f : X → Spec k is the morphism to a
point. In this case, the pushforward f+M should be viewed as something like the
cohomology of X with coefficients in a right DX -module M. The transfer module

DX→Spec k = OX ⊗f−1OSpec k
f−1DSpec k

∼= OX

is just OX in this case; it has the structure of a left DX -module (and a right
k-module). To compute the pushforward

f+M = Rf∗
(
M

L
⊗DX OX

)
,

we can use a resolution of OX by left DX -modules. Such a resolution is furnished
by the Spencer complex

Sp(DX) =
[
DX ⊗OX

n∧
TX → · · · → DX ⊗OX

2∧
TX → DX ⊗OX TX → DX

]
,

which lives in degrees −n, . . . ,−1, 0. The Spencer complex maps to OX via the
DX -linear map DX → OX that takes P ∈ DX to P (1) ∈ OX . This is surjective,
and the kernel is generated by TX . The general formula for the differentials

d : DX ⊗OX

k+1∧
TX → DX ⊗OX

k∧
TX

in the Spencer complex is as follows:

d
(
P ⊗ θ0 ∧ θ1 ∧ · · · ∧ θk

)
=

k∑
i=0

(−1)i(Pθi)⊗ θ0 ∧ · · · ∧ “θi ∧ · · · ∧ θk
+

∑
0≤i<j≤k

(−1)i+jP ⊗ [θi, θj ] ∧ θ0 ∧ · · · ∧ “θi ∧ · · · ∧ “θj ∧ · · · ∧ θk
In local coordinates x1, . . . , xn, the tangent sheaf is a free OX -module with basis
∂1, . . . , ∂n, and the above formula simplifies to

d
(
P ⊗ ∂i0 ∧ ∂i1 ∧ · · · ∧ ∂ik

)
=

k∑
j=0

(−1)j(P∂ij )⊗ ∂i0 ∧ · · · ∧”∂ij ∧ · · · ∧ ∂ik .
Except for the fact that DX is noncommutative, this is the same formula as for the
differentials in a Koszul complex. Let us check that the Spencer complex resolves
OX . From the formula for the differentials, it is clear that we can filter Sp(DX) by
the family of subcomplexes

Fp Sp(DX) =
[
Fp−nDX ⊗OX

n∧
TX → · · · → Fp−1DX ⊗OX TX → FpDX

]
.

The description of the differential in local coordinates shows that the associated
graded complex

grF• Sp(DX) =
[
grF•−nDX ⊗OX

n∧
TX → · · · → grF•−1DX ⊗OX TX → grF• DX

]
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identifies with the Koszul complex for the regular sequence ∂1, . . . , ∂n ∈ grF1 DX ,
and is therefore a resolution of OX as a graded grFDX -module. This proves that
the Spencer complex resolves OX as a left DX -module.

Since each term of the Spencer complex is a locally free DX -module, we get

f+M∼= Rf∗
(
M⊗DX Sp(DX)

)
= Rf∗ Sp(M),

where the Spencer complex of M is defined analogously by

Sp(M) =
[
M⊗OX

n∧
TX → · · · →MX ⊗OX

2∧
TX →MX ⊗OX TX →M

]
,

with the same formula for the differentials. The pushforward of a right DX -module
is therefore equal to the hypercohomology of its Spencer complex Sp(M).

Example 17.7. In the case of ωX , you can check that the Spencer complex Sp(ωX)
is isomorphic to the algebraic de Rham complex

DR(OX) =
[
OX → Ω1

X/k → · · · → ΩnX/k

]
.

The j-th hypercohomology group of the de Rham complex is denoted by Hj
dR(X/k)

and is called the j-th algebraic de Rham cohomology of X. When X is defined over
the complex numbers, Grothendieck’s comparison theorem tells us thatHj

dR(X/C) ∼=
Hj(X,C) is isomorphic to the singular cohomology of X, considered as a complex
manifold.

Let us check that the pushforward functor is compatible with composition of
morphisms.

Proposition 17.8. Let f : X → Y and g : Y → Z be morphisms between nonsingu-
lar algebraic varieties. Then one has g+ ◦ f+

∼= (g ◦ f)+, as functors from Db(Dop
X )

to Db(Dop
Z ).

Proof. Let M• ∈ Db(Dop
X ) be any complex of right DX -modules. By definition,

g+

(
f+M•

)
= Rg∗

(
Rf∗

(
M•

L
⊗DX DX→Y

) L
⊗DY DY→Z

)
(g ◦ f)+M• = R(g ◦ f)∗

(
M•

L
⊗DX DX→Z

)
.

We clearly need a relation among the three transfer modules to compare these two
expressions. Here is the relevant computation:

DX→Z = OX ⊗(g◦f)−1OZ (g ◦ f)−1DZ

∼= OX ⊗f−1OY

(
f−1OY ⊗f−1g−1OZ f

−1g−1DZ

)
∼= OX ⊗f−1OY f

−1
(
OY ⊗g−1OZ g

−1DZ

)
= OX ⊗f−1OY f

−1DY→Z

∼=
(
OX ⊗f−1OY f

−1DY

)
⊗f−1DY f

−1DY→Z

= DX→Y ⊗f−1DY f
−1DY→Z

In fact, since DZ is locally free as an OZ-module, the higher derived functors of all
the tensor products in the above calculation are trivial, and we even have

(17.9) DX→Z ∼= DX→Y
L
⊗f−1DY f

−1DY→Z .

Because R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗, it will therefore be enough to show that

Rf∗
(
M•

L
⊗DX DX→Y

) L
⊗DY DY→Z → Rf∗

(
M•

L
⊗DX DX→Y

L
⊗f−1DY f

−1DY→Z
)
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is an isomorphism (in the derived category of right g−1DZ-modules). Setting

A =M•
L
⊗DX DX→Y ∈ Db(f−1Dop

Y ) and B = DY→Z ∈ Db(DY ),

this is a consequence of the “projection formula” in the following lemma. �

Lemma 17.10. If A ∈ Db(f−1Dop
Y ) and B ∈ Db(DY ), then

Rf∗A
L
⊗DY B → Rf∗

(
A

L
⊗f−1DY f

−1B
)

is an isomorphism.

Proof. This is a local question, and so we can assume that Y is affine. We can then
resolve B by a complex of free DY -modules, and thereby reduce the problem to the
case where B is a free DY -module. But the result is obvious in that case because
all the functors preserve direct sums. �

Exercises.

Exercise 17.1. The de Rham complex of a left DX -module M is defined as

DR(M) =
[
M→ Ω1

X/k ⊗OX M→ · · · → ΩnX/k ⊗OX M
]
,

with differentials given in local coordinates x1, . . . , xn by the formula

d(α⊗m) = dα⊗m+ (−1)degα
n∑
j=1

dz j ∧ α⊗ (∂jm).

Here n = dimX. Recall from Lecture 12 that Dω
X ⊗DX M ∼= ωX ⊗OX M has the

structure of a right DX -module. Show that the Spencer complex of Dω
X ⊗DXM is

isomorphic to the de Rham complex of M.

Exercise 17.2. Continuing from the previous exercise, show that

H−n DR(M) =
{
s ∈ Γ(X,M)

∣∣ ∂1s = · · · = ∂ns = 0
}

is the space of global sections of M that are annihilated by all vector fields.
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Lecture 18: April 15

Direct images and coherence. Last time, we defined the direct image functor
(for right D-modules) as the composition

Db(Dop
X ) Db(f−1Dop

Y ) Db(Dop
Y )

L
⊗DX→Y

f+

Rf∗

where f : X → Y is any morphism between nonsingular algebraic varieties. We also
showed that g+ ◦ f+

∼= (g ◦ f)+.
Today, our first task is to prove that direct images preserve quasi-coherence and,

in the case when f is proper, coherence. The definition of the derived category
Db(Dop

X ) did not include any quasi-coherence assumptions. We are going to denote
by Db

qc(Dop
X ) the full subcategory of Db(Dop

X ), consisting of those complexes of right
DX -modules whose cohomology sheaves are quasi-coherent as OX -modules. Recall
that we included the condition of quasi-coherence into our definition of algebraic
D-modules in Lecture 10. Similarly, we denote by Db

coh(Dop
X ) the full subcategory

of Db(Dop
X ), consisting of those complexes of right DX -modules whose cohomology

sheaves are coherent DX -modules (and therefore quasi-coherent OX -modules). This
category is of course contained in Db

qc(Dop
X ).

Theorem 18.1. Let f : X → Y be a morphism between nonsingular algebraic
varieties. Then the functor f+ takes Db

qc(Dop
X ) into Db

qc(Dop
Y ). When f is proper,

it also takes Db
coh(Dop

X ) into Db
coh(Dop

Y ).

We are going to deduce this from the analogous result for OX -modules. Recall
that if F is a quasi-coherent OX -module, then the higher direct image sheaves
Rjf∗F are again quasi-coherent OY -modules. Moreover, if F is coherent and f is
a proper morphism, then each Rjf∗F is a coherent OY -module. The first result
is fairly elementary; the second one, due to Grauert in the analytic setting and to
Grothendieck in the algebraic setting, takes more work to prove.

To go from OX -modules to DX -modules, we work with “induced D-modules”.
The construction is straightforward. Given any OX -module F , the tensor product

F ⊗OX DX

is a right DX -module in the obvious way. Right DX -modules of this form are called
induced D-modules. If F is quasi-coherent, then F ⊗OX DX is quasi-coherent as
an OX -module; if F is coherent, then F ⊗OX DX is a coherent DX -module.

Lemma 18.2. Every (quasi)coherent DX-module admits a resolution by (quasi)-
coherent induced DX-modules. The same thing is true for complexes.

Proof. The point is that every (quasi)coherent DX -module is the quotient of a
(quasi)coherent induced DX -module. Indeed, if M is a right DX -module that is
quasi-coherent over OX , then we can use the obvious surjection

M⊗OX DX →M.

If M is a coherent right DX -module, we showed in Lecture 11 that there exists a
coherent OX -module F ⊆M with the property that F ·DX =M. This says that

F ⊗OX DX →M

is surjective. The kernel of the morphism is again either quasi-coherent or coherent,
and so we can iterate the construction to produce the desired resolution

· · · → F1 ⊗OX DX → F0 ⊗OX DX →M→ 0.
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Keep in mind that the morphisms Fk ⊗OX DX → Fk−1 ⊗OX DX are typically not
induced by morphisms of OX -modules Fk → Fk−1.

To deduce the result for complexes, one can then apply the usual Cartan-
Eilenberg construction. �

Direct images of induced D-modules are very easy to compute. Indeed,

(F ⊗OX DX)
L
⊗DX DX→Y ∼= F

L
⊗OX DX→Y = F

L
⊗OX

(
OX ⊗f−1OY f

−1DY

)
∼= F

L
⊗f−1OY f

−1DY = F ⊗f−1OY f
−1DY ,

due to the fact that DY is locally free, hence flat, over OY . Now the usual projection
formula (for OY -modules) gives

f+(F ⊗OX DX) ∼= Rf∗
(
F ⊗f−1OY f

−1DY

) ∼= Rf∗F ⊗OY DY .

All cohomology modules of this complex are therefore again induced DY -modules
of the form Rjf∗F ⊗OY DY . They are quasi-coherent as OY -modules if F is quasi-
coherent; and coherent as DY -modules if F is coherent and f is proper. This proves
the theorem for all induced D-modules.

Proof of Theorem 18.1. Let us first prove the assertion about quasi-coherence. By
the lemma, every object in Db

qc(Dop
X ) is isomorphic to a complex of of quasi-coherent

induced DX -modules, of the form

· · · → F p ⊗OX DX → F p+1 ⊗OX DX → · · ·

let me stress again that the differentials in this complex are DX -linear, but not
induced by OX -linear morphisms from F p to F p+1. If we apply the direct image
functor f+ to this complex, and use our calculation for induced D-modules from
above, we obtain a spectral sequence with

Ep,q1 = (Rqf∗F
p)⊗OY DY

that converges to the cohomology sheaves of f+

(
F •⊗OX DX

)
. Each Ep,q1 is quasi-

coherent as an OY -module, and so the cohomology sheaves of the direct image are
also quasi-coherent as OY -modules.

The proof for coherence is similar. By the lemma, every object in Db
coh(Dop

X )
is isomorphic to a complex of coherent induced DX -modules; this means that we
can choose all the F p as coherent OX -modules. If f : X → Y is proper, then each
Rqf∗F p is a coherent OY -module. But then each Ep,q1 is a coherent DY -module,
and the spectral sequence implies that the cohomology sheaves of the direct image
are also coherent DY -modules. �

Example 18.3. Suppose that X is proper over Spec k. Then Theorem 18.1 says
in particular that the hypercohomology groups of Sp(M) are finite-dimensional k-
vector spaces for every coherent right DX -moduleM. In particular, the algebraic de
Rham cohomology groups Hj

dR(X/k) are finite-dimensional whenever X is proper
over Spec k. (We will see later that this is actually true without properness!)

Example 18.4. Our calculation for induced D-modules shows that the direct image
of a coherent DX -module by a non-proper morphism is usually not coherent. For
example, if f : X → Spec k is not proper, the j-th cohomology module of f+DX is
isomorphic to Hj(X,OX), which is typically not finite-dimensional over k.
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Preservation of holonomicity. The direct and inverse image functors

f+ : Db
qc(Dop

X )→ Db
qc(Dop

Y ) and Lf∗ : Db
qc(DY )→ Db

qc(DX)

only preserve coherence with some extra assumptions. For Lf∗, we need the non-
characteristic property; for f+, we need properness. A small miracle of the theory
is that both functors nevertheless preserve the most interesting class of D-modules,
namely the holonomic ones. We have already seen one special case of this phe-
nomenon back in Lecture 3, namely that the localization k[x1, . . . , xn, p

−1] along a
nonzero polynomial P ∈ k[x1, . . . , xn] is holonomic over the Weyl algebra An(k).

By analogy with quasi-coherent and coherent D-modules, we use the notation
Db

h(DX) for the full subcategory of Db
coh(DX), whose objects are those complexes

of DX -modules whose cohomology sheaves are holonomic. This category contains
all bounded complexes of holonomic DX -modules, of course, but also injective or
flat resolutions of such complexes; we need to work in this larger category in order
to define f+ or Lf∗. Fortunately, Beilinson has shown that the inclusion functor

Db
(
Modh(DX)

)
→ Db

h(DX)

is an equivalence of categories. This means concretely that every complex of
DX -modules with holonomic cohomology sheaves is isomorphic, in Db

h(DX), to
a bounded complex of holonomic DX -modules.

Theorem 18.5. Let f : X → Y be a morphism of nonsingular algebraic varieties.

(a) The functor f+ takes Db
h(Dop

X ) into Db
h(Dop

Y ).
(b) The functor Lf∗ takes Db

h(DY ) into Db
h(DX).

Let me remind you about the case of closed embeddings.

Lemma 18.6. Let i : X ↪→ Y be a closed embedding, and M• ∈ Db
coh(Dop

X ). Then
one has M• ∈ Db

h(Dop
X ) if and only if i+M• ∈ Db

h(Dop
Y ).

Proof. The naive direct image functor i+M = i∗
(
M⊗DX DX→Y

)
is exact, and so

Hk(i+M•) ∼= i+(HkM•).

This reduces the problem to the case of a single coherent right DX -moduleM. We
showed back in Lecture 13 that i+M is a coherent right DY -module, and that

dim Ch(i+M) = dim Ch(M) + dimY − dimX.

It follows that M is holonomic if and only if i+M is holonomic. �

The proof of Theorem 18.5 is done in two stages. First, there are a certain
number of (formal) steps that reduce the general problem to the case of modules
over the Weyl algebra. Second, one uses the Bernstein filtration to do the required
work for modules over the Weyl algebra. Let me go over the reduction steps rather
quickly, without paying too much attention to the details.

The crucial observation is that (a) follows from the special case of a coordinate
projection An+1

k → Ank . Let me explain how this works. First, we observe that it is
enough to consider a single holonomic DX -module M. The reason is that, as with
any complex, one has a convergent spectral sequence

Ep,q2 = Hpf+(HqM•) =⇒ Hp+qf+M•,

and as long as each Hpf+(HqM•) is holonomic, it follows that all cohomology
sheaves of f+M• are holonomic. Second, we can factor any morphism as

X X × Y Y
if

f

p2
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into a closed embedding followed by a projection. Since we already know that
(if )+M is again holonomic, we only need to consider the case where X = Z × Y
and f : Z × Y → Y is the second projection.

Third, we can further reduce the problem to the case where X = Z × Y and Y
are both affine. Since the statement is local on Y , we can obviously assume that Y
is affine. Choose an affine open covering Z = Z1 ∪ · · · ∪ Zn, such that each Z \ Zj
is a nonsingular divisor in Z. Set Uj = Zj ×Y , and for each subset α ⊆ {1, . . . , n},
denote the resulting open embedding by

jα : Uα =
⋃
j∈α

Uj ↪→ X.

For any sheaf of OX -modules, and in particular for our holonomic right DX -module
M, we have the Cech resolution

0→ C0(M)→ C1(M)→ · · · ,

whose terms are given by

Ck(M) =
⊕
|α|=k

(jα)∗
(
M
∣∣
Uα

)
.

Since jα is an affine morphism, we have

(jα)∗
(
M
∣∣
Uα

)
= R(jα)∗

(
M
∣∣
Uα

) ∼= (jα)+

(
M
∣∣
Uα

)
,

and so the Cech complex is actually a resolution of M by right DX -modules. It is
therefore enough to show that each

f+(jα)+

(
M
∣∣
Uα

) ∼= (f ◦ jα)+

(
M
∣∣
Uα

)
is a complex of DY -modules with holonomic cohomology sheaves. Since the restric-
tion of M to the affine open subset Uα is holonomic, this reduces the problem to
the case of a morphism between nonsingular affine varieties.

Fourth, the result for coordinate projections on affine space implies the result
for all morphisms f : X → Y between nonsingular affine varieties. To see this, let
us choose closed embeddings iX : X ↪→ Am and iY : Y ↪→ An. We then have a
commutative diagram

X Y

X × Y

Am × An An

if

f

iY

iX×iY
p2

where all vertical morphisms are closed embeddings. The lemma says that f+M
belongs to Db

h(Dop
Y ) if and only if (iY ◦f)+M belongs to Db

h(Dop
An). Since we already

know that the closed embeddings if and iX × iY preserve holonomicity, we only
have to consider what happens for p2 : Am × An → Am. This can be factored as a
composition of m coordinate projections, and so we have successfully reduced the
proof of (a) to the special case of a coordinate projection An+1 → An.

The second observation is that the statement for the inverse image functor in
(b) is a formal consequence of (a). As before, we only have to consider a single
holonomic left DY -moduleM, and since we know that pulling back along a smooth
morphism preserves holonomicity, the general problem reduces to the case of closed
embeddings. Locally, we can factor any closed embedding as a composition of
closed embeddings of codimension one, and so we only have to prove that ifM is a
holonomic left DY -module, and i : X ↪→ Y a closed embedding of codimension one,
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then Li∗M ∈ Db
h(DX). Let j : U ↪→ Y be the open embedding of the complement

U = Y \X. Ignoring the difference between left and right D-modules,

j∗(M
∣∣
U

) ∼= j+(M
∣∣
U

)

is again a DY -module, due to the fact that j is affine. Provided that we know (a)
for the open embedding j : U ↪→ Y , it follows that j∗(M

∣∣
U

) is affine. We will show
next time that we have an exact sequence of DY -modules

0→ i+(L−1i∗M)→M→ j∗(M
∣∣
U

)→ i+(L0i∗M)→ 0,

where I am again ignoring the difference between left and right D-modules. It
follows that each i+(L−ji∗M) is a holonomic DY -module, and by the case of closed
embeddings, this implies that L−ji∗M is a holonomic DX -module. This is what
we wanted to show.

Excercises.

Exercise 18.1. Morihiko Saito observed that every right DX -moduleM has a canon-
ical resolution by induced DX -modules. Recall that the Spencer complex Sp(DX)
is a resolution of OX by locally free left DX -modules.

(a) Show that each term of the complex

Sp(M)⊗OX DX

has the structure of a right DX -module. (Hint: See Lecture 12.)
(b) Construct an isomorphism of right DX -modules

M⊗OX

(
DX ⊗OX

k∧
TX

)
∼=
(
M⊗OX

k∧
TX

)
⊗OX DX

to show that each term in above complex is an induced DX -module.
(c) Show that the above complex is a resolution ofM by induced DX -modules.

Exercise 18.2. Let F and G be two OX -modules. We have a morphism

HomDX

(
F ⊗OX DX ,G ⊗OX DX

)
→ HomOX

(
F ,G ⊗OX DX

)
→ Homk(F ,G ),

obtained by composing with G ⊗OX DX → G , u ⊗ P 7→ u · P (1). Show that this
morphism is injective. The image is called the space of differential morphisms from
F to G .
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Lecture 19: April 17

Proof of Theorem 18.5. Today, we are going to finish the proof of Theorem 18.5.
The statement is that, for any morphism f : X → Y between nonsingular algebraic
varieties, one has:

(a) f+ : Db
h(Dop

X )→ Db
h(Dop

Y )
(b) Lf∗ : Db

h(DY )→ Db
h(DX)

Last time, I sketched the argument that reduces both statements to the special case
of a coordinate projection p : An+1 → An. Let me first fill in the proof of a crucial
lemma that we used.

Lemma 19.1. Let i : X ↪→ Y be a closed embedding of codimension one, and
j : U = Y \X ↪→ Y the complementary open embedding. Then for any holonomic
right DY -module M, one has an exact sequence

0→ i+(L−1i∗M)→M→ j+(M
∣∣
U

)→ i+(L0i∗M)→ 0.

We had defined the pullback functor for left D-modules. To compute Li∗M,
one first converts M into a left DY -module by HomDY (Dω

Y ,M), then applies the
pullback functor Li∗, and then converts the resulting left DX -module back into a
right DX -module by tensoring with Dω

X .

Proof. We are only going to prove the local version, since that is all that we need
for the proof of Theorem 18.5. Suppose then that Y is affine, with coordinates
y0, y1, . . . , yn, and that X is the closed subscheme defined by y0 = 0. Set A =
Γ(Y,OY ) and M = Γ(Y,M), which is a holonomic right D(A)-module. After
carrying out the left-right conversions, Li∗M corresponds to the complex of D(B)-
modules

(19.2) M M
y0

placed in degrees −1 and 0; here B = Γ(X,OX). On the other hand, j is affine,
and so j+(M

∣∣
U

) = j∗(M
∣∣
U

) is the localization

M ⊗A A[y−1
0 ].

We therefore have to analyze the kernel and cokernel of the natural morphism

ϕ : M →M ⊗A A[y−1
0 ].

Let us first consider kerϕ. It consists of all m ∈ M such that my`0 = 0 for some
` ≥ 1. This submodule is supported on X, and by Kashiwara’s equivalence, it is
the direct image of a D(B)-module M0. Here

M0 =
{
m ∈M

∣∣ my0 = 0
}

which is the D(B)-module corresponding to L−1i∗M by (19.2). Next, we consider
cokerϕ. It consists of all finite sums of the form∑

j≥0

mj ⊗ y−j0 ,

with mj ∈ M , modulo the image of M . This is again the direct image of a D(B)-
module M1, by Kashiwara’s equivalence, where M1 is the submodule annihilated
by y0. A short computation gives

M1 =
{
m0 ⊗ 1 +m1 ⊗ y−1

0

∣∣ m0,m1 ∈M
}
/M ∼= M/My0,

and again by (19.2), this is the D(B)-module corresponding to L0i∗M. �



95

In fact, the lemma generalizes to arbitrary closed embeddings i : X ↪→ Y . If we
again let j : U ↪→ Y be the open embedding of the complement U = Y \X, then
we have a distinguished triangle (= short exact sequence)

RHX(F )→ F → Rj∗(F
∣∣
U

)→ RHX(F )[1],

for every sheaf of OY -modules F , where where HX is the functor of “sections
with support in X”. Concretely, RHX(F ) is computed by choosing an injective
resolution of F and applying the functor HX to each sheaf in the resolution. When
M is a right DY -module, we have Rj∗(M

∣∣
U

) = j+(M
∣∣
U

), and the distinguished
triangle becomes

RHX(M)→M→ j+(M
∣∣
U

)RHX(M)[1].

Then the fancy version of the lemma is that RHX(M) is isomorphic to i+Ri∗M,
up to a shift by the codimension dimY − dimX.

Coordinate projections. To prove Theorem 18.5, it remains to treat the case of
a coordinate projection p : An+1 → An. We need to show that ifM is a holonomic
right DAn+1-module, then all cohomology sheaves of p+M are holonomic DAn-
modules. This brings us back to modules over the Weyl algebra. Let us first look
at a concrete example.

Example 19.3. Consider the special case p : A1 → Spec k. The pushforward of a
right A1-module M is computed by the Spencer complex

M M∂

and the theorem is claiming that when M is holonomic, both the kernel and cokernel
of multiplication by ∂ are finite-dimensional k-vector spaces. One approach would
be to take a good filtration F•M and pass to the associated graded k[x, ∂]-module
grFM . Its support is one-dimensional, but unfortunately, the kernel and cokernel
of multiplication by ∂ can fail to be finite-dimensional. (This happens for example
with M = k[x].)

Let me show you an ad-hoc argument for why

ker ∂ =
{
m ∈M

∣∣ m∂ = 0
}

has finite dimension over k. Consider the A1-submodule

ker ∂ ·A1 ⊆M
generated by ker ∂. Since M is finitely generated over A1, this submodule is also
finitely generated. The commutation relation [∂, x] = 1 implies that, for any m ∈
ker ∂ and any P ∈ A1, the element m · P equals m · f(x) for some polynomial
f(x) ∈ k[x]; and if this element is nonzero, then by applying a suitable power of
∂, one can recover m. Since ker ∂ · A1 is finitely generated over A1, it follows that
ker ∂ must be finitely generated over k, hence finite-dimensional.

Bernstein’s idea for the general case is to use an algebraic analogue of the Fourier
transform. Recall that the usual Fourier transform (on functions) interchanges
partial derivatives and multiplication by coordinate functions. We can imitate this
algebraically by the following definition. Let M be a right An-module. Its Fourier
transform is a left An-module M̂ , defined as follows: as a k-vector space, one has
M̂ = M , but with An-action defined by

xj ·m = m∂j and ∂j ·m = mxj .

To show that this gives M̂ the structure of a left An-module, one has to check the
relation [∂i, xj ] = δi,j . This holds because

[∂i, xj ] ·m = ∂i(xjm)− xj(∂im) = m∂jxi −mxi∂j = m[∂j , xi] = δi,jm.
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Its usefulness for studying direct images comes from the following lemma.

Lemma 19.4. Consider a coordinate projection and its dual closed embedding

p : An+1 → An, p(x0, x1, . . . , xn) = (x1, . . . , xn),

i : An ↪→ An+1, i(x1, . . . , xn) = (0, x1, . . . , xn).

If M is a holonomic right An+1-module, then

Hjp+M ∼= ◊�
Lji∗M̂

for every j ∈ Z.

Proof. By pretty much the same calculation that we did in Lecture 17, the direct
image p+M is computed by the relative version of the Spencer complex; in the case
at hand, this is the complex of right An-modules

M M
∂0

Its cohomology lives in degree −1 and 0:

Hjp+M =


ker(∂0 : M →M) if j = −1,

coker(∂0 : M →M) if j = 0,

0 otherwise.

The right An-module structure on Hjp+M is induced by the right An+1-module

structure on M in the obvious way. On the other hand, the inverse image Li∗M̂ is
computed by the complex of left An-modules

M̂ M̂.
x0

Its cohomology also lives in degree −1 and 0:

Lji∗M̂ =


ker(x0 : M̂ → M̂) if j = −1,

coker(x0 : M̂ → M̂) if j = 0,

0 otherwise.

Here the left An-module structure on Lji∗M̂ is induced by the left An+1-module

structure on M̂ in the obvious way. Since left multiplication by x0 on M̂ is, by
definition, the same as right multiplication by ∂0 on M , we have Hjp+M = Lji∗M̂
as k-vector spaces. The additional Fourier transform makes sure that the right
An-module structures on both sides agree. �

The Fourier transform preserves holonomicity.

Lemma 19.5. A right An-module M is holonomic if and only if its Fourier trans-
form M̂ is holonomic as a left An-module.

Proof. We use the characterization of holonomicity in terms of Hilbert polynomials
(from Lecture 3). Recall the definition of the Bernstein filtration

FBj An =
{
P =

∑
cα,βx

α∂β
∣∣∣ |α|+ |β| ≤ j }.

If F•M is a good filtration, compatible with the Bernstein filtration, then for j � 0,
the function j 7→ dimk FjM is a polynomial in j; the degree of this polynomial is
denoted by d(M). We showed in Lecture 6 that M is holonomic (in the sense that
its characteristic variety has dimension n) if and only if d(M) = n. The proof of
the lemma is now a triviality: simply observe that a good filtration F•M is also a
good filtration F•M̂ , due to the fact that the Bernstein filtration is symmetric in

x1, . . . , xn and ∂1, . . . , ∂n. It follows that d(M) = d(M̂), and so M is holonomic iff

M̂ is holonomic. �
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The last thing we need to check is that localization preserves holonomicity.

Lemma 19.6. Let M be a holonomic left An+1-module. Then

N = k[x0, . . . , xn, x
−1
0 ]⊗k[x0,...,xn] M

is again a holonomic An+1-module.

Proof. The argument is the same as in the proof of Proposition 3.10. We are going
to make use of the numerical criterion for holonomicity in Lemma 3.11: Suppose
that N is a left An+1-module, and F•N a filtration compatible with the Bernstein
filtration on An+1, such that

dimk FjN ≤
c

(n+ 1)!
jn+1 + c1(j + 1)n

for some constants c, c1 ≥ 1. Then N is holonomic.
A suitable filtration on N is obtained by setting

FjN = x−j0 ⊗ F2jM

for every j ≥ 0. It is easy to see that this filtration is compatible with the Bernstein
filtration. Let us check that it is exhaustive. Any element of N can be written in
the form x−j0 ⊗m for some m ∈ M and some j ≥ 0. Since F•M is exhaustive, we
have m ∈ FkM for some k ≥ 0. Now

y−j0 ⊗m = y
−(j+`)
0 ⊗ (y`0m),

and since y`0m ∈ Fk+`M , this element will belong to Fj+`N as long as k+` ≤ 2(j+`)
or, equivalently, as long as ` ≥ k − 2j.

Let us count dimensions. Since M is holonomic, we have dimk FjM = χ(j),
where χ(t) ∈ Q[t] is a polynomial of degree d(M) = n+ 1. But then

dimk FjN = dimk F2jM = χ(2j)

is still a polynomial of degree n+ 1; by the numerical criterion, this implies that N
is again holonomic. �

Let us now put everything together and prove Theorem 18.5. By the argument
from last time, it suffices to show that if M is a holonomic right An+1-module, and

p : An+1 → An, p(x0, x1, . . . , xn) = (x1, . . . , xn)

the coordinate projection, then Hjp+M is holonomic for every j ∈ Z. Let M̂ be
the Fourier transform of M ; by Lemma 19.5, this is a holonomic left An+1-module.
According to Lemma 19.4, we have

Hjp+M ∼= ◊�
Lji∗M̂,

and so again by Lemma 19.5, it will be enough to prove that each Lji∗M̂ is a
holonomic left An-module. By Lemma 19.1, the two potentially nonzero modules
(for j = −1 and j = 0) are the kernel and cokernel of the morphism

M̂ → k[x0, . . . , xn, x
−1
0 ]⊗k[x0,...,xn] M̂.

The localization is again holonomic (by Lemma 19.6), and so the kernel and cokernel
are holonomic modules. This suffices to conclude the proof.
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Consequences. Let me point out a few interesting consequences of the result we
have just proved.

First, consider the case where f : X → Spec k is the morphism to a point. Given
a holonomic right DX -moduleM, the direct image f+M is computed as the hyper-
cohomology of the Spencer complex Sp(M). Thus Theorem 18.5 is saying that the
hypercohomology of Sp(M) is a finite-dimensional k-vector space. In the special

caseM = ωX , this says that the algebraic de Rham cohomology groups Hj
dR(X/k)

are finite-dimensional even if X is not proper. (When k = C, this also follows from

the isomorphism Hj
dR(X/C) ∼= Hj(X,C) and some basic facts about the topology

of nonsingular algebraic varietes.) One way to think about this is to consider the
hypercohomology of Sp(M) as being something like the cohomology of X with co-
efficients in M; the theorem is claiming that this cohomology is finite-dimensional
whenever M is holonomic.

Second, consider the case of a closed embedding i : Z ↪→ X. Here, the statement
is that Li∗M is holonomic for every holonomic left DX -moduleM, even ifM does
not have the non-characteristic property. In particular, we can pull back along

ix : Spec k ↪→ X

for any closed point x ∈ X(k), and for any holonomic DY -module M, or any
complex in Db

h(DY ), the inverse image Li∗xM is holonomic on Spec k, hence has
finite-dimensional cohomology. This is another important finiteness property of
holonomic modules. It is obvious on the open subset where M is a vector bundle
with integrable connection, but not at other points of Y .

Note. In fact, one can show that when k is algebraically closed, holonomic com-
plexes are characterized by this finiteness property: an object M• ∈ Db

coh(DX)
belongs to the subcategory Db

h(DX) if, and only if, for every closed point x ∈ X(k),
the complex Li∗xM• has finite-dimensional cohomology. We don’t have time to
prove this, unfortunately.
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Lecture 20: April 22

Fuchsian differential equations. Our next topic is regularity. Let me try to
motivate the definition by talking about another classical topic, namely Fuchsian
differential equations. We work over the complex numbers, and take X to be a
small open disk containing the origin in C. Consider a differential equation of the
form Pu = 0, where

P = a0(x)∂m + a1(x)∂m−1 + · · ·+ am(x)

is a differential operator of order m with holomorphic coefficients aj(x). If a0(0) 6=
0, then the equation has m linearly independent holomorphic solutions, determined
by the initial conditions u(0), u′(0), . . . , u(m−1)(0). Another way to say this is that
the DX -module DX/DXP is isomorphic to O⊕mX , where the isomorphism takes a
vector (u0, . . . , um−1) to the image of u0 + u1∂ + · · ·+ um−1∂

m−1. Here DX is the
sheaf of linear differential operators with holomorphic coefficients.

If a0(0) = 0, then the story becomes more complicated.

Example 20.1. Suppose that P = x∂ − α for some α ∈ C. Here the solution
u = xα = eα log x is really only defined on sectors, because of the term log x.

Example 20.2. Suppose that P = x2∂ − 1. Here the solution u = e−1/x is single-
valued, but has an essential singularity at the origin. This is bad.

We need some terminology to talk about the solutions to the equation Pu = 0.
Let us denote by R the ring of holomorphic functions on X, and by K its fraction
field; elements of K are meromorphic functions. Further, we use R̃ to denote the
ring of multi-valued holomorphic functions on X\{0}; by this we mean holomorphic
functions on the universal covering space. Using the exponential function

C→ C∗, t 7→ e2πit,

the universal covering space of a disk of radius r minus the origin is the half-plane
Im t > 1

2π log(1/r). This means that R̃ is the ring of holomorphic functions on a

suitable half-plane. For example, log x = 2πit and xα = e2πiαt belong to R̃.
We want to avoid essential singularities; this can be done by controlling the rate

of growth of solutions near the origin. We say that a multi-valued holomorphic
function f ∈ R̃ has moderate growth near the origin if on any sector

S =
{
x ∈ C

∣∣ 0 < |x| < ε and θ0 ≤ arg x ≤ θ1

}
,

there is an integer k ≥ 0 and a constant C ≥ 0 such that

|f(x)| ≤ C

|x|k

for every x ∈ S. Let R̃mod ⊆ R̃ be the subring of multi-valued functions with
moderate growth near the origin. The functions xα and (log x)` belong to R̃mod for
every α ∈ C and ` ∈ N.

Example 20.3. Suppose that f is a single-valued holomorphic function on the punc-
tured disk X \ {0}. Then f has moderate growth near the origin iff f is meromor-
phic; the reason is that xkf extends to a holomorphic function on X by Riemann’s
extension theorem. Thus moderate growth prevents essential singularities.

Let me now remind you of the classical theorem by Fuchs. After shrinking X,
if necessary, we can assume that the origin is the only zero of a0(x); we can then
divide through by a0(x) to get a differential operator with meromorphic coefficients.

Theorem 20.4 (Fuchs). Let P = ∂m + a1(x)∂m−1 + · · ·+ am(x) be a differential
operator of order m with aj(x) ∈ K. The following two conditions are equivalent:
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(a) All multi-valued solutions u ∈ R̃ of the differential equation Pu = 0 have
moderate growth near the origin.

(b) For j = 1, . . . , n, the function aj(x) has a pole of order at most j at the
origin.

If the conditions in the theorem are satisfied, the differential equation Pu = 0
is said to be regular at the origin. There is another way to formulate the algebraic
condition in (b). Using identity xj∂j = (x∂)(x∂ − 1) · · · (x∂ − j + 1), we get

xmP = (x∂)m + b1(x)(x∂)m−1 + · · ·+ bm(x),

and (b) becomes the condition that b1(x), · · · , bm(x) are holomorphic functions.

Systems of differential equations and regularity. We will prove Theorem 20.4
by turning the problem into a system of first-order differential equations. If we set
u1 = u, u2 = ∂u, . . . , um = ∂m−1u, then Pu = 0 is of course equivalent to the
system of m first-order equations

∂u1 = u2

∂u2 = u3

...

∂um−1 = um

∂um = −(amu1 + · · ·+ a1um)

More generally, let us consider a first-order system of the form

∂ui =

m∑
j=1

ai,juj , i = 1, . . . ,m,

with m unknown functions u1, . . . , um and meromorphic coefficients ai,j ∈ K. We
can also write this in the form ∂U = AU , where U is the column vector with entries
u1, . . . , um, and A is an m×m-matrix whose entries are meromorphic functions.

Example 20.5. If condition (b) is satisfied, we can instead look at the m functions
v1 = u, v2 = x∂u, . . . , vm = (x∂)m−1u; the equation Pu = 0 is then also equivalent
to the following system:

x∂v1 = v2

x∂v2 = v3

...

x∂vm−1 = vm

x∂vm = −(bmv1 + · · ·+ b1vm)

In matrix notation, this becomes x∂V = BV , where the entries of the m×m-matrix
B are now holomorphic functions.

Now let us describe the multi-valued solutions of such a system ∂U = AU . We
can pull the system back to the universal covering space ofX\{0}, which amounts to
setting x = e2πit. This gives us a system of first-order equations with holomorphic
coefficients on a half-space; by Cauchy’s theorem, it has m linearly independent
holomorphic solutions ũ1, . . . , ũm; here each ũj is a column vector with entries in
R̃. Let us denote by S̃(t) the m ×m-matrix whose columns are ũ1, . . . , ũm. Since
the coefficients of the system are invariant under the substitution t 7→ t + 1, the
columns of S̃(t+ 1) form another basis for the vector space of solutions, and so

S̃(t+ 1) = S̃(t)C
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for a certain matrix C ∈ GLn(C). This matrix is called the monodromy matrix
of the system, because it describes how the multi-valued solutions to the system
transform when going around the origin.

Choose a matrix Γ with the property that C = e2πiΓ; such a matrix always
exists, and is unique if we require that the eigenvalues of Γ have their real part in a
fixed interval of unit lengt, such as [0, 1). The matrix S̃(t)e−2πitΓ is now invariant
under the substitution t 7→ t+ 1, and so

S̃(t)e−2πitΓ = Σ(e2πit),

where Σ(x) is an m×m-matrix whose entries are holomorphic functions on X \{0}.
Replacing 2πit by log x, we see that the columns of the matrix

S(x) = Σ(x)elog xΓ

form a basis for the space of multi-valued solutions to the system ∂U = AU .
Changing the basis in the vector space of solutions amounts to conjugating C and

Γ by the change-of-basis matrix. Since we are working over C, we can therefore
choose our basis in such a way that Γ is in Jordan canonical form. Thus Γ is
block-diagonal, with blocks of the type

α 1
α 1

. . .
. . .

α 1
α


which means that elog xΓ is block-diagonal, with blocks of the type

xα ·


1 L1(x) L2(x) · · · Lm−1(x)

1 L1(x) · · · Lm−2(x)
. . .

. . .
...

1 L1(x)
1


where now Lj(x) = 1

j! (log x)j . This gives a fairly concrete description of what

multi-valued solutions look like.

Example 20.6. A corollary of the discussion so far is that any m-th order differen-
tial equation of the form Pu = 0 has a solution of the form xαh(x), where h(x)
is holomorphic outside the origin, and α ∈ C has the property that e2πiα is an
eigenvalue of the monodromy matrix C.

Now our goal is to prove a version of Theorem 20.4 for systems.

Definition 20.7. We say that two systems ∂U = AU and ∂V = BV are equivalent
if there is a matrix M(x) ∈ GLm(K) with meromorphic entries such that

B = ∂M ·M−1 +MAM−1.

This means that U solves the first system iff V = MU solves the second one.

Here is the analogue of Theorem 20.4 for systems.

Theorem 20.8. Let A be an m×m-matrix with entries in K. The following three
conditions are equivalent:

(a) All multi-valued solutions of ∂U = AU have moderate growth near the
origin, meaning that the individual components of U do.

(b) The system ∂U = AU is equivalent to a system of the form ∂V = x−1ΓV ,
where Γ is an m×m-matrix with constant entries.
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(c) The system ∂U = AU is equivalent to a system of the form ∂V = x−1BV ,
where B is an m×m-matrix with holomorphic entries.

A system satisfying these equivalent conditions is called regular at the origin.

Proof. Let us show that (a) implies (b). We already know that a fundamental
system of solutions is of the form S(x) = Σ(x)elog xΓ. By assumption, the entries
of the matrix S(x) have moderate growth near the origin. Since powers of log x
have moderate growth, it follows that the entries of

Σ(x) = S(x)e− log xΓ

also have moderate growth near the origin. The entries of Σ(x) are therefore mero-
morphic functions, and so Σ(x) ∈ GLm(K). After replacing U by V = Σ−1(x)U ,
we obtain the equivalent system

∂V =
1

x
ΓV,

which is what we wanted to show.
It is clear that (b) implies (c), and so it remains to prove that (c) implies (a).

Let V be any multi-valued solution of the system x∂V = BV . Here V is a column
vector with entries v1, . . . , vm ∈ R̃. To prove that v1, . . . , vm ∈ R̃mod , we need to
understand their asymptotic behavior on any sector

S =
{
x ∈ C

∣∣ 0 < |x| < ε and θ0 ≤ arg(x) ≤ θ1

}
.

Let us set ‖V ‖2 = |v1|2 + · · · + |vm|2 and x = reiθ. Since the entries of B are
holomorphic, they are bounded on S. A short calculation using ∂V = x−1BV gives

∂

∂r
‖V ‖ ≤ 1

2‖V ‖

m∑
j=1

2|vj |
∣∣∣∣∂vj∂r

∣∣∣∣ ≤
√√√√ m∑

j=1

∣∣∣∣∂vj∂x
∣∣∣∣2 ≤ C

r
‖V ‖,

where C ≥ 0 is an upper bound for the matrix norm of B on the sector S. After
integrating over r, this becomes

‖V (reiθ)‖ ≤ ‖V (r0e
iθ)‖+

∫ r0

r

C

s
‖V (seiθ)‖ ds,

for any 0 < r ≤ r0 < ε. Now we apply Grönwall’s inequality to conclude that

‖V (reiθ)‖ ≤ ‖V (r0e
iθ)‖ exp

∫ r0

r

C

s
ds = ‖V (r0e

iθ)‖
(r0

r

)C
.

This means exactly that all entries of V have moderate growth at the origin. �

Note. Grönwall’s inequality says that an integral inequality of the form

f(t) ≤ C +

∫ t

t0

g(s)f(s) ds

for a real function f(t) implies that

f(t) ≤ C exp

∫ t

t0

g(s) ds.

We are now in a position to prove the theorem of Fuchs from the beginning.

Proof of Theorem 20.4. Consider a differential operator

P = ∂m + a1(x)∂m−1 + · · ·+ am(x),

with aj ∈ K. Suppose that each aj has a pole of order at most j at the origin. As
we remarked before, we can rewrite xmP = (x∂)m + b1(x)(x∂)m−1 + · · · + bm(x),
with bj ∈ R holomorphic. Setting v1 = u, v2 = x∂u, . . . , vm = (x∂)m−1u, it follows
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that the column vector V = (v1, . . . , vm) solves a system of the form ∂V = x−1BV .
By Theorem 20.8, the multi-valued functions v1, . . . , vn have moderate growth near
the origin, and so in particular u ∈ R̃mod .

Let us prove the converse. Suppose that all multi-valued solutions of Pu = 0
have moderate growth near the origin. If we write the corresponding system in the
form ∂U = AU , then we have

tm + a1t
m−1 + · · ·+ am = det(t id−A),

and so we can recover the coefficients of P from the characteristic polynomial of the
matrix A. It is not hard to see that all solutions of ∂U = AU also have moderate
growth near the origin. By Theorem 20.8, our system is equivalent to a system
of the form ∂V = x−1ΓV , where Γ is an m × m-matrix with constant entries.
Consequently, there exists a matrix M ∈ GLm(K) such that

A = ∂M ·M−1 +
1

x
MΓM−1,

After clearing denominators, we get M = x`N , with N ∈ GLm(R). Then

A =
1

x

(
NΓN−1 + ` id

)
+ ∂N ·N−1,

and if we now compute the characteristic polynomial, we find that the j-th coeffi-
cient aj has a pole of order at most j at x = 0 (being equal to a sum of j×j-minors
of the matrix on the right-hand side). �

The theorem we have just proved has another interesting consequence.

Corollary 20.9. Two regular systems are equivalent if and only if their monodromy
matrices are conjugate.

Proof. The proof of Theorem 20.8 shows that any regular system is equivalent to
a system of the form

∂U =
1

x
ΓU,

where Γ is an m×m-matrix with constant entries, such that the monodromy matrix
of the system is e2πiΓ. If two such systems have conjugate monodromy matrices,
then they are easily seen to be equivalent (via a constant matrix M .) To prove the
converse, it is of course enough to consider systems of this special type. Suppose
that two such systems with matrices Γ and Γ′ are equivalent. This means that
there exists a matrix M ∈ GLm(K) such that

1

x
Γ′ = ∂M ·M−1 +

1

x
MΓM−1.

Write M = x`N , with N ∈ GLm(R). After clearing denominators, we get

Γ′ = x∂N ·N−1 +N(Γ + ` id)N−1,

and since Γ and Γ′ are constant, we can now set x = 0 to obtain

Γ′ = N(Γ + ` id)N−1.

Since e2πi` = 1, this implies that e2πiΓ′ = Ne2πiΓN−1. �

Exercises.

Exercise 20.1. Show directly that if two systems ∂U = AU and ∂V = BV are
equivalent, then their monodromy matrices are conjugate to each other.
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Lecture 21: April 24

Regularity for holonomic D-modules. Last time, we considered differential
equations of the form Pu = 0, where P = a0(x)∂m + a1(x)∂m−1 + · · ·+ am(x) is a
differential operator of order m with holomorphic coefficients, such that a0(0) = 0.
We showed that all multi-valued solutions have moderate growth near the origin iff

(21.1) xmP = (x∂)m + b1(x)(x∂)m−1 + · · ·+ bm(x),

with b1(x), . . . , bm(x) holomorphic. In that case, one says that the equation Pu =
0 has a regular singularity at the origin. Let us now reformulate this algebraic
condition in terms of the left DX -moduleM = DX/DXP . For the time being, DX

again means the sheaf of linear differential operators with holomorphic coefficients.
We first observe that the characteristic variety of M is defined by the principal

symbol σm(P ) = a0(x)ξm, where x and ξ are the natural coordinates on the cotan-
gent bundle. Since a0(0) = 0, it follows that Ch(M) is the subset defined by the
equation xξ = 0. This means that if F•M is any good filtration ofM, for example
the one induced by the order filtration on DX , then some power of xξ annihilates
grFM. Let me now show you how (21.1) can be used to construct a particular
good filtration with better properties.

Suppose that we have (21.1) with b1(x), . . . , bm(x) holomorphic. Then we can
define a good filtration F•M by setting

FkM =

m−1∑
j=0

FkDX · (x∂)j + DXP.

It is not hard to see that this is indeed a good filtration; moreover,

x∂ · FkM⊆ FkM

for every k ∈ N, by virtue of (21.1). This means that grFM is annihilated by the
first power of xξ.

Kashiwara and Kawai introduced the notion of holonomic D-modules with reg-
ular singularities as a generalization of this case. From now on, we let X be a
nonsingular algebraic variety (over a field k of characteristic zero). For a coherent
left DX -moduleM, we denote by ICh(M) ⊆ OT∗X the ideal sheaf of the character-
istic variety. Recall that

ICh(M) =
√

AnngrFDX grFM,

where F•M is any good filtration. It follows that there is some (usually large)
integer N such that INCh(M) · grFM = 0. Roughly speaking, we say that M is

regular if we can find a good filtration for which N = 1. For technical reasons, we
have to be slightly more careful. Suppose first that X is proper over Spec k.

Definition 21.2. Let X be a nonsingular algebraic variety that is proper over
Spec k. A holonomic left DX -moduleM is called regular (in the sense of Kashiwara
and Kawai) if it admits a good filtration F•M such that ICh(M) · grFM = 0.

If P ∈ FkDX is a differential operator of order k, then σk(P ) belongs to ICh(M)

if and only if σk(P ) vanishes along the characteristic variety of M. The condition
in the definition is therefore saying that whenever P is a differential operator of
order k such that σk(P ) vanishes along Ch(M), then

P · FjM⊆ Fj+k−1M

for every j ∈ Z.
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The original definition by Kashiwara and Kawai is only asking that a good
filtration with ICh(M) · grFM = 0 should exist locally on X; but they show that
M then actually has a globally defined good filtration with this property.

One can prove (with a lot of work) that direct images by proper morphisms, and
inverse images by arbitrary morphisms, preserve regularity. If we used the above
definition to define regularity when X is not proper, we would run into the problem
that direct images by open embeddings do not necessarily preserve regularity.

Example 21.3. Consider the holonomic A1-module M = A1/A1(∂ − 1). The filtra-
tion induced by the order filtration certainly has the property in the definition (and
the differential equation ∂u = u has a regular singularity at the origin). The prob-
lem occurs near the point at infinity. Indeed, if we consider the open embedding
A1 ↪→ P1, and look at M in the other affine chart with coordinate y = x−1, we get
∂x − 1 = −y2∂y − 1. The A1-module

A1/A1(y2∂y + 1)

is not regular in the above sense; indeed, the differential equation y2∂yu + u = 0
does not satisfy the condition in Theorem 20.4.

Example 21.4. A more well-behaved example is M = A1/A1(x∂ − α), for α ∈ k.
Since x∂x = −y∂y, this becomes A1/A1(y∂y + α) in the chart at infinity, which
again has a regular singularity.

Since we would like direct images by arbitrary morphisms to preserve regularity,
we need to include open embeddings into the definition. Let X be a nonsingular
algebraic variety. Since k has characteristic zero, Nagata’s theorem implies that
we can always embed X into a nonsingular algebraic variety X̄ that is proper over
Spec k. We can always arrange that X̄ \X is a divisor; using embedded resolution
of singularities, we can moreover achieve that this divisor only has normal crossing
singularities. In either case, j : X ↪→ X̄ is an affine morphism, and so if M is a
holonomic left DX -module, the direct image j+M = j∗M is again a holonomic left
DX̄ -module.

Definition 21.5. Let X be a nonsingular algebraic variety. A holonomic left DX -
moduleM is called regular (in the sense of Kashiwara and Kawai) if, for any affine
open embedding j : X ↪→ X̄ into a nonsingular algebraic variety X̄ that is proper
over Spec k, the direct image j+M is regular on X̄.

In fact, it suffices to check this for a single embedding j : X ↪→ X̄. Here is
why. Given any two affine open embeddings j : X ↪→ X̄ and j′ : X ↪→ X̄ ′, one can
take the closure of the image of (j, j′) : X ↪→ X̄ × X̄ ′, and resolve the resulting
singularities to obtain a third embedding j′′ : X ↪→ X̄ ′′ such that j = f ◦ j′′ and
j′ = f ′ ◦ j′′ for two proper morphisms f : X̄ ′′ → X and f ′ : X̄ ′′ → X̄ ′. Since direct
images by proper morphisms preserve regularity, it follows that j+M is regular on
X̄ if and only if j′+M is regular on X̄ ′.

Regularity and solutions. Over the complex numbers, one can also detect reg-
ularity by looking at solutions. The idea is that a left DX -module M is regular
if and only if all formal power series solutions of M are convergent. Let us make
this precise. We now assume that X is a complex manifold of dimension n, and we
denote by DX the sheaf of differential operators with holomorphic coefficients. If
M is a holonomic left DX -module, we can define regularity as above by the (local)
existence of a good filtration such that ICh(M) ·grFM = 0. Fix a point x ∈ X, and
denote by OX,x the local ring of holomorphic functions that are defined in some

neighborhood of x, and by ÔX,x its completion with respect to the maximal ideal.

Concretely, ÔX,x are formal power series in local coordinates x1, . . . , xn, and the
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subring OX,x consists of those power series that actually converge in a neighorhood
of the given point. The stalk Mx is a holonomic left DX,x-module. In particular,
it is coherent, and so we can think ofMx as being obtained from a system of linear
partial differential equations (by choosing a presentation of Mx). As we discussed
in Lecture 1, the space of holomorphic solutions to the system can be described as

HomDX,x(Mx,OX,x).

Roughly speaking, regularity of M means that the natural morphism

HomDX,x(Mx,OX,x) ↪→ HomDX,x(Mx, ÔX,x)

is an isomorphism. In other words, every convergent power series solution actually
converges. This is not quite true, but it becomes true if we replace the naive solution
functor by its derived version

R HomDX,x(Mx,OX,x).

Concretetly, this is computed by choosing a resolution ofMx by free DX,x-modules
of finite rank, and then applying the functor HomDX,x(−,OX,x).

Theorem 21.6 (Kashiwara-Kawai). Let X be a complex manifold, and M a holo-
nomic left DX-module. Then M is regular, in the sense that it (locally) admits a
good filtration F•M with ICh(M) · grFM = 0, iff the morphism

R HomDX,x(Mx,OX,x)→ R HomDX,x(Mx, ÔX,x)

is an isomorphism in the derived category, for every point x ∈ X.

We do not have the tools to prove this, so let me instead illustrate the result by
a simple example.

Example 21.7. On X = C, consider the left D-module M = D/D(x2∂ − 1), which
is clearly not regular at the point x = 0. Let us see how the solution functor detects
this. A free resolution of M is given by

D D
x2∂−1

and so we need to compare the cohomology of the two complexes

O O

Ô Ô

x2∂−1

x2∂−1

The horizontal differential takes a (convergent) power series
∑∞
n=0 anx

n to the
(convergent) power series

(x2∂ − 1)

∞∑
n=0

anx
n =

∞∑
n=0

(
(n− 1)an−1 − an

)
xn

where a−1 = 0 (to simplify the notation). It is easy to see that the kernel of x2∂−1
is trivial: from the relations (n − 1)an−1 − an = 0 for every n ∈ N, one obtains
a0 = a1 = a2 = · · · = 0.

The behavior of the cokernel is more interesting. On Ô, the operator x2∂ − 1 is
surjective. Indeed, if

∑∞
n=0 bnx

n is any formal power series, then the equation

∞∑
n=0

bnx
n = (x2∂ − 1)

∞∑
n=0

anx
n
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means that (n − 1)an−1 − an = bn, and this can be solved recursively. But on O,
the operator is no longer surjective. For instance, if we try to solve

x = (x2∂ − 1)

∞∑
n=0

anx
n,

we obtain a0 = 0, a1 = −1, and an = (n− 1)an−1 for n ≥ 2, from which it follows
that an = −(n− 1)! for n ≥ 1. The resulting series

−
∞∑
n=1

(n− 1)! · xn

clearly has radius of convergence equal to zero.
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Lecture 22: April 29

Today, I would like to discuss a very useful class of examples, namely regular
holonomic D-modules of “normal crossing type”. We will show that these objects
have a simple combinatorial description in terms of vector spaces and certain linear
maps between them. We will describe them both on affine space and on projective
space. Before we can do that, we need to review a few basic results about D-modules
on projective space.

D-affine varieties. We have already seen that algebraic D-modules on affine space
are the same thing as modules over the Weyl algebra An(k). Somewhat surprisingly,
a similar result holds on projective space. In fact, projective space turns out to be
D-affine, in the following sense.

Definition 22.1. A nonsingular algebraic variety X is called D-affine if it satisfies
the following two conditions:

(a) The global section functor

Γ(X,−) : Modqc(DX)→ Mod
(
Γ(X,DX)

)
is exact.

(b) If Γ(X,M) = 0 for some M∈ Modqc(DX), then M = 0.

Here Modqc(DX) denotes the category of left DX -modules that are quasi-coherent
as OX -modules; earlier on, we used the term “algebraic D-modules”.

Example 22.2. Any nonsingular affine variety is D-affine; in fact, the global sections
functor is exact on all quasi-coherent OX -modules in that case.

Suppose that M is a left DX -module. The space of global sections Γ(X,M) is
then naturally a left module over the ring of global differential operators Γ(X,DX).
On a D-affine variety, this gives an equivalence of categories between algebraic
D-modules and modules over the ring Γ(X,DX).

Theorem 22.3. Let X be a nonsingular algebraic variety that is D-affine.

(1) Any M∈ Modqc(DX) is generated by its global sections.
(2) The global sections functor

Γ(X,−) : Modqc(DX)→ Mod
(
Γ(X,DX)

)
is an equivalence of categories, with inverse DX ⊗Γ(X,DX) (−).

Proof. To simplify the notation, set R = Γ(X,DX). For (1), we need to show
that the natural morphism DX ⊗R Γ(X,M) →M is surjective. Let M0 ⊆ M be
the image. Since the global sections functor is exact by (a), we get a short exact
sequence

0→ Γ(X,M0)→ Γ(X,M)→ Γ(X,M/M0)→ 0.

The first two spaces are equal by construction, and so Γ(X,M/M0) = 0, from
which it follows by (b) that M0 =M. This proves (1).

Now we turn to (2). The claim is that the inverse functor is given by sending a
left Γ(X,DX)-module V to the left DX -module DX ⊗R V . It suffices to show that
the two natural morphisms

αM : DX ⊗R Γ(X,M)→M
βV : V → Γ(X,DX ⊗R V )

are isomorphisms for every M ∈ Modqc(DX) and every V ∈ Mod(R). Let us first
prove that βV is an isomorphism. This is clearly the case when V is a direct sum
of copies of R. When V is an arbitrary R-module, we choose a presentation

R⊕I R⊕J V 0
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where I and J are two (possibly infinite) sets. We then get the following diagram
with exact rows:

R⊕I R⊕J V 0

Γ(X,D⊕IX ) Γ(X,D⊕JX ) Γ(X,DX ⊗R V ) 0

∼= ∼= βV

The bottom row is exact because tensor product is right-exact, and because the
global sections functor is exact by condition (a) in the definition. Now the 5-lemma
implies that βV is an isomorphism.

It remains to show that αM is an isomorphism. We already know that αM is
surjective; setting K = kerαM, we have a short exact sequence of DX -modules

0→ K → DX ⊗R Γ(X,M)→M→ 0

and therefore, again by (a), a short exact sequence of R-modules

0→ Γ(X,K)→ Γ
(
X,DX ⊗R Γ(X,M)

) β−→ Γ(X,M)→ 0.

Since we have already shown that β = βΓ(X,M) is an isomorphism, it follows that
Γ(X,K) = 0, and hence by (b) that K = 0. This concludes the proof of (2). �

As you would expect, coherent DX -modules correspond to finitely generated
Γ(X,DX)-modules.

Corollary 22.4. If X is D-affine, then

Γ(X,−) : Modcoh(DX)→ Modfg

(
Γ(X,DX)

)
is also an equivalence of categories.

Proof. We keep the notation R = Γ(X,DX). If V is a finitely generated R-module,
then DX ⊗R V is clearly a coherent DX -module. Thus we only have to show that
Γ(X,M) is a finitely generated R-module wheneverM∈ Modcoh(DX). Concretely,
we have to find finitely many global sections that generate M as a DX -module.

Since M is coherent, the restriction of M to any affine open subset U ⊆ X is
generated as a DU -module by finitely many sections in Γ(U,M). The isomorphism
DX ⊗R Γ(X,M) ∼=M in the theorem gives

Γ(U,DX)⊗R Γ(X,M) ∼= Γ(U,M),

and so M
∣∣
U

is generated as a DU -module by finitely many sections in Γ(X,M).
Now X is quasi-compact, hence covered by finitely many affine open subsets; it
follows that finitely many global sections generate M as a DX -module. In other
words, we have a surjective morphism

D⊕rX →M→ 0.

Because the global sections functor is exact by (a), we get a surjection

R⊕r = Γ(X,D⊕rX )→ Γ(X,M)→ 0,

and so Γ(X,M) is a finitely generated R-module. �

We are now going to show that projective spaces are D-affine.

Theorem 22.5. The projective space Pnk is D-affine.

Proof. Let me begin with a preliminary discussion about global sections on Pn. On
An+1, we have coordinates x0, x1, . . . , xn. Let X ⊆ An+1 be the open complement
of the origin. Then Pn is the quotient of X by the Gm-action that rescales the
coordinates. We denote the quotient morphism by π : X → Pnk ; the open embedding
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by j : X ↪→ An+1; and the closed embedding of the origin by i : Spec k ↪→ An+1.
Here are the three morphisms in diagram form:

X An+1 Spec k

Pn

j

π

i

The Euler vector field θ = x0∂0+x1∂1+· · ·+xn∂n is tangent to the fibers of π. Now
suppose thatM is a left DPn-module. Then Gm acts on the space of global sections
of π∗M = OX ⊗π−1OPn π

−1M, and this gives us a direct sum decomposition

Γ(X,π∗M) =
⊕
`∈Z

Γ`(X,π
∗M);

here Gm acts on the subspace Γ`(X,π
∗M) with the character z 7→ z`. It follows

that θ operates on Γ`(X,π
∗M) as multiplication by `. We have

(22.6) Γ(Pn,M) ∼= Γ(X,π∗M)Gm = Γ0(X,π∗M);

indeed, pullbacks of global sections from Pn are clearly Gm-invariant, and con-
versely, any Gm-invariant section on X descends to a global section on Pn. Also
note that multiplication by xj takes Γ` into Γ`+1, and multiplication by ∂j takes
Γ` into Γ`−1; the reason is that [θ, xj ] = xj and [θ, ∂j ] = −∂j .

Now let us start proving that Pn satisfies the two conditions in (a) and (b). We
first show that the global sections functor is exact. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of quasi-coherent DPn -modules. Since π is smooth, the
pullback functor π∗ is exact, which means that

0→ π∗M1 → π∗M2 → π∗M3 → 0

is a short exact sequence of quasi-coherent DX -modules. Because j : X ↪→ An+1 is
an open embedding, j+ ∼= Rj∗ (after the appropriate conversion between left and
right D-modules). Thus we get an exact sequence of quasi-coherent DAn+1-modules

0→ j∗π
∗M1 → j∗π

∗M2 → j∗π
∗M3 → R1j∗π

∗M1 → · · ·

The global sections functor on the affine space An+1 is exact, and so we finally
obtain an exact sequence of An+1-modules

0→ Γ(X,π∗M1)→ Γ(X,π∗M2)→ Γ(X,π∗M3)→ Γ
(
An+1, R1j∗π

∗M1

)
→ · · ·

Now R1j∗π
∗M1 is a quasi-coherent DAn+1-module supported on the origin, and

so by Kashiwara’s equivalence (from Lecture 13), it must be the direct image of a
quasi-coherent DSpec k-module. Concretely, we have

Γ
(
An+1, R1j∗π

∗M1

) ∼= k[∂0, ∂1, . . . , ∂n]⊗k V,

where V is a k-vector space. The key point is now that θ acts on the right-hand
side with strictly negative eigenvalues. Indeed, for any α ∈ Nn+1, we have

θ · ∂α ⊗ v =

n∑
j=0

xj∂j · ∂α ⊗ v =

n∑
j=0

−(αj + 1)∂α ⊗ v = −
(
|α|+ n+ 1

)
· ∂α ⊗ v.

The conclusion is that

0→ Γ0(X,π∗M1)→ Γ0(X,π∗M2)→ Γ0(X,π∗M3)→ 0

is short exact; because of (22.6), this proves that Γ(Pn,−) is an exact functor.
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All that is left is to show that Γ(Pn,M) = 0 implies M = 0. Here we argue by
contradiction and assume that M 6= 0. Since π : X → Pn has a section over each
of the n+ 1 basic affine open subsets, we must have π∗M 6= 0, and therefore

Γ(X,π∗M) = Γ
(
An+1, j∗π

∗M
)
6= 0.

It follows that there is some ` ∈ Z such that Γ`(X,π
∗M) 6= 0. On the other hand,

we have Γ0(X,π∗M) = 0 by (22.6). We will show that this leads to a contradiction.
Suppose first that ` ≥ 1. Take any nonzero element s ∈ Γ`(X,π

∗M). Then

θs =

n∑
j=0

xj∂js = `s 6= 0,

and so at least one ∂js ∈ Γ`−1(X,π∗M) must be nonzero. Repeating this argument,
we eventually arrive at Γ0(X,π∗M) 6= 0, which is a contradiction. The remaining
possibility is that ` ≤ −1. Since s ∈ Γ(X,π∗M) and π∗M is quasi-coherent, we
cannot have xjs = 0 for every j. It follows that Γ`+1(X,π∗M) 6= 0, and as before,
this leads to a contradiction after finitely many steps. �

This result says, in particular, that coherent DPn -modules are the same thing as
finitely generated modules over the ring of differential operators Γ(Pn,DPn). Let
us briefly discuss the structure of this ring. We have

Γ(Pn,DPn) ∼= Γ0

(
X,DX→Pn

)
,

where DX→Pn = π∗DPn is the transfer module. Recall from Lecture 16 that, in
the case of a smooth morphism, DX→Pn is the quotient of DX by the submodule
generated by the relative tangent bundle. In our setting, DX→Pn ∼= DX/DXθ, and
so we recover the fact, already stated in Lecture 9, that Γ(Pn,DPn) consists of all
differential operators on An+1 that are homogenous of degree 0, modulo multiples
of the Euler vector field θ.

One can turn this into a very concrete presentation by generators and relations,
as follows. For i, j ∈ {0, 1, . . . , n}, set Di,j = xi∂j . A short calculation gives

(22.7) [Di,j , Dk,`] =


Di,i −Dj,j if k = j and ` = i,

Di,` if k = j and ` 6= i,

−Dk,j if k 6= j and ` = i,

0 if k 6= j and ` 6= i.

We also have θ = D0,0 + D1,1 + · · · + Dn,n. Then Γ(Pn,DPn) is generated as a
non-commutative k-algebra by the Di,j , and all the relations are generated by the
above commutator relations and the additional relation D0,0+D1,1+· · ·+Dn,n = 0.

Regular holonomic D-modules of normal crossing type. We now turn to
the classification of regular holonomic D-modules of normal crossing type. Let
me first explain what I mean by “normal crossing type”. On An, we can inter-
sect the various components of the normal crossing divisor x1 · · ·xn = 0 to obtain
a total of 2n nonsingular closed subvarieties. (Here we use the convention that
the empty intersection equals An.) Their conormal bundles give us 2n conical La-
grangian subvarieties of the cotangent bundle T ∗An. In the usual coordinate system
x1, . . . , xn, ξ1, . . . , ξn on the cotangent bundle, the union of all these Lagrangians is
exactly the closed subset

Z(x1ξ1, . . . , xnξn);

indeed, on each component, we have either xj = 0 or ξj = 0, for every j = 1, . . . , n.
We say that a (necessarily holonomic) DAn -moduleM is of normal crossing type if
its characteristic variety satisfies

Ch(M) ⊆ Z(x1ξ1, . . . , xnξn).
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Example 22.8. On A2, the condition is that the characteristic variety has at most
four irreducible components: the zero section, the conormal bundles to the two
axes, and the cotangent space to the origin.

Here is a typical example, to get started.

Example 22.9. Consider the An-module M = An/An(x1∂1 − α1, . . . , xn∂n − αn),
where α1, . . . , αn ∈ k are scalars. The characteristic variety is defined by the
principal symbols of the n operators, hence is exactly the set Z(x1ξ1, . . . , xnξn). In
particular, M is holonomic; I will leave it as an exercise to check that M is regular
in the sense of Kashiwara and Kawai.

The analogous definition on Pn has to include the hyperplane at infinity. In ho-
mogeneous coordinates x0, x1, . . . , xn, we are therefore looking at the closed subset

Z(x0ξ0, x1ξ1, . . . , xnξn) ⊆ T ∗Pn;

note that even though the cotangent bundle is not trivial, the notation still makes
sense because each xj∂j is a globally defined vector field on Pn. We then say that
a (necessarily holonomic) DPn-module M is of normal crossing type if

Ch(M) ⊆ Z(x0ξ0, x1ξ1, . . . , xnξn).

Our goal is to describe explicitly all regular holonomic DPn -modules of normal
crossing type, at least when k is algebraically closed. It will help us that Pn is
D-affine. Our starting point is the following lemma.

Lemma 22.10. Let M be a holonomic left DPn-module that is regular and of nor-
mal crossing type. Then there is a finite-dimensional k-vector space V ⊆ Γ(Pn,M)
that generates Γ(Pn,M) as a Γ(Pn,DPn)-module, and is preserved by x0∂0, . . . , xn∂n.

Proof. Regularity means that there is a global good filtration F•M such that
ICh(M) annihilates grFM. Since Ch(M) ⊆ Z(x0ξ0, x1ξ1, . . . , xnξn), this says con-
cretely that we have

xj∂j · FiM⊆ FiM
for every j = 0, 1, . . . , n and i ∈ Z. Since FiM is a coherent OPn -module,

Γ(Pn, FiM) ⊆ Γ(Pn,M)

is a finite-dimensional k-vector space that is preserved by x0∂0, . . . , xn∂n. We
showed during the proof of Corollary 22.4 that M is generated as a DPn -module
by finitely many global sections. If we choose i large enough, these sections will be
global sections of FiM, and so the subspace V = Γ(Pn, FiM) actually generates
Γ(Pn,M) as a module over Γ(Pn,DPn). �

Now x0∂0, . . . , xn∂n are commuting endomorphisms of the finite-dimensional k-
vector space V . Assuming that k is algebraically closed, we get a decomposition

V =
⊕

α∈kn+1

Vα

into generalized eigenspaces, where Vα ⊆ V consists of all vectors v ∈ V such that
(xj∂j − αj)mv = 0 for j = 0, 1, . . . , n and m � 0. In other words, xj∂j − αj acts
nilpotently on the subspace Vα. Of course, only finitely many of the Vα are actually
nonzero; also note that we must have α0 + α1 + · · ·+ αn = 0, due to the fact that
θ = x0∂0 + · · ·+ xn∂n acts trivially on V . If we define

A =
{
α ∈ kn+1

∣∣ α0 + α1 + · · ·+ αn = 0
}
,

then the direct sum above is actually indexed by a finite subset of A. Since V
generates Γ(Pn,M), we get a similar decomposition for the entire space of global
sections.
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Lemma 22.11. Let M be a holonomic left DPn-module that is regular and of
normal crossing type, and set M = Γ(Pn,M). We have a decomposition

M =
⊕
α∈A

Mα

into finite-dimensional k-vector spaces Mα, such that the operator xj∂j − αj acts
nilpotently on Mα for j = 0, 1, . . . , n.

Proof. To be completely precise, we define, for every α ∈ A, the subspace

Mα =
{
s ∈M

∣∣ (xj∂j − αj)ms = 0 for j = 0, 1, . . . , n and m� 0
}
.

Since different Mα are easily seen to be linearly independent, it suffices to prove
that every s ∈ M can be written as a sum of elements in finitely many Mα. This
is true for elements of V by the discussion above; and for other elements, it follows
from the fact that M is generated by V as a Γ(Pn,DPn)-module. Indeed, Γ(Pn,DPn)
is generated as a k-algebra by the operators Di,j = xi∂j , and since we already have
the desired decomposition for elements of V , we only have to prove that

Di,j ·Mα ⊆Mα+ei−ej ,

where ei is the i-th coordinate vector in kn+1. But as xk∂k = Dk,k, this follows
quite easily from the commutator relations

[Di,j , Dk,k] =


0 if k = i = j or k 6= i, j,

Di,j if k = j and k 6= i,

−Di,j if k = i and k 6= j.

that we had proved earlier. �

Exercises.

Exercise 22.1. Prove that Di,j ·Mα ⊆Mα+ei−ej .

Exercise 22.2. Verify the relations in (22.7), and prove that Γ(Pn,DPn) does have
the claimed presentation by generators and relations.
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Lecture 23: May 1

Regular holonomic D-modules of normal crossing type. Let me briefly recall
what we did last time. We first showed that Pn is D-affine, which meant that the
global sections functor

Γ(Pn,−) : Modqc(DPn)→ Mod
(
Γ(Pn,DPn)

)
is an equivalence of categories. In other words, algebraic D-modules on Pn are
uniquely determined by their space of global sections, which is a module over the
ring Γ(Pn,DPn). We also showed that the ring of differential operators on Pn is
generated by the (n+1)2 operators Di,j = xi∂j , subject to the commutator relations

(23.1) [Di,j , Dk,`] =


Di,i −Dj,j if k = j and ` = i,

Di,` if k = j and ` 6= i,

−Dk,j if k 6= j and ` = i,

0 if k 6= j and ` 6= i,

and the extra relation θ = D0,0 + D1,1 + · · · + Dn,n = 0. We then showed that if
M is a regular holonomic DPn -module whose characteristic variety is contained in
the set Z(x0ξ0, x1ξ1, . . . , xnξn) ⊆ T ∗Pn, then we get a decomposition

Γ(Pn,M) =
⊕
α∈A

Mα,

where A =
{
α ∈ kn+1

∣∣ α0 + α1 + · · · + αn = 0
}

. Here each Mα is a finite-
dimensional k-vector space, consisting of those global sections of M on which the
n+ 1 operators Dj,j − αj act nilpotently.

How about the converse? Suppose we are given a collection of finite-dimensional
k-vector spaces Mα, indexed by α ∈ A. What extra information is needed to turn
the direct sum

M =
⊕
α∈A

Mα

into (the space of global sections of) a regular holonomic DPn -module of normal
crossing type? First, M should be a left module over the ring Γ(Pn,DPn), and so
we need to have linear operators

Di,j : Mα →Mα+ei−ej

for every α ∈ A and every i, j ∈ {0, 1, . . . , n}. These operators should satisfy the
commutator relations above, as well as the identity D0,0 + D1,1 + · · · + Dn,n = 0.
We also want M to be finitely generated, which means that finitely many of the Mα

should generate M as a Γ(Pn,DPn)-module. Finally, the operator Dj,j −αj should
act nilpotently on Mα for every j ∈ {0, 1, . . . , n}. It is then not hard to show that
the corresponding DPn -module is regular holonomic of normal crossing type.

Other variants. There are some useful variants of the classification above. One
is regular holonomic D-modules of normal crossing type on affine space An. Let
M be a holonomic DAn -module with the property that

Ch(M) ⊆ Z(x1ξ1, . . . , xnξn) ⊆ T ∗An.
In that case, we say thatM is of normal crossing type. Recall thatM is regular, in
the sense of Kashiwara and Kawai, if the direct image j+M is regular on Pn, where
j : An ↪→ Pn is the open embedding. One can show that if M is regular holonomic
of normal crossing type on An, then j+M is regular holonomic of normal crossing
type on Pn. Thus we obtain a decomposition

Γ(An,M) = Γ(Pn, j+M) =
⊕
α∈kn

Mα,
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which we are now indexing by α ∈ kn. (This is okay because α0 = −(α1 + · · ·+αn),
so there is no loss of information.) Again, each Mα is a finite-dimensional k-vector
space, consisting of all global sections of M on which the n commuting operators
xj∂j − αj act nilpotently. This time, we have

xj : Mα →Mα+ej and ∂j : Mα →Mα−ej

for every j = 1, . . . , n; this follows from the commutator relation [∂j , xj ] = 1.
Conversely, given a collection of finite-dimensional k-vector spaces Mα, indexed by
α ∈ kn, and a collection of linear operators xj : Mα →Mα+ej and ∂j : Mα →Mα−ej
subject to the relations [∂i, xj ] = δi,j , the direct sum

M =
⊕
α∈kn

Mα

becomes a module over the Weyl algebra Γ(An,DAn); if this module is finitely
generated, and if each xj∂j − αj acts nilpotently on Mα, then the corresponding
DAn -module is regular holonomic of normal crossing type.

There is also a local analytic version of the classification, for k = C. Let DCn,0
denote the ring of linear differential operators with holomorphic coefficients that
are defined in some neighborhood of the origin in Cn. We say that a holonomic
DCn,0-module M is of normal crossing type if its characteristic variety Ch(M) is
contained in the set Z(x1ξ1, . . . , xnξn). We say that M is regular if it satisfies
the condition from Lecture 21, meaning if there exists a good filtration F•M such
that each FkM is a finitely generated OCn,0-module stable under the action by
x1∂1, . . . , xn∂n. Define

Mα =
{
s ∈M

∣∣ (xj∂j − αj)ms = 0 for j = 0, 1, . . . , n and m� 0
}
.

Each Mα is a finite-dimensional C-vector space, and their direct sum

M =
⊕
α∈Cn

Mα

is a regular holonomic module over the Weyl algebra An(C), of normal crossing
type. Then one can show (with a lot of extra work) that

M∼= DCn,0 ⊗An(C) M.

In other words, the DCn,0-module structure onM is completely determined by the
much simpler algebraic D-module M . Note that this result is only true in the local
analytic setting. The following example explains why.

Example 23.2. Consider the DA1-module M = DA1/DA1(∂ − 1). It is easy to
see that Ch(M) is the zero section, and that M is actually a line bundle with
integrable connection. Except for regularity at infinity, M is therefore regular
holonomic of normal crossing type. But it is not true, not even Zariski-locally,
that Γ(A1,M) = A1/A1(∂ − 1) has a decomposition into generalized eigenspaces
for x∂; in fact, you can check for yourself that x∂ does not have any nontrivial
eigenvectors. What goes wrong is that we need a solution to ∂u = u to get an
isomorphism between M and OA1 . But the solution is u = ex, which is not an
algebraic function, because it has an essential singularity at infinity. Another way
to say this is that M is not regular at infinity.

Solutions. Let us discuss a few more properties of the classification on An. For
simplicity, I will assume from now on that k = C. Consider a regular holonomic
D-module of normal crossing type, with decomposition

M =
⊕
α∈Cn

Mα.
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Here each Mα is a finite-dimensional C-vector space. By construction, xj∂j−αj acts
nilpotently on Mα, and so xj∂j is an isomorphism as long as αj 6= 0. Consequently,

∂j : Mα →Mα−ej and xj : Mα−ej →Mα

are injective respectively surjective for αj 6= 0. Likewise, ∂jxj − αj − 1 acts nilpo-
tently on Mα, and so ∂jxj is an isomorphism as long as αj 6= −1. Thus

∂j : Mα+ej →Mα and xj : Mα →Mα+ej

are surjective respectively injective for αj 6= −1. We can summarize this by saying
that ∂j : Mα → Mα−ej is an isomorphism for αj 6= 0, and that xj : Mα → Mα+ej

is an isomorphism for αj 6= −1.
This implies of course that those vector spaces Mα with

−1 ≤ Reαj ≤ 0 for every j = 1, . . . , n

determine all the others. Since M is finitely generated over An(C), the set

F =
{
α ∈ Cn

∣∣ Mα 6= 0 and −1 ≤ Reαj ≤ 0 for all j
}

must be finite. Thus M is generated as an An(C)-module by the direct sum of
those Mα with α ∈ F .

Recall that any holonomic An-module has finite length, meaning that it has
a finite composition series whose subquotients are simple. Let us describe more
explicitly what simple regular holonomic D-modules of normal crossing type look
like. Suppose that M is simple but nonzero. Choose some α ∈ F , so that Mα 6= 0
and −1 ≤ Reαj ≤ 0 for all j. Since each xj∂j −αj acts nilpotently on Mα, we can
find a common eigenvector s ∈ Mα such that xj∂js = αjs for every j = 1, . . . , n.
Since M is simple, we must have Ans = M . Because s is an eigenvector, it is not
hard to see that Ans intersects Mα exactly in the subspace Cs. Thus Mα = Cs is
one-dimensional. Now there are two special cases:

(1) One case is that αj = 0. Then xj∂js = 0, and so the submodule An(C)∂js
does not contain s. Since M is simple, this forces ∂js = 0.

(2) The other case is that αj = −1. Then ∂jxjs = 0, and for the same reason
as before, this forces xjs = 0.

We conclude that M is generated as an An-module by s ∈ Mα, and that s is
annihilated by (xj∂j −αj) for αj 6= −1, 0, by ∂j for αj = 0, and by xj for αj = −1.
It is easy to see that there cannot be any other relations, and so we get

M ∼= An/I,

where Iα ⊆ An is the left ideal generated by the n differential operators
xj∂j − αj for αj 6= −1, 0,

∂j for αj = 0,

xj for αj = −1.

We see that M is supported on the linear subspace

SuppMα =
⋂

αj=−1

Z(xj),

and so by Kashiwara’s equivalence, it is the pushforward of a regular holonomic
D-module of normal crossing type on SuppMα. Outside of the union of the hyper-
planes Z(xj) with αj 6= −1, 0, the latter is a line bundle with integrable connection;
this connection has a regular singularity at each of the hyperplanes in question, with
monodromy e2πiαj .

Now let see what we can say about the solutions of regular holonomic D-modules
of normal crossing type on Cn. Since algebraic differential equations typically do
not have algebraic solutions, we need to work in the analytic topology; we use the
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notation OCn for the sheaf of holomorphic functions on Cn, and the notation DCn

for the sheaf of differential operators with holomorphic coefficients. Let us write
M = DCn ⊗An M for the analytic DCn-module determined by the An(C)-module
M . Recall that we have the (derived) solutions functor

Sol(M) = RHomDCn

(
M,OCn

)
.

It can be computed for example by choosing a resolution ofM by free DCn -modules,
and then applying the usual solutions functor term by term. For simple modules
of normal crossing type, this is easily done. Fix a multi-index α ∈ F as above. To
keep the notation simple, let me set

Pj =


xj∂j − αj if αj 6= −1, 0,

∂j if αj = 0,

xj if αj = −1.

Then our simple DCn -module has the form

Mα = DCn/DCn(P1, . . . , Pn),

The Koszul complex for P1, . . . , Pn gives a resolution by free DCn-modules:

DCn → D⊕nCn → · · · → D
⊕(n2)
Cn → D⊕nCn → DCn

Consequently, Sol(Mα) is represented by the complex

(23.3) OCn → O⊕nCn → O
⊕(n2)
Cn → · · · → O⊕nCn → OCn ,

placed in degrees 0, 1, . . . , n, and with a Koszul-type differential, induced by the n
operators f 7→ Tjf . We are interested in computing the cohomology sheaves of this
complex.

Example 23.4. For n = 1, there are three cases. If α = 0, the complex looks like

OC OC.
∂

By the holomorphic Poincaré lemma (or by a direct computation with power series),
this complex only has cohomology in degree 0, where we get the constant sheaf C.
If α = −1, the complex looks like

OC OC.
x

It only has cohomology in degree 1, where we get a one-dimensional skyscraper
sheaf at the origin. Lastly, if α 6= −1, 0, the complex looks like

OC OC.
x∂−α

This only has cohomology in degree 0. Away from the origin, the multi-valued
holomorphic function xα solves the equation (x∂ − α)f = 0, and so we get a
locally constant sheaf on C∗, with monodromy e2πiα. At the origin, the function
xα does not make sense, and in fact, the equation (x∂ − α)f = 0 does not have
a solution that is holomorphic in a neighborhood of the origin. So in this case,
the 0-th cohomology sheaf of the complex is a so-called constructible sheaf: it is
locally constant on C∗, but with a different stalk at the origin. Note that in each
case, exactly one cohomology sheaf is nonzero; and if the nonzero cohomology sheaf
occurs in degree 0, it is supported on all of C; if it occurs in degree 1, then it is
supported at the origin.
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By working with power series, one can show that the complex in (23.3) is (locally)
quasi-isomorphic to a product; thus its cohomology is described by what happens
for each of the n operators Tj individually. The conclusion is that (23.3) has exactly
one nonzero cohomology sheaf, say in degree k (where k is the number of j such that
αj = −1); moreover, that cohomology sheaf is supported on the linear subspace⋂

αj=−1

Z(xj),

whose codimension is exactly k. It is also a constructible sheaf, meaning locally
constant (of rank 0 or 1) on each stratum of the natural stratification on Cn.

From this, we can deduce what happens for Sol(M) in general. Recall that M
has a finite composition series whose subquotients M1, . . . ,Mr are simple.

Example 23.5. Suppose that M has a composition series of length two:

0→M1 →M→M2 → 0

Since the solutions functor is contravariant, we obtain a long exact sequence

Hi−1 Sol(M1)→ Hi Sol(M2)→ Hi Sol(M)→ Hi Sol(M1)→ Hi+1 Sol(M2)

Since Sol(M1) and Sol(M2) each have only a single nonzero cohomology sheaf, it
follows that Sol(M) can have at most two nonzero cohomology sheaves, both con-
structible with respect to the natural stratification on Cn. Moreover, dim SuppHi Sol(M) ≥
i. The inequality can be strict, for example if Hi Sol(M2) 6= 0 and Hi−1 Sol(M1) 6=
0; then Hi Sol(M) is a quotient of the constructible sheaf Hi Sol(M2), whose sup-
port is a linear subspace of codimension i. It follows that Hi Sol(M) is still con-
structible, but its support may be smaller than than of Hi Sol(M2).

In general, we have a spectral sequence

Ep,q1 = Hp+q Sol(Mp) =⇒ Hp+q Sol(M).

Each Sol(Mp) has exactly one nonzero cohomology sheaf, which is constructible
for the natural stratification on Cn; if Hj Sol(Mp) 6= 0, then it is supported on a
linear subspace of codimension j. Since kernels and cokernels of morphisms between
constructible sheaves are again constructible, we see that all cohomology sheaves
of Sol(M) are constructible; it also follows, as in the example, that

codim SuppHj Sol(M) ≥ j.

Exercises.

Exercise 23.1. Suppose that we are given a family of k-vector spaces Mα, indexed
by α ∈ A, and a family of linear mappings Di,j : Mα →Mα+ei−ej .

(1) Show that if the relations in (23.1) hold, and D0,0 +D1,1 + · · ·+Dn,n = 0,
then the direct sum

M =
⊕
α∈A

Mα

becomes a left module over R = Γ(Pn,DPn).
(2) Suppose that M is finitely generated as an R-module, and that each oper-

ator Dj,j −αj acts nilpotently on Mα. Show that the characteristic variety
of M = DPn ⊗RM is contained in the set Z(x0ξ0, x1ξ1, . . . , xnξn).

(3) Show that M is a regular holonomic DPn -module of normal crossing type.

Exercise 23.2. Find the decomposition of Γ(Pn,M) in the following cases:

(1) M = OPn

(2) M = j+OU , where U = Pn \ Z(x0x1 · · ·xn)
(3) M = i+OPn−1 , where Pn−1 = Z(x0).
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Exercise 23.3. LetM be a regular holonomic DPn-module of normal crossing type.
Given the decomposition for Γ(Pn,M), determine the resulting decomposition for
the holonomic dual of M.
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Lecture 24: May 6

The Riemann-Hilbert correspondence. Last time, we showed that the solu-
tion complex of a regular holonomic D-module of normal crossing type has several
special properties: its cohomology sheaves are locally constant on the strata of the
divisor, and the dimensions of their supports satisfy a collection of inequalities.
This is a special case of the Riemann-Hilbert correspondence, which relates regular
holonomic D-modules and constructible sheaves.

Let us begin with a few basic definitions. Let X be a nonsingular algebraic
variety over the complex numbers. A stratification is a decomposition

X =
⊔
α∈A

Xα

into locally closed algebraic subsets, called strata, such that each Xα is nonsingular,
and such that the Zariski-closure of each Xα is a union of finitely many other strata.
The same definition makes sense on complex manifolds, taking each Xα to be a
locally closed complex submanifold.

Example 24.1. The divisor x1 · · ·xn = 0 induces a natural stratification on An with
2n strata, indexed by subsets I ⊆ {1, . . . , n}. The stratum corresponding to the
subset I consists of those points where xi = 0 for every i ∈ I, and xi 6= 0 for every
i 6∈ I.

Example 24.2. We can stratify A2 according to the singularities of the nodal curve
C = Z(y2−x2−x3), into a 2-dimensional stratum A2 \C, a 1-dimensional stratum
C \ {(0, 0)}, and a 0-dimensional stratum {(0, 0)}.

We also need the notion of constructibility for sheaves. It is necessary to work
in the classical (or analytic) topology, because the Zariski topology is too coarse to
allow for interesting locally constant sheaves. Given a nonsingular algebraic variety
X, we denote by Xan the associated complex manifold, with the topology induced
by the usual Euclidean topology on Cn. Let F be a sheaf of finite-dimensional
C-vector spaces on Xan . This means that for every open subset U ⊆ Xan , the
space of sections Γ(U,F ) is a finite-dimensional C-vector space. We say that F is
constructible if there is a stratification

X =
⊔
α∈A

Xα

such that the restriction of F to each stratum Xan
α is a locally constant sheaf.

(Constructible sheaves on arbitrary complex manifolds are defined in a similar way.)
Every locally constant sheaf is constructible, of course, but the point is that the
usual functors on sheaves preserve constructibility. (Going from locally constant
sheaves to constructible sheaves is very similar to going from locally free sheaves to
coherent sheaves, in that sense.)

Example 24.3. If f : X → Y is a proper morphism between nonsingular algebraic
varieties, and if fan : Xan → Y an denotes the resulting proper holomorphic map-
ping between complex manifolds, then the sheaves Rifan∗ CXan are constructible.
The reason is that one can find a stratification for Y , in such a way that the
restriction of f to each stratum of Y is a topological fiber bundle.

Example 24.4. If j : U ↪→ X is an open embedding, and jan : Uan ↪→ Xan denotes
the resulting embedding of complex manifolds, then the sheaves Rijan∗ CUan are
constructible. This is easy to show in the case where X \ U is a normal crossing
divisor; the general case follows by using resolution of singularities and the result
in the previous example.
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More generally, one can show that the usual direct and inverse image functors
on sheaves preserve constructibility: if f : X → Y in any morphism between non-
singular algebraic varieties, and F any constructible sheaf on Xan , then Rifan∗ F
is a constructible sheaf on Y an . Likewise, if G is any constructible sheaf on Y an ,
then (fan)−1G is a constructible sheaf on Xan . One can say the same thing in the
language of derived categories. Denote by Db

c (CXan ) the derived category of (coho-
mologically) constructible sheaves; its objects are complexes of sheaves of C-vector
spaces on Xan whose cohomology sheaves are constructible (and zero in all but
finitely many degrees). Then if f : X → Y is any morphism between nonsingular
algebraic varieties, the usual derived pushforward of sheaves gives an exact functor

Rfan∗ : Db
c (CXan )→ Db

c (CY an ),

and the usual inverse image of sheaves gives an exact functor

(fan)−1 : Db
c (CY an )→ Db

c (CXan ).

We can now state the first general result about solution complexes of regular
holonomic D-modules. Let DX be the usual sheaf of differential operators on X,
and denote by DXan the sheaf of differential operators with holomorphic coefficients
on the complex manifold Xan . Given a coherent DX -module M, we denote by
Man the associated analytic DXan -module; this can be constructed using local
presentations ofM, for example. The following result was proved by Kashiwara in
his thesis; it is usually called “Kashiwara’s constructibility theorem”.

Theorem 24.5. Let X be a nonsingular algebraic variety, andM a holonomic left
DX-module. Then the solution complex

Sol(M) = RHomDXan

(
Man ,OXan

)
is constructible, hence an object of Db

c (CXan ).

In fact, Kashiwara proves this result for holonomic D-modules on complex man-
ifolds. One consequence is that one has an exact (contravariant) solutions functor

Sol : Db
h(DX)→ Db

c (CXan )op

that associates to every complex of DX -modules with holonomic cohomology a
constructible complex of solutions. We saw a very special case of this result last
time, namely solutions of regular holonomic D-modules of normal crossing type.

The solution functor is contravariant, but there is also a covariant version of
Kashiwara’s theorem. Recall that the Spencer complex

Sp(DX) =
[
DX ⊗OX

n∧
TX → · · · → DX ⊗OX

2∧
TX → DX ⊗OX TX → DX

]
is a resolution of OX by locally free left DX -modules; likewise, Sp(DXan ) is a reso-
lution of OXan by locally free left DXan -modules. Thus

Sol(M) = RHomDXan

(
Man ,OXan

)
∼= RHomDXan

(
Man ,Sp(DXan )

)
∼= RHomDXan

(
Man ,DXan

)
⊗DXan Sp(DXan ).

Now suppose thatM is holonomic. Then the complex RHomDX (M,DX) only has
cohomology in degree n, and

ExtnDX (M,DX) =M∗

is the holonomic dual (which is a holonomic right DX -module). Consequently,

RHomDXan

(
Man ,DXan

) ∼=M∗,an [−n],
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and after plugging this into the relation from above, we get

(24.6) Sol(M) ∼=M∗,an [−n]⊗DXan Sp(DXan ) ∼= Sp(M∗,an)[−n].

Under the conversion between right and left D-modules, the Spencer complex of a
right D-module goes to the de Rham complex of a left D-module. This leads to
the following equivalent formulation of Kashiwara’s constructibility theorem: IfM
is a holonomic left DX -module on a nonsingular algebraic variety X, then the de
Rham complex

DR(Man) =
[
Man → Ω1

Xan ⊗Man → · · · → ΩnXan ⊗Man
]
,

placed in degrees −n, . . . , 0, is constructible. More generally, the de Rham functor

DR: Db
h(DX)→ Db

c (CXan )

is an exact covariant functor.
Kashiwara’s theorem makes no assumptions about regularity, but the price to

pay is that many different D-modules can have the same solution complex.

Example 24.7. Here is the simplest example of this phenomenon. On A1, consider
the family of DA1-modules Mλ = DA1/DA1(∂ − λ), indexed by λ ∈ C \ {0}. We
have already seen that these D-modules have an irregular singularity at infinity.
The solution complex of Mλ is

OC OC.
∂−λ

The kernel of ∂ − λ is clearly spanned by the function eλx, while the cokernel is
trivial; this means that the solution complex is always isomorphic to the constant
sheaf C, independently of λ. On the other hand, Mλ and Mµ are not isomorphic
as DA1 -modules for λ 6= µ.

If one imposes the condition of regularity, then this problem goes away, and
the solutions functor (as well as the de Rham functor) becomes an equivalence of
categories. This is the content of the famous Riemann-Hilbert correspondence.

Theorem 24.8. Let X be a nonsingular algebraic variety. Then the functors

Sol : Db
h(DX)→ Db

c (CXan )op

DR: Db
h(DX)→ Db

c (CXan )

are equivalences of categories.

This result again holds more generally on complex manifolds. There are three
proofs: an analytic proof by Kashiwara; a more algebraic proof by Mebkhout; and a
completely algebraic proof by Bernstein (which only works on algebraic varieties).
The Riemann-Hilbert correspondence also respects the various functors on both
sides: for example,

DR ◦f+
∼= Rf∗ ◦DR and DR ◦Lj∗ ∼= j−1 ◦DR .

These isomorphisms do not hold without the assumption of regularity. The Riemann-
Hilbert correspondence therefore establishes a direct link between algebraic objects
(regular holonomic D-modules) and topological objects (constructible sheaves).

Example 24.9. The holonomic dual also has a natural interpretation in terms of the
Riemann-Hilbert correspondence. On Db

c (CXan ), one has Verdier’s duality functor

DXan : Db
c (CXan )→ Db

c (CXan )op , F 7→ RHomCXan

(
F,CXan [2n]

)
,

where n = dimX. One can show that, for any holonomic DX -module M, one has
an isomorphism

DXan

(
DR(Man)

) ∼= Sp(M∗,an)
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which means that the Riemann-Hilbert correspondence turns holonomic duality
into Verdier duality.

Perverse sheaves. The Riemann-Hilbert correspondence works on the level of the
derived category. Where do regular holonomic D-modules go under the equivalence
of categories? We saw last time that the solution complex of a regular holonomic
D-module of normal crossing type satisfies a collection of inequalities: the j-th
cohomology sheaf of Sol(M) is supported on a union of strata of codimension at
least j. Kashiwara proved that this is true for arbitrary holonomic D-modules: if
M is a holonomic D-module on a nonsingular algebraic variety (or, more generally,
on a complex manifold), then

codim SuppRj Sol(M) ≥ j
for every j ∈ Z. Using the identity in (24.6), an equivalent formulation is that

dim SuppHj DR(Man) ≤ −j
for every j ∈ Z. One gets a similar collection of inequalities also for the Verdier
dual DXan DR(Man), because of the identity in Example 24.9. This motivates the
following definition.

Definition 24.10. A complex F ∈ Db
c (CXan ) is called a perverse sheaf if

dim SuppHjF ≤ −j and dim SuppHj DXan (F ) ≤ −j
for every j ∈ Z.

Example 24.11. If M is a holonomic DX -module, then DR(Man) is a perverse
sheaf. This is simply a rewording of Kashiwara’s theorem. Note that regularity is
not needed here.

The definition (and the somewhat strange name) of perverse sheaves is due to
Beilinson, Bernstein, Deligne, and Gabber. They showed that the collection of per-
verse sheaves forms an abelian category contained in Db

c (CXan ). The collection of
inequalities in the definition had actually appeared in two completely independent
places: once in Kashiwara’s study of holonomic D-modules, and then again in the
intersection homology theory of Goresky and Macpherson. This circumstance is
of course explained by the Riemann-Hilbert correspondence. In fact, once Theo-
rem 24.8 is known, purely formal reasoning implies that the de Rham functor

DR: Db
h(DX)→ Db

c (CXan )

takes the abelian category of regular holonomic DX -modules isomorphically to the
abelian category of perverse sheaves. Unfortunately, I cannot offer you any good
explanation of what perverse sheaves really are, other than saying that they are
the image of the regular holonomic D-modules under the Riemann-Hilbert corre-
spondence. From this point of view, the crucial result is the equivalence between
the two derived categories; the collection of inequalities is just what one gets when
one goes from one side to the other.

Exercises.

Exercise 24.1. Show that if λ 6= µ, then Mλ = DA1/DA1(∂ − λ) is not isomorphic
to Mµ as a DA1 -module.
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Lecture 25: May 8

Meromorphic connections. Before the full Riemann-Hilbert correspondence was
proved, Deligne established an important special case. It has to do with the rela-
tionship between locally constant sheaves and vector bundles with integrable con-
nection. Suppose that X is a nonsingular and proper algebraic variety over the
complex numbers. If we are given a vector bundle of rank r with integrable connec-
tion, then the subsheaf of flat sections is a locally constant sheaf of rank m (with
respect to the analytic topology). Conversely, given a locally constant sheaf of rank
m, say E, we can form the holomorphic vector bundle E = OX ⊗C E, which has
the same (locally constant) transition functions as E. The formula

∇(f ⊗ s) = df ⊗ s
defines an integrable connection on E , and the subsheaf of ∇-flat sections is of
course isomorphic to E. Lastly, X is proper, and so the pair (E ,∇) actually comes
from an algebraic vector bundle with intgrable connection (by a version of Serre’s
GAGA theorem). The conclusion is that the (a priori topological) object E is
actually algebraic.

Deligne’s version of the Riemann-Hilbert correspondence generalizes this to not
necessarily proper varieties. It goes through an intermediate class of objects, called
meromorphic connections. Here is the definition. Let X be a complex manifold,
and D ⊆ X a divisor. For simplicity, we are only going to consider the case where D
has simple normal crossing singularities: D is a union of nonsingular hypersurfaces
meeting transversely. In suitable local coordinates x1, . . . , xn, the equation defining
D is of the form x1 · · ·xr = 0. We let

OX(∗D)

be the sheaf of meromorphic functions on X that are holomorphic on X \ D; it
is naturally a subsheaf of j∗OX\D, where j : X \ D ↪→ X is the inclusion of the
complement. The notation ∗D is supposed to remind you of the pole order along
D. Locally, OX(∗D) is isomorphic to OX [t]/(ht − 1), where h is a local equation
for D; it follows that OX(∗D) is still a coherent sheaf of OX -algebras.

Definition 25.1. A meromorphic connection is a coherent OX(∗D)-module M ,
together with an integrable connection

∇ : M → Ω1
X ⊗OX M

that satisfies the Leibniz rule ∇(fs) = df ⊗ s+ f∇s and the integrability condition
[∇θ,∇θ′ ] = ∇[θ,θ′].

Note. In the Leibniz rule, we are considering only f ∈ OX , but the same formula
works for every f ∈ OX(∗D). To make this precise, define Ω1

X(∗D) as the sheaf of
meromorphic one-forms on X that are holomorphic on X \D, so that

Ω1
X(∗D) = Ω1

X ⊗OX OX(∗D).

We can then consider ∇ as a C-linear morphism

∇ : M → Ω1
X(∗D)⊗OX(∗D) M,

and now the Leibniz rule makes sense for f ∈ OX(∗D).

A meromorphic connection is naturally a left DX -module, since the two identities
imply that the left action by TX extends to a left action by DX (see the discussion
in Lecture 10). On X \D, the D-module is coherent, and therefore a holomorphic
vector bundle with integrable connection. In that sense, a meromorphic connection
is an extension of a vector bundle with integrable connection on X \D to an object
on X with singularities along D.



125

Definition 25.2. If (M,∇) and (N,∇) are two meromorphic connections, then a
morphism ϕ : (M,∇)→ (N,∇) is a morphism of OX(∗D)-module ϕ : M → N that
is compatible with the connections, in the sense that

∇
(
ϕ(s)

)
= (id⊗ϕ)(∇s).

We denote by Conn(X,D) the category of meromorphic connections on (X,D).
It is an abelian category. There are two simple but useful observations about
morphisms in Conn(X,D). The first says that morphisms are determined by what
their restriction to X \D.

Proposition 25.3. Let ϕ : (M,∇)→ (N,∇) be a morphism of meromorphic con-
nections. If ϕ

∣∣
X\D is an isomorphism, then ϕ is an isomorphism.

Proof. The kernel and cokernel of ϕ are meromorphic connections whose support
is, by construction, contained inside D. It is therefore enough to prove that a
meromorphic connection (M,∇) such that SuppM ⊆ D must be trivial. Let s be
any local section of M , and h a local equation for D. The subsheaf OX · s ⊆ M
is coherent over OX , and its support is contained inside D, and so hms = 0 for
m� 0. But then s = h−m(hms) = 0, proving that M = 0. �

The second observation is useful for functoriality questions. Suppose that (M,∇)
and (N,∇) are two meromorphic connections. Then

HomOX(∗D)(M,N)

is again an OX(∗D)-module in a natural way, and the formula

(∇ϕ)(s) = (id⊗ϕ)(∇s)−∇
(
ϕ(s)

)
defines an integrable connection that makes HomOX(∗D)(M,N) into a meromor-
phic connection. You should check that morphisms of meromorphic connections
ϕ : (M,∇)→ (N,∇) are exactly the same thing as∇-flat global sections ofHomOX(∗D)(M,N).

Deligne’s theorem on meromorphic connections. Deligne proved that locally
constant sheaves on X \D correspond to meromorphic connections on (X,D) that
are regular along D. Regularity was originally defined by restricting to curves, but
in the case where D is a normal crossing divisor, we can use another definition that
is closer to the Kashiwara-Kawai notion of regularity for D-modules.

Definition 25.4. A meromorphic connection (M,∇) is called regular if there is a
locally free OX -module L with

M ∼= OX(∗D)⊗OX L,

such that in any local trivialization of L, the connection has at worst logarithmic
poles along D.

More precisely, suppose that e1, . . . , em form a local trivialization for L. Then
the condition is that

∇ei =
∑
j,k

aki,j
dxk
xk
⊗ ej ,

for certain holomorphic functions aki,j . Since L is then preserved by the differential
operators x1∂1, . . . , xn∂n, this means that M , viewed as a left DX -module, is regular
in the sense of Kashiwara and Kawai. The letter L comes from the fact that L is
traditionally called a lattice.

Keeping the notation from above, we let Ak ∈ Matm×m(OX) be the matrix with
entries aki,j . The restriction of Ak to the divisor Dk, defined by the equation xk = 0,
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is a well-defined endomorphism of the locally free sheaf L
∣∣
Dk

, called the residue of

∇ along Dk. We use the symbol

ResLDk(∇) = Ak
∣∣
Dk

to denote the residue. We may drop the superscript L when the lattice is clear from
the context.

Lemma 25.5. Let (M,∇) be a meromorphic connection with lattice L.

(a) On Dk ∩D`, the residues ResDk(∇) and ResD`(∇) commute.
(b) The eigenvalues of ResD`(∇) are locally constant along D`.

Proof. In the notation from above, we have

∇ei =
∑
j,k

aki,j
dxk
xk
⊗ ej ,

and Ak is the m × m-matrix with entries aki,j . With respect to the trivialization

e1, . . . , em, we therefore have ∇∂k = Ak/xk. The integrability condition for the
connection is [∇∂k ,∇∂` ] = 0, which expands out to

∂

∂xk

(
A`

x`

)
+
A`

x`

Ak

xk
=

∂

∂x`

(
Ak

xk

)
+
Ak

xk

A`

x`
.

After rearranging the terms, this becomes

xk∂k(A`) +A`Ak = x`∂`(A
k) +AkA`,

and so the restriction of the two matrices Ak and A` to the set xk = x` = 0
commute with each other.

For the proof of the second assertion, denote by L̄ the restriction of L to the
divisor D`; similarly, Āk is the restriction of Ak, and so on. The formula

∇ēi =
∑
j,k 6=`

āki,j
dxk
xk
⊗ ēj

defines an integrable connection with logarithmic poles on L̄, and one checks that
Ā` is a horizontal section of HomOD`

(L̄, L̄). It follows that the eigenvalues of Ā`

must be locally constant. �

Deligne’s main theorem is that every bundle with integrable connection on U can
be uniquely extended to a regular meromorphic connection on (X,D); in fact, even
the lattice is more or less unique, except for a small ambiguity in the eigenvalues
of the residues.

Theorem 25.6. Let X be a complex manifold, and D ⊆ X a divisor with simple
normal crossing singularities. Set U = X \D, and fix a section τ : C/Z→ C of the
projection C→ C/Z. Given (M,∇) ∈ Conn(U), there is a unique locally free sheaf
Lτ on X with the following three properties:

(a) One has Lτ
∣∣
U

= M .

(b) The connection ∇ : M → Ω1
U ⊗OU M extends to

∇ : Mτ → Ω1
X ⊗OX Mτ ,

where Mτ = OX(∗D)⊗OX Lτ .
(c) At each irreducible component of D, the residue of ∇ has eigenvalues in the

set τ(C/Z) ⊆ C.

Moreover, with the above choice of Lτ , the restriction mapping

Γ(X,Mτ )∇ → Γ(U,M)∇

from ∇-flat sections of Mτ to ∇-flat sections of M is an isomorphism.
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Proof of Deligne’s theorem. The proof of Deligne’s theorem has two parts. The
first part is to prove that Lτ is unique (up to isomorphism). The second part is
to construct a suitable lattice Lτ locally on X; the local objects can then be glued
together into a global lattice using uniqueness.

Let us start with the local existence, since that is easier. Since we are working
locally, we can assume that X = ∆n, where ∆ ⊆ C is an open disk containing
the origin. The divisor D will be given by the equation x1 · · ·xr = 0, and so
U = (∆∗)r×∆n−r. By the correspondence between vector bundles with integrable
connection and locally constant sheaves, (M,∇) ∈ Conn(U) corresponds to a locally
constant sheaf on U , hence to a representation π1(U) → GLm(C), where m is the
rank of M . Since the fundamental group of U is abelian, this is equivalent to giving
r commuting matrices C1, . . . , Cr ∈ GLm(C). (These are the monodromy matrices
of the locally constant sheaf.)

It is a simple exercise to show that there are matrices Γ1, . . . ,Γr ∈ Matm×m(C),
uniquely determined by the following three conditions:

(1) e2πiΓj = Cj ,
(2) the eigenvalues of Γj lie in the set τ(C/Z),
(3) Γ1, . . . ,Γr commute.

We can now define Lτ = O⊕mX , and put a meromorphic connection on the free
OX(∗D)-module Mτ = OX(∗D)⊕m by the formula

∇ei =
∑
j,k

Γki,j
dxk
xk
⊗ ej .

From the construction, it is clear that this has the three properties in the statement
of the theorem. What about flat sections? A ∇-flat section of M is the same thing
as a monodromy invariant vector v ∈ Cm, meaning one with C1v = · · · = Crv = v.
This is equivalent to Γ1v = · · · = Γrv = 0, and so v also represents a ∇-flat section
of Mτ .

The more demanding part of the proof is the uniqueness of Lτ . You will see that
the argument is very similar to what we did for the theorem of Fuchs (in Lecture 20).
The problem is local, and so we continue to assume that X = ∆n, with coordinates
x1, . . . , xn, and D defined by x1 · · ·xr = 0. Suppose that L and L′ are two lattices
that both have the three properties stated in the theorem. Denote by ∇ and ∇′ the
logarithmic connections on L and L′. With respect to a trivialization e1, . . . , em
for L, we can write

∇ei =
∑
j,k

aki,j
dxk
xk
⊗ ej ,

where aki,j are holomorphic functions on X; we set

ω =
∑
k

Ak
dxk
xk

,

which is an m ×m-matrix of logarithmic one-forms. We use primes to denote the
corresponding objects for (L′,∇′).

By assumption, (L,∇)
∣∣
U
∼= (L′,∇′)

∣∣
U

. After a short calculation, the isomor-
phism between the two bundles with connection translates into the existence of an
invertible matrix S ∈ GLm(OU ) such that

dS = Sω − ω′S.
The entries of S are holomorphic functions on U = X \D, possibly with essential
singularities along D. To prove the uniqueness statement, it is enough to show
that S ∈ GLm(OX), meaning that the entries of S should extend to holomorphic
functions on X. By Hartog’s theorem, holomorphic functions extend over subsets
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of codimension ≥ 2, and so we only need to to prove that the entries of S extend
over the generic point of each irreducible component of D. To keep the notation
simple, we will check this at points of

D1 \
⋃
k 6=1

Dk,

meaning at points where x1 = 0 but x2 · · ·xr 6= 0. Write

ω = A1 dx1

x1
+
∑
k≥2

Ak
dxk
xk

ω′ = A′1
dx1

x1
+
∑
k≥2

A′k
dxk
xk

The relation dS = Sω − ω′S gives

(25.7) x1
∂S

∂x1
= SA1 −A′1S,

and after taking the matrix norm of both sides, we obtain

|x1| ·
∥∥∥∥ ∂S∂x1

∥∥∥∥ ≤ C · ‖S‖,
where C > 0 is a constant that depends on the size of the (holomorphic) entries
of the two matrices A1 and A′1. As in Lecture 20, we can now apply Grönwall’s
inequality to deduce that the entries of S have moderate growth near x1, hence are
meromorphic functions on the set where x2 · · ·xr 6= 0.

It remains to show that the entries of S are actually holomorphic functions for
x2 · · ·xr 6= 0. Consider the Laurent expansion

S =

∞∑
j=p

Sjx
j
1,

where Sp 6= 0 is the leading term. After substituting this into (25.7), we get

∞∑
j=p

jSjx
j
1 =

∞∑
j=p

(
SjA

1 −A′1Sj
)
xj1.

The coefficients at xp1 equate to

pSp = Sp ·A1
∣∣
x1=0

−A′1
∣∣
x1=0

· Sp = Sp · ResLD1
(∇)− ResL

′

D1
(∇′) · Sp.

Since both ResLD1
(∇) and ResL

′

D1
(∇′) have their eigenvalues contained in the set

τ(C/Z), this relation forces p = 0. Indeed, suppose that v is a nontrivial eigenvector

for ResLD1
(∇), with eigenvalue λ. Then

p(Spv) = λ(Spv)− ResL
′

D1
(∇′)(Spv),

and so Spv is an eigenvector for ResL
′

D1
(∇′), with eigenvalue λ − p. (Since S is

invertible, we must have Spv 6= 0). As the difference of the two eigenvalues is
an integer, this can only happen for p = 0. The conclusion is that S extends
holomorphically to all of X, proving the desired uniqueness.
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Deligne’s Riemann-Hilbert correspondence. We are now ready for Deligne’s
version of the Riemann-Hilbert correspondence. Let Loc(X\D) denote the category
of locally constant sheaves (of finite-dimensional C-vector spaces) on X \D.

Theorem 25.8. Let X be a complex manifold, and D ⊆ X a divisor with simple
normal crossing singularities. Then the restriction functor

Conn(X,D)reg → Loc(X \D)

is an equivalence of categories.

Here we associate to a meromorphic connection (M,∇) ∈ Conn(X,D) the locally
constant sheaf of ∇-flat sections of M

∣∣
U

, where U = X \D. The proof is very easy

at this point. First, every locally constant sheaf on X \ D is the sheaf of ∇-flat
sections of some (M,∇) ∈ Conn(U). By Theorem 25.6, there is an extension of
(M,∇) to a regular meromorphic connection on (X,D): for any choice of τ , the pair
(Mτ ,∇) will do. This shows that the restriction functor is essentially surjective.

It remains to prove that it is also fully faithful. The functor of ∇-flat sections
gives an equivalence of categories between Conn(U) and Loc(U), and so it suffices
to prove that Conn(X,D)reg → Conn(U) is fully faithful. Let (M,∇) and (N,∇)
be meromorphic connections, and set H = HomOX(∗D)(M,N); recall that (H,∇)
is again a meromorphic connection. As we saw earlier, we have an isomorphism

HomConn(X,D)

(
(M,∇), (N,∇)

)
∼= Γ(X,H)∇

between the set of morphisms in the category Conn(X,D) and the set of ∇-flat
sections of H. Similarly,

HomConn(U)

(
(M,∇)

∣∣
U
, (N,∇)

∣∣
U

)
∼= Γ(U,H)∇,

and so the problem reduces to showing that

Γ(X,H)∇ → Γ(U,H)∇

is an isomorphism.

Lemma 25.9. Let (M,∇) ∈ Conn(X,D) be a regular meromorphic connection.
Then the restriction morphism

Γ(X,M)∇ → Γ(U,M)∇

is an isomorphism, where U = X \D.

Proof. Since (M,∇) is regular, there is a lattice L with M ∼= OX(∗D) ⊗OX L,
such that ∇ has logarithmic poles. Pick any section τ : C/Z → C, for example
with Re τ ∈ [0, 1). By Theorem 25.6, there exists Lτ with (L,∇)

∣∣
U
∼= (Lτ ,∇)

∣∣
U

.
Arguing as in the proof of Theorem 25.6, we find that the isomorphism is locally
given by a matrix with meromorphic entries, and hence that (M,∇) is isomorphic
to (Mτ ,∇) as a meromorphic connection. Now the assertion about flat sections
follows from the last sentence of Theorem 25.6. �

Deligne’s Riemann-Hilbert correspondence again leads to an interesting alge-
braicity result. Suppose that X is a nonsingular proper variety. Then every locally
constant sheaf on X \ D comes from a meromorphic connection on (X,D), and
hence (by a version of Serre’s GAGA theorem) from an algebraic object. Since we
have resolution of singularities, we can write every nonsingular algebraic variety
in the form X \ D. Thus every locally constant sheaf on a nonsingular algebraic
variety comes from an algebraic vector bundle with integrable connection.
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Exercises.

Exercise 25.1. Let (M,∇) and (N,∇) be meromorphic connections. Check that(
HomOX(∗D)(M,N),∇

)
is a meromorphic connection, and that ϕ : (M,∇)→ (N,∇)

is a morphism of meromorphic connections if and only if, when viewed as a global
section of HomOX(∗D)(M,N), it satisfies ∇ϕ = 0.

Exercise 25.2. Let C ∈ GLm(C). Show that there is a unique Γ ∈ Matm×m(C)
such that e2πiΓ = C and such that the eigenvalues of Γ lie in the set τ(C/Z).
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Lecture 26: May 10

One-forms on varieties of general type. In the final two lectures, I am going to
show you an application of D-module theory to a problem in algebraic geometry. It
has to do with holomorphic one-forms and their zero loci. Recall that on a smooth
projective curve of genus g ≥ 1, every holomorphic one-form has exactly 2g − 2
zeros, counted with multiplicity. The situation for surfaces is less clear, but one
can still show that every holomorphic one-form on a surface of general type must
have a non-empty zero locus. (We’ll see a proof of this fact in a second.) This
lead Christopher Hacon and Sándor Kovács (and, independently, Tie Luo and Qi
Zhang) to conjecture that the same result should hold on any variety of general
type; they also proved their conjecture for threefolds. A few years ago, Mihnea
Popa and I used D-modules to prove the conjecture in general. The proof I am
going to present is a simplified version of our original argument that Chuanhao Wei
and I found sometime afterwards.

Theorem 26.1. Let X be a smooth projective variety over the complex numbers.
If X is of general type, then every holomorphic one-form on X has a non-empty
zero locus.

To be precise, for any ω ∈ H0(X,Ω1
X), we define the zero locus to be

Z(ω) =
{
x ∈ X

∣∣ ω(TxX) = 0
}
.

Then the theorem is claiming that if X is of general type, in the sense that
dimH0(X,ωmX ) grows like a constant times mdimX , then necessarily Z(ω) 6= ∅
for every ω ∈ H0(X,Ω1

X). Another motivation for thinking that this might be true
is that one-forms are dual to vector fields, and zero loci of vector fields are of course
related to the topology of X. (For example, if X admits an everywhere nonzero
vector field, then its Euler characteristic must be zero.)

Example 26.2. Let us consider the case of surfaces. Suppose that X is a smooth
projective surface of general type. Suppose that there was a holomorphic one-form
ω ∈ H0(X,Ω1

X) with empty zero locus. We will use some of the many numerical
identities for surfaces to produce a contradiction.

First, we observe that X must be minimal. Otherwise, X would be the blowup
of a smooth projective surface Y at some point, and since H0(X,Ω1

X) ∼= H0(Y,Ω1
Y ),

the one-form ω would be the pullback of a one-form from Y . But then ω has to
vanish at some point of the exceptional divisor, contradiction. Now the fact that X
is a of general type means that c1(X)2 ≥ 1; together with the Bogomolov-Miyaoka-
Yau inequality, we get

3c2(X) ≥ c1(X)2 ≥ 1.

But c2(X) is the topological Euler characteristic of X, and so e(X) 6= 0.
Now the contradiction comes from the fact that a surface with a nowhere vanish-

ing holomorphic one-form must have e(X) = 0. To see this, consider the complex

0 OX Ω1
X Ω2

X 0ω ω

where the differential is wedge product with ω. This is a Koszul complex, and
since Z(ω) = ∅, the complex is exact, and so its hypercohomology is trivial. The
hypercohomology spectral sequence

Ep,q1 = Hq(X,ΩpX)
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therefore converges to zero. This gives

e(X) =
∑
p,q

(−1)p+q dimHq(X,ΩpX) =
∑
p,q

(−1)p+q dimEp,q1

=
∑
p,q

(−1)p+q dimEp,q∞ = 0,

since the alternating sum of the dimensions is preserved under taking cohomology.

Let us make a few general observations about Theorem 26.1. The condition that
X is of general type can be restated as follows: for any ample line bundle L on X,
there is some m ≥ 1 such that ωmX ⊗ L−1 has a section.

Example 26.3. In the special case m = 1, we can use the Nakano vanishing theorem
to give a simple proof of Theorem 26.1. Suppose that H0(X,ωX ⊗ L−1) 6= 0,
and that there is a holomorphic one-form ω ∈ H0(X,Ω1

X) with Z(ω) = ∅. Let
n = dimX. As before, the complex

0 OX Ω1
X · · · ΩnX 0ω ω ω

is exact, and so the hypercohomology spectral sequence

Ep,q1 = Hq(X,ΩpX ⊗ L
−1)

converges to zero. Since L is ample, the Nakano vanishing theorem tells us that
Ep,q1 = 0 for p+ q < n. In particular, all the differentials going into the term in the
position (n, 0) vanish. But then

En,0∞ = En,01 = H0(X,ωX ⊗ L−1) 6= 0,

which is a contradiction. Unfortunately, this simple argument totally breaks down
once m ≥ 2. But we will see that it is still basically a vanishing theorem that is
responsible for Theorem 26.1.

Another observation is that holomorphic one-forms are closely related to abelian
varieties. Indeed, we always have the Albanese mapping

alb: X → Alb(X) = H0(X,Ω1
X)∗/H1(X,Z)

to an abelian variety of dimension h0(X,Ω1
X), and by construction,

H0(X,Ω1
X) ∼= H0

(
Alb(X),Ω1

Alb(X)

)
.

It thus makes sense to consider more generally an arbitrary morphism f : X → A
to an abelian variety A, and to ask about the zero loci of the holomorphic one-
forms f∗ω, for ω ∈ H0(A,Ω1

A). Of course, we should replace the assumption “X of
general type” by the condition that ωmX ⊗ f∗L−1 has sections for m� 1, where L
is an ample line bundle on A. This suggests the following more general result.

Theorem 26.4. Let f : X → A be a morphism from a smooth projective variety
to an abelian variety. If H0(X,ωmX ⊗ f∗L−1) 6= 0 for some m ≥ 1 and some ample
line bundle L on A, then one has Z(f∗ω) 6= ∅ for every ω ∈ H0(A,Ω1

A).

Set W = H0(A,Ω1
A), and consider the incidence variety

Zf =
{

(x, ω) ∈ X ×W
∣∣ x ∈ Z(f∗ω)

}
⊆ X ×W.

The theorem is claiming that the second projection p2 : Zf → W is surjective.
Since A is an abelian variety, we have T ∗A = A×W , and so the usual diagram of
morphisms between cotangent bundles becomes:

X ×W T ∗X

A×W

df

f×id
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With this notation, we have Zf = df−1(0). When we looked at direct images for
D-modules (in Lecture 13), we encountered the set

Sf = (f × id)
(
df −1(0)

)
= (f × id)(Zf ).

It contains the characteristic varieties of the direct image D-modules Hjf+ωX . (In
Lecture 13, we proved this for closed embeddings.) Concretely,

Sf =
{

(a, ω) ∈ A×W
∣∣ f−1(a) ∩ Z(f∗ω) 6= ∅

}
,

and so Z(f∗ω) 6= ∅ for every ω ∈W is equivalent to the surjectivity of p2 : Sf →W .
This suggests the following strategy for proving Theorem 26.4: find a DA-module
whose characteristic variety Ch(M) is contained in the set Sf , and then use results
about D-modules to show that p2 : Ch(M)→W must be onto.

We could not actually get this idea to work, but we found a good replacement
for it, based on work of Viehweg and Zuo. Here is a rought outline for the proof of
Theorem 26.4. On the cotangent bundle T ∗A = A×W , we construct a morphism
F → G between two coherent sheaves, with the following three properties:

(a) The support of F is contained in the set Sf .
(b) The induced morphism H0(A×W,F )→ H0(A×W,G ) is nontrivial.
(c) The coherent sheaf (p2)∗G on W is torsion-free.

Here p1 : A ×W → A and p2 : A ×W → W are the two projections. We will see
next time that G is (almost) the coherent sheaf coming from a DA-moduleM with
a good filtration F•M.

Lemma 26.5. Such a morphism F → G can only exist if p2(Sf ) = W .

Proof. Consider the induced morphism

(p2)∗F → (p2)∗G .

Both sheaves are coherent (by properness of p2), and the support of (p2)∗F is
contained in the set p2(Sf ). Now suppose that p2(Sf ) 6= W . Then (p2)∗F is a
torsion sheaf, and so the morphism to the torsion-free sheaf (p2)∗G must be trivial.
Taking global sections, we find that

H0(A×W,F ) = H0
(
W, (p2)∗F

)
→ H0

(
W, (p2)∗G

)
= H0(A×W,G )

is trivial; but this is a contradiction. �

Filtered D-modules and the Rees construction. For the proof of Theo-
rem 26.4, it is important to work with pairs (M, F•M), where M is a coherent
D-module, and F•M a good filtration. Here the filtration is not just a tool to
study D-modules, but an essential piece of data. One can define the direct image
and duality functors for filtered D-modules by analogy with the unfiltered case, as
follows.

Let X be a nonsingular algebraic variety over a field k (of characteristic zero).
We can combine DX with its order filtration F•DX into a single sheaf of algebras

D̃X =

∞⊕
k=0

FkDX ,

called the Rees algebra of DX . This is a sheaf of non-commutative graded algebras,
with multiplication defined in the obvious way. We denote by z ∈ D̃X,1 the image

of 1 ∈ F1DX ; then D̃X contains a copy of OX [z]. It is easy to see that

D̃X/D̃X(z − z0) ∼= DX

for every z0 6= 0, because in the quotient, each FkDX gets identified with its image
in Fk+1DX . Likewise,

D̃X/D̃Xz ∼= grFDX ,
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because in the quotient, the image of FkDX in Fk+1DX goes to zero. We can

therefore think of the Rees algebra D̃X as a family of algebras over the affine line
Spec k[z], in which DX deforms into grFDX .

Given a coherent left (or right) DX -module M and a good filtration F•M, we
can form the Rees module

M̃ = RFM =
⊕
k∈Z

FkM.

This is a graded left (or right) module over D̃X in the obvious way; since the

filtration is good, M̃ is coherent over D̃X . As before, one checks that

M̃/(z − z0)M̃ ∼=M

for every z0 6= 0, whereas

M̃/zM̃ ∼= grFM.

An important point is that not every graded D̃X -module comes from a filtered
DX -module.

Lemma 26.6. A graded D̃X-module M̃ is the Rees module of a filtered DX-module
if and only if it has no z-torsion.

Graded D̃X -modules without z-torsion are called strict. Since Spec k[z] is one-
dimensional, this condition is equivalent to flatness over k[z].

Proof. It is easy to see that a graded D̃X -module of the form RFM does not have
any z-torsion. Let us prove the converse. Suppose for the time being that M̃ is
any graded left D̃X -module. Define

M = M̃/(z − 1)M̃,

which is a left module over D̃X/D̃X(z−1) ∼= DX . The image of the k-th graded piece

M̃k defines a subsheaf FkM⊆M, with the property that FjDX ·FkM⊆ Fj+kM.

It follows that the Rees module RFM is a graded D̃X -module without z-torsion.
Now we have a morphism of graded D̃X -modules

ϕ : M̃ → RFM,

that takes M̃k to FkM; by construction, this morphism is surjective. One checks
that kerϕ consists exactly of those sections of M̃ that are killed by some power of
z. In particular, ϕ is an isomorphism whenever M̃ does not have any z-torsion. �

Functors for Rees modules. One can define all the usual functors for D-modules
also for modules over the larger algebra D̃ . The two functor we need are the direct
image functor and the duality functor. Given a morphism f : X → Y , we define
the transfer module

D̃X→Y = OX ⊗f−1OY f
−1D̃Y

by the same formula as for D-modules. It is again a (D̃X , f
−1D̃Y )-bimodule. We

can then define the direct image functor

f+(−) = Rf∗
(
−

L
⊗D̃X

D̃X→Y
)

: Db
g,qc(D̃op

X )→ Db
g,qc(D̃op

Y )

between the derived categories of quasi-coherent graded right D̃-modules. As in the
case of D-modules, one can use induced D̃-modules to show that the direct image
by a proper morphism preserves coherence.

If we specialize to z = 1, for example, by taking the (derived) tensor product

with D̃/D̃(z − 1), we recover the usual direct image functor for right D-modules.
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On the other hand, we can specialize to z = 0, by taking the (derived) tensor

product with D̃/D̃z. This gives us a functor

grF : Db
g,qc(D̃op

X )→ Db
g,qc(grFDX),

with takes a Rees module of the form RFM to the associated graded module grFM.
By computing what happens to the transfer module, one checks that the following
diagram is commutative:

Db
g,qc(D̃op

X ) Db
g,qc(D̃op

Y )

Db
g,qc(grFDX) Db

g,qc(grFDY )

f+

grF grF

Here the arrow on the bottom is the functor

Rf∗
(
−

L
⊗grFDX f

∗(grFDY )
)

: Db
g,qc(grFDX)→ Db

g,qc(grFDY ).

If we forget about the grading, then quasi-coherent sheaves of grFDX -modules are
the same thing as quasi-coherent sheaves of OT∗X -modules on the cotangent bundle.
The geometric interpretation of the above functor is then

R(p2)∗ ◦ L(df )∗ : Db
qc(OT∗X)→ Db

qc(OT∗Y ),

where the morphisms between cotangent bundles are as in the diagram below.

X ×Y T ∗Y T ∗X

T ∗Y

p2

df

The direct image functor for Rees modules therefore interpolates between the usual
direct image functor for D-modules, and the natural functor on the level of cotan-
gent bundles. One subtle point is that even if we start from a Rees module RFM,
the direct image

f+(RFM) ∈ Db
g,qc(D̃op

Y )

might have z-torsion (= not be strict). If that happens, it means that f+(RFM)
has more cohomology that the complex of right DY -modules f+M. (The extra
cohomology is z-torsion, of course.) Equivalently, it means that the complex of
graded grFDY -modules

Rf∗
(
grFM

L
⊗grFDX f

∗(grFDY )
)

has some additional cohomology that is not visible to the direct image f+M of the
underlying D-module.

One can also define a duality functor for D̃-modules. As with D-modules, the
tensor product ωX ⊗OX D̃X has two commuting structures of right D̃X -modules. If

M̃ is a right D̃X -module, then

HomD̃X
(M̃, ωX ⊗OX D̃X)

still has the structure of a right D̃X -module. Passing to derived categories, we
obtain the (contravariant) duality functor

DX = RHomD̃X
(−, ωX ⊗OX D̃X)[n] : Db

g,qc(D̃op
X )→ Db

g,qc(D̃op
X )op .

Here [n] means shifting to the left by n = dimX steps. If we specialize to z = 1, we
recover the usual duality functor for DX -modules; if we specialize instead to z = 0,
we obtain the functor

RHomgrFDX (−, ωX ⊗OX grFDX)[n] : Db
g,qc(grFDX)→ Db

g,qc(grFDX)op .
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We can again express this in geometric terms: if G denotes the coherent sheaf on
T ∗X corresponding to grFM, then the above functor is

RHomOT∗X (G , p∗ωX)[n],

where p : T ∗X → X is the projection. As before, DX(RFM) can acquire z-torsion.
For instance, suppose that M is a holonomic right DX -module. Then

RHomDX (M, ωX ⊗OX DX)[n]

only has cohomology in degree zero (where we get the holonomic dual M∗). But
the complex DX(RFM) might have cohomology in other degrees as well (which
will then be z-torsion). In fact, one can show that DX(RFM) is again strict if and
only if the complex

RHomgrFDX (grFM, ωX ⊗OX grFDX)[n]

only has cohomology in degree zero; in commutative algebra terminology, this is
equivalent to grFM being a Cohen-Macaulay module over grFDX .

Hodge modules. You can think of Hodge modules as being a special class of
filtered D-modules that behave well under the various functors. More precisely, a
Hodge module on a nonsingular algebraic variety X is a (regular holonomic) right
DX -module M together with a good filtration F•M. There is some extra data,
too, and several very restrictive conditions have to be satisfied, which make sure
that the pair (M, F•M) comes from a polarizable variation of Hodge structure.

Example 26.7. The pair (ωX , F•ωX), with the filtration defined by F−n−1ωX = 0
and F−nωX = ωX , is an example of a Hodge module. That this is so is a deep
theorem by Morihiko Saito, who created this theory.

For our purposes, the following three facts are important. (Again, all three are
difficult theorems due to Saito.) First, if (M, F•M) is a Hodge module on X, and
if f : X → Y is a proper morphism between nonsingular algebraic varieties, then all
cohomology modules of the complex f+(RFM) are strict, and the resulting filtered
DY -modules are again Hodge modules on Y . In particular, we can compute their
associated graded modules:

grFHjf+M∼= Rjf∗
(
grFM

L
⊗grFDX f

∗(grFDY )
)
.

Second, the duality functor preserves Hodge modules: the complex DX(RFM) only
has cohomology in degree zero, which is strict, and the resulting filtered DX -module
(M′, F•M′) is again a Hodge module on X. Once again, this means that we can
compute the associated graded module:

grFM′ ∼= RnHomgrFDX (grFM, ωX ⊗OX grFDX).

Third, Hodge modules on projective varieties satisfy a vanishing theorem similar to
the Kodaira vanishing theorem. Given a Hodge module (M, F•M), we can form
the Spencer complex

Sp(M) =
[
M⊗

n∧
TX → · · · →M⊗TX →M

]
which lives in degrees −n, . . . , 0. (SinceM is regular holonomic, Sp(M) is actually
a perverse sheaf, by Kashiwara’s theorem.) The Spencer complex is filtered by the
family of subcomplexes

Fk Sp(M) =
[
Fk−nM⊗

n∧
TX → · · · → Fk−1M⊗TX → FkM

]
,
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and the k-th subquotient

grFk Sp(M) =
[
grFk−nM⊗

n∧
TX → · · · → grFk−1M⊗TX → grFkM

]
is a complex of coherent OX -modules. For example, for the pair (ωX , F•ωX), the
Spencer complex is the holomorphic de Rham complex, and the (−p)-th subquotient
is ΩpX , placed in degree n− p.

Theorem 26.8 (Saito’s vanishing theorem). Let X be a nonsingular projective
variety, and L an ample line bundle. If (M, F•M) is a Hodge module on X, then

Hi
(
X, grFk Sp(M)⊗ L

)
= 0 for every i > 0,

Hi
(
X, grFk Sp(M)⊗ L−1

)
= 0 for every i < 0.

Hodge modules on abelian varieties. Let us now return to abelian varieties.
Suppose that A is an abelian variety and L an ample line bundle on A. Since the
tangent bundle of A is trivial, one can prove a much stronger vanishing theorem.
Let me explain how this works. Fix a Hodge module (M, F•M) on A, and for
simplicity, suppose that F−1M = 0 and F0M 6= 0. Then

grF0 Sp(M) = grF0M,

and so Saito’s vanishing theorem gives

(26.9) Hi(A, grF0M⊗ L) = 0 for all i > 0.

The next subquotient of the Spencer complex is

grF1 Sp(M) =
[
grF0M⊗TA → grF1M

]
.

Since TA
∼= O⊕gA , where g = dimA, the term grF0M⊗TA has no higher cohomology

by (26.9). On the other hand, the vanishing theorem says that

Hi
(
A, grF1 Sp(M)⊗ L

)
= 0 for all i > 0.

If we put these two facts together, we find that

(26.10) Hi(A, grF1M⊗ L) = 0 for all i > 0.

Continuing in this manner, we arrive at the conclusion that

(26.11) Hi(A, grFkM⊗ L) = 0 for all i > 0,

and so all graded quotients grFkM satisfy the same Kodaira-type vanishing theorem.
Now recall that T ∗A = A×W , where W = H0(A,Ω1

A). The vanishing theorem
can be used to produce torsion-free sheaves on W . Suppose that (M, F•M) is a
Hodge module on A. Denote by G the coherent sheaf on the cotangent bundle
corresponding to the associated graded module grFM. Also let p1 : A ×W → A
and p2 : A×W →W be the two projections.

Lemma 26.12. If L is an ample line bundle on A, then (p2)∗(G ⊗ p∗1L−1
)

is a
torsion-free coherent sheaf on W .

Proof. Coherence is clear (because p2 is proper). Let us first analyze what happens
when we tensor by L instead of L−1. The higher direct images sheaves

Ri(p2)∗(G ⊗ p∗1L)

are coherent, and since W is affine, we have

H0
(
W,Ri(p2)∗(G ⊗ p∗1L)

)
= Hi

(
A×W,G ⊗ p∗1L

)
= Hi

(
A, (p1)∗G ⊗ L

)
.

This vanishes for every i > 0 because of (26.11) and the fact that (p1)∗G = grFM.
The conclusion is that the complex

R(p2)∗(G ⊗ p∗1L)
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is actually a single coherent sheaf in degree zero.
Now let us turn to the sheaf (p2)∗(G ⊗p∗1L−1). If we apply Grothendieck duality

for the proper morphism p2, we get

RHomOW

(
R(p2)∗(G ⊗ p∗1L−1),OW

) ∼= R(p2)∗RHomOA×W

(
G ⊗ p∗1L−1, p∗1ωA[g]

)
,

since the relative dualizing sheaf is ωA×W/W = p∗1ωA. We can rewrite the right-hand
side in the more compact form

R(p2)∗(G
′ ⊗ p∗1L),

where we have introduced the new complex

G ′ = RHomOA×W (G , p∗1ωA)[g].

We can now use the results about the duality functor. They imply that G ′ is actually
a coherent sheaf; more precisely, we have DX(RFM) = RFM′ for a Hodge module
(M′, F•M′), and G ′ is the coherent sheaf associated to grFM′. According to the
discussion above,

RHomOW

(
R(p2)∗(G ⊗ p∗1L−1),OW

) ∼= (p2)∗
(
G ′ ⊗ p∗1L

)
is therefore a coherent sheaf in degree zero. After dualizing again, we get

(p2)∗(G ⊗ p∗1L−1) ∼= HomOW

(
(p2)∗(G

′ ⊗ p∗1L),OW
)
,

which is reflexive, hence torsion-free. �

Exercise.

Exercise 26.1. Let M̃ be a coherent graded left D̃X -module. DefineM = M̃/(z−
1)M̃, and let FkM be the image of M̃k.

(a) Show that F•M is a good filtration.

(b) Show that the kernel of the morphism ϕ : M̃ → RFM consists exactly of
those sections that are killed by some power of z.
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Lecture 27: May 17

Today is the last class of the semester. We are going to finish the proof of
Theorem 26.4. Let me state the result again.

Theorem. Let f : X → A be a morphism from a smooth projective variety to an
abelian variety. If H0(X,ωmX ⊗ f∗L−1) 6= 0 for some m ≥ 1 and some ample line
bundle L on A, then one has Z(f∗ω) 6= ∅ for every ω ∈ H0(A,Ω1

A).

Last time, we introduced the set

Sf =
{

(a, ω) ∈ A×W
∣∣ f−1(a) ∩ Z(f∗ω) 6= ∅

}
= (f × id)

(
df )−1(0)

)
,

where the notation is as follows:

X ×W T ∗X

A×W

df

f×id

We also observed that the result about one-forms is equivalent to the surjectivity
of p2 : Sf → W . Finally, we talked briefly about filtered D-modules and Hodge
modules, and we showed that if (M, F•M) is a Hodge module on the abelian
variety A, and if G is the coherent sheaf on T ∗A = A×W corresponding to grFM,
then for any ample line bundle L,

(p2)∗(G ⊗ p∗1L−1)

is a torsion-free coherent sheaf on W . This was a consequence of Saito’s vanishing
theorem, ultimately. Today, I will show you how to construct the required objects
from the hypothesis that ωmX ⊗ f∗L−1 has a section.

Base change. Whenever the m-th power of a line bundle has a section, one can
construct a cyclic covering. We can put ourselves in this situation with the help
of a very useful small trick. On the abelian variety A, we have the multiplication
homomorphism

[m] : A→ A, a 7→ a+ · · ·+ a︸ ︷︷ ︸
m times

,

for any m ∈ Z. It is finite and étale, of degree equal to m2 dimA, which is the
same as the number of m-torsion points in A. The effect of pulling back by [m] is
to make line bundles more divisible. In fact, if L is symmetric, in the sense that

[−1]∗L ∼= L, then one has [m]∗L ∼= Lm
2

; if L is anti-symmmetric, in the sense that
[−1]∗L ∼= L−1, then one still has [m]∗L ∼= Lm. Since we can write any line bundle
as the product of a symmetric and an anti-symmetric one, it follows that

[2m]∗L ∼= L′m

for some other line bundle L′. Now consider the fiber product diagram

X ′ X

A A.

ψ

f ′ f

[2m]

Because ψ is finite and étale, we get ψ∗ωX ∼= ωX′ , and therefore

ψ∗
(
ωmX ⊗ f∗L−1

) ∼= (ωX′ ⊗ f ′∗L′−1
)m
.

Again because ψ is finite and étale, it does not affect the zero loci of holomorphic
one-forms; more precisely, we have

ψ−1Z(f∗ω) = Z(f ′∗ω),
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because [2m]∗ω = 2m·ω. For the purpose of proving Theorem 26.4, we can therefore
safely replace f : X → A by its base change f ′ : X ′ → A; this allows us to assume
that the m-th power of the line bundle B = ωX ⊗ f∗L−1 has a nontrivial global
section.

Cyclic coverings. Suppose for a moment that we have a nonsingular algebraic
variety X and a line bundle B, as well as a nontrivial global section s ∈ H0(X,Bm)
for some m ≥ 2. In that case, one can construct a finite morphism

π : Y → X

with the property that π∗B has a global section s0 such that sm0 = πs. Since the
group of m-th roots of unities naturally acts on Y , this is called the cyclic covering
determined by the section s.

Example 27.1. When B is the trivial bundle, s is just a regular function on X; in
that case, Y is the closed subscheme of X × A1 defined by the equation tm = s,
where t is the coordinate on A1. Here t serves as the m-th root of s.

The construction in the general case is similar. Let p : V = V(B) → X be the
algebraic line bundle (whose sheaf of sections is the locally free sheaf B). The
pullback π∗B has a tautological section s0 ∈ H0(V, π∗B), and one defines Y ⊆ V
as the closed subscheme cut out by the section sm0 − π∗s of the line bundle π∗Bm.
By construction, the morphism π : Y → X is finite of degree m, and π∗B has a
global section s0 such that sm0 = π∗s. (This construction has a simple universal
property, which I will leave to you to formulate and prove.)

Unless the divisor of s is nonsingular, the cyclic covering Y will be singular, but
we can resolve its singularities. In this way, we obtain a proper morphism

ϕ : Z → X,

generically finite of degree m, from a nonsingular algebraic variety Z, such that the
line bundle ϕ∗B has a section s0 ∈ H0(Z,ϕ∗B) with sm0 = ϕ∗s.

Sheaves. If we apply the cyclic covering construction to B = ωX ⊗ f∗L−1, we
obtain the following diagram:

Z X

A

h

ϕ

f

Here Z is a nonsingular projective variety of dimension dimZ = dimX = n, and
ϕ is generically finite of degree m. We may view the resulting nontrivial section of
ϕ∗B = ϕ∗ωX ⊗ h∗L−1 as a nontrivial morphism

(27.2) h∗L→ ϕ∗ωX .

We can use the morphism from Z to A to construct a filtered D-module on the
abelian variety. The underlying DA-module is simply the direct image M =
H0h+ωZ . Since (ωZ , F•ωZ) is actually a Hodge module on Z, the graded D̃A-

module M̃ = H0h+(RFωZ) is strict, and so there is a good filtration F•M such

that M̃ = RFM. Moreover, (M, F•M) is again a Hodge module on A. If we
denote by G the associated coherent sheaf on T ∗ = A×W , then we know from last
time that

(p2)∗
(
G ⊗ p∗1L−1

)
is a torsion-free coherent sheaf on W .

Since we constructed G from the morphism h : Z → A, which is more singular
than the original morphism f : X → A, the support of G has nothing to do with
the set Sf ⊆ T ∗A that we are interested in; in fact, one has Supp G ⊆ Sh, which is
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much larger in general. But we can use the existence of (27.2) to construct another
coherent sheaf F with Supp F ⊆ Sf . Consider again the “big” diagram

Z ×W Z ×X T ∗X T ∗Z

X ×W T ∗X

A×W.

h×id

dh

ϕ×id p2

dϕ

df

f×id

Last time, we said that for direct images of Hodge modules, one can compute the
corresponding sheaves on the cotangent bundle very explicitly. The characteristic
variety of ωZ is the zero section in T ∗Z, and the resulting coherent sheaf is i∗ωZ ,
where i : Z ↪→ T ∗Z is the zero section. In the case of M = H0h+ωZ , the formula
from last time says that G is the 0-th cohomology sheaf of the complex

R(h× id)∗L(dh)∗(i∗ωZ).

Let p : T ∗Z → Z be the projection. Since the zero section is exactly the vanishing
locus of the tautological section of p∗Ω1

Z , the Koszul complex

p∗Ωn+•
Z =

[
p∗OZ → p∗Ω1

Z → · · · → p∗ΩnZ

]
is a locally free resolution of the coherent sheaf i∗ωZ on T ∗Z. Consequently,

L(dh)∗(i∗ωZ) =
[
p∗1OZ → p∗1Ω1

Z → · · · → p∗1ΩnZ

]
,

which means that G is the 0-th cohomology sheaf of the complex

R(h× id)∗

[
p∗1OZ → p∗1Ω1

Z → · · · → p∗1ΩnZ

]
.

Now consider the morphism ϕ : Z → X. For each p ≥ 0, we have a pullback
morphism ϕ∗ΩpX → ΩpZ ; these fit together into a morphism of complexes[

p∗1ϕ
∗OX → p∗1ϕ

∗Ω1
X → · · · → p∗1ϕ

∗ΩnX

]
→
[
p∗1OZ → p∗1Ω1

Z → · · · → p∗1ΩnZ

]
.

In derived category notation, this means that we have a morphism

L(ϕ× id)∗L(df)∗(i∗ωX)→ L(dh)∗(i∗ωZ).

Here i : X ↪→ T ∗X is the zero section, and p : T ∗X → X the projection. Since
i∗OX ⊗p∗ωX ∼= i∗(OX ⊗ i∗p∗ωX) ∼= i∗ωX by the projection formula, we can rewrite
this morphism in the more convenient form

p∗1(ϕ∗ωX)⊗ L(ϕ× id)∗L(df)∗(i∗OX)→ L(dh)∗(i∗ωZ).

Now we compose this with (27.2) to obtain a morphism

p∗1(h∗L)⊗ L(ϕ× id)∗L(df)∗(i∗OX)→ L(dh)∗(i∗ωZ).

Move the line bundle factor to the other side, and use the adjunction between the
two functors L(ϕ× id)∗ and R(ϕ× id)∗. This gives an equivalent morphism

L(df)∗(i∗OX)→ R(ϕ× id)∗

(
p∗1(h∗L−1)⊗ L(dh)∗(i∗ωZ)

)
.

Now push forward to A ×W and use the projection formula to pull out the line
bundle factor. This finally gives us the following morphism

(27.3) R(f × id)∗L(df)∗(i∗OX)→ R(h× id)∗L(dh)∗(i∗ωZ)⊗ p∗1L−1
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in the derived category Db
coh(OA×W ). If we take cohomology in degree zero, we

therefore obtain a morphism of coherent sheaves

(27.4) F → G ⊗ p∗1L−1.

Here F is the 0-th cohomology sheaf of the complex R(f × id)∗L(df)∗(i∗OX), and
as such, it is obviously supported inside the set

(f × id)
(
df −1(0)

)
= Sf .

Now all the pieces are in place to prove the theorem about one-forms.

Proof of Theorem 26.4. We are trying to show that p2 : Sf → W is surjective.
Suppose, for the sake of argument, that p2(Sf ) 6= W . Then (p2)∗F is a coherent
sheaf on W whose support is contained inside a proper closed subset, hence a torsion
sheaf. Because (p2)∗(G ⊗ p∗1L−1) is torsion-free, the morphism

(p2)∗F → (p2)∗(G ⊗ p∗1L−1)

must be trivial. Taking global sections, this means that the morphism

H0(A×W,F )→ H0(A×W,G ⊗ p∗1L−1)

is also trivial. Now both sides are actually graded modules, due to the fact that
(27.3) is constructed from sheaves on the zero section (which are stable under the
natural C∗-action on the cotangent bundle). The first nontrivial graded piece (in
degree −n) comes out to be

H0(X,OX)→ H0(Z, ωZ ⊗ h∗L−1)

But now we have a contradiction, because the composition h∗L → ϕ∗ωX → ωZ
is not the zero morphism, due to the fact that (27.2) is nontrivial by assumption.
This means that we have a nontrivial section of ωZ ⊗ h∗L−1, and so the above
morphism cannot have been zero. The conclusion is that p2(Sf ) = W . �
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