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1. Introduction

Let X be a fixed smooth compact complex surface, and (x1, . . . , xk) a multiset
of k points on X, in other words, k points on X that are not required to be distinct.
Let I be the ideal sheaf corresponding to the multiset, and assume that E0 is a
holomorphic vector bundle of rank two on X, fitting into the short exact sequence

0 −−−−→ O
s−−−−→ E0

s∗−−−−→ I −−−−→ 0.
As usual, s is the distinguished nonzero global section of E0. The determinant line
bundle of E0 is trivial, while the second Chern class is equal to the integer k.

If X is in particular an algebraic surface, and H a fixed ample line bundle, then
we can talk about slope-stability with respect to H. The bundle E0 is only slope-
semistable, of slope 0, but there will be stable bundles among small deformations
of E0. By a theorem of Donaldson, these stable approximations admit (essentially
unique) ASD metrics; this note will answer the question what happens to the cur-
vature of these ASD metrics as the approximations get closer to E0. The following
result says that the curvature becomes more and more concentrated at the points
x1, . . . , xk.

Theorem (from The Geometry of Four-Manifolds, p. 230). Let Et be a family of
holomorphic vector bundles, parametrized by t ∈ C, such that Et is slope-stable
for t 6= 0, and with E0 as above. Let At be ASD-connections corresponding to
Et for t 6= 0. Then the sequence [At] converges weakly to the ideal connection(
[θ], (x1, . . . , xk)

)
as t→ 0.

The remaining sections of the introductions will explain the terminology used in
the theorem, as well as the basic point of view towards gauge theory that Donaldson
and Kronheimer adopt in their book.

Gauge theory. Donaldson and Kronheimer do not consider a fixed holomorphic
bundle and different Hermitian metrics on it. Instead, they fix an underlying topo-
logical vector bundle E of rank two, with c1(E) = 0 and c2(E) = k, and a Hermitian
metric on it, and then consider different connections on E. Put another way, they
fix an SU(2)-bundle E of second Chern class k, which means a bundle associated
to a principal SU(2)-bundle on X by the standard representation of SU(2) on C2.
Any SU(2)-connection A on E (represented by the covariant derivative ∇A) whose
curvature is of type (1,1) then makes E into a holomorphic vector bundle EA, with
del-bar operator ∂̄A. Denote the space of all such connections by A(1,1).

The complex gauge group Gc (of complex bundle automorphisms of E) acts
on A(1,1) in the following way. Since the Hermitian metric is fixed, each del-bar
operator determines a unique compatible (1,1)-connection; from the obvious action
of Gc on del-bar operators (by pull-back), we therefore get an action on the space

1



2 CHRISTIAN SCHNELL

of (1,1)-connections. This action extends the action of the usual gauge group G (of
bundle automorphisms preserving the SU(2)-structure). Two connections in A(1,1)

give isomorphic holomorphic structures on E exactly when they are related by a
complex gauge transformation.

The following point of view towards complex gauge transformations is often use-
ful. Say A ∈ A(1,1) is a connection, and B = g(A) its image under a complex gauge
transformation g. The bundle End(E) = E∗ ⊗ E admits the induced connection
A ∗B, and with respect to this connection, g is a holomorphic section,

∂̄A∗Bg = 0.

In those terms, Donaldson’s theorem on the existence of ASD metrics can be
restated as follows: If E admits a stable holomorphic structure, then up to gauge
equivalence by G, there is a unique ASD connection on E.

Moduli spaces and compactness. In the following, fix a principal SU(2)-bundles
Pk → X with second Chern class k for each nonnegative integer k. There is a moduli
space of (gauge equivalence classes of) ASD connections on Pk, denoted here by
Mk; if A is an ASD connection, we shall write [A] for the corresponding point in
Mk. The space M0 contains the special class [θ] of the trivial connection.

To compactify these moduli spaces, the following notion is used. An ideal ASD
connection of second Chern class k is a pair(

[A], (x1, . . . , xl)
)

consisting of a point [A] ∈Mk−l and a multiset (x1, . . . , xl) of degree l of points of
X. The curvature density of an ideal connection is the measure

|F (A)|2 + 8π2
l∑

r=1

δxr

on X. A sequence [An] in Mk in said to converge weakly to the ideal connection(
[A], (x1, . . . , xl)

)
if

• the curvature densities converge as measures, in other words, for every
continuous function f on X,∫

X

f |F (An)|2dµ→
∫

X

f |F (A)|2dµ+ 8π2
∑

r

f(xr);

• there are bundle maps ρn : Pk−l

∣∣∣
U
→ Pk

∣∣∣
U

such that the connections

ρ∗n(An) converge in C∞ to A on compact subsets of U = X \
{
x1, . . . , xl

}
.

(As for the second condition, it should be noted that each ρn gives rise to a map
rn of associated vector bundles over U . Because any map of principal bundles is
an isomorphism, this map rn is then a unitary bundle isomorphism.)

With the above notion of convergence, the space IMk of ideal connections of
second Chern class k,

IM k = Mk ∪Mk−1 ×X ∪Mk−2 × Sym2(X) ∪ · · · ,

is a (metrizable) Hausdorff space. Let M̄k be the closure of Mk in IM k. Uhlenbeck’s
results on compactness imply that M̄k is compact.
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2. Proof of the Theorem, Outline

As said above, we fix an underlying SU(2)-bundle E; the family of holomorphic
bundles Et can then be represented by a family Bt ∈ A(1,1) of connections on E,
where Bt defines the holomorphic structure Et. To make the argument work, we
have to require the connections Bt to converge uniformly in C∞ to B0 as t→ 0.

To begin the proof, we consider the family of ASD-connections At on E. Each
At gives a point [At] in the moduli space Mk, and the theorem is claiming that,
as t → 0, these points converge to the point

(
[θ], (x1, . . . , xk)

)
. Because of the

compactnesss of the space M̄k, it suffices to show that whenever we have a sequence
tn → 0 for which

An = Atn
→
(
[A′], (y1, . . . , yl)

)
,

the connection A′ is gauge equivalent to the trivial one, and the multiset (y1, . . . , yl)
is equal to (x1, . . . , xk). This will now be proved in several steps. As for notation,
we let E′ be the SU(2)-bundle of Chern class (k− l) on which the ASD connection
A′ lives, and E ′ the holomorphic bundle structure that A′ defines on E′.

Since the proof itself is surprisingly long, a short outline might not be out of
place. The argument can be divided quite naturally into two parts. The first part
consists in showing that both the bundle E′ and the connection A′ are trivial.
This is accomplished by constructing a nontrivial holomorphic map h : E0 → E ′,
using the fact that both Btn

and Atn
define the same holomorphic structure on the

bundle E. The special structure of E0 can then be used to show that E ′ has to be
the trivial bundle, essentially by arguments about slope. The fact that E′ is trivial
automatically gives k = l, too.

The second part is topological, and consists in verifying that the two multisets
are the same. For each point z ∈

{
x1, . . . , xk, y1, . . . , yl

}
, the multiplicity with

which it occurs in either multiset is interpreted as the degree of a certain map, and
a topological argument, using special trivializations of the bundle E away from the
points, then shows the equality of these degrees.

3. Proof of the Theorem, Part 1

In this section, we shall show that E′ is the trivial bundle and that [A′] = [θ].
It will be proved below that our convergence assumptions imply the existence of
a nontrivial holomorphic bundle map h : E0 → E ′. Because both determinant line
bundles, we can then consider the dual map h∗ : E ′ → E0, which is also nonzero.

By the easy direction of Donaldson’s theorem, the ASD connection A′ is either
irreducible, in which case E ′ is a stable bundle (of slope zero), or reducible, and
then E ′ ' L ⊕L −1 with a line bundle L of slope zero.

The first case, that E ′ is stable, is actually impossible. To see this, compose h∗

with the map E0 → I ; the resulting map, from a stable bundle to a torsion-free
sheaf of the same slope, must be zero. Therefore, h∗ factors as E ′ → O → E0,
but for the same reason, the first map in this factorization has to be zero, and this
contradicts the fact that h∗ is nontrivial.

In the second case, we use the same reasoning. First, we get a map L ⊕L −1 →
I → O. If it is nonzero, then either L or its dual have a nontrivial global section,
which has to be constant since the slope of L is zero. But then L = O, hence
E ′ = O ⊕ O. If the map is zero, then we get a nontrivial map L ⊕ L −1 → O,
which again means that L and E ′ are trivial.
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Since, up to gauge equivalence under G, the only ASD connection on the trivial
bundle is the trivial one, we are done with this part of the argument.

Existence of a map h : E0 → E ′. We shall now demonstrate that there exists
a nontrivial holomorphic map h : E0 → E ′. The argument uses the convergence
assumptions made above, together with some elliptic estimates.

Let V be the open set X \
{
y1, . . . , yl

}
. By our assumption that the sequence

An = Atn
of ASD connections on the bundle E converge to A′ on the bundle E′,

there are (topological) bundle maps

rn : E′
∣∣∣
V
→ E

∣∣∣
V

such that A′n = r∗n(An) converges to A′ uniformly in C∞ on compact subsets of
V . Of course, each rn is a unitary isomorphism, since it is induced by a map of
principal SU(2)-bundles.

On the bundle E, the ASD connection An and the original connection Bn = Btn

define the same complex structure; thus there is a complex gauge transformation
gn ∈ Gc with gn(An) = Bn. We view gn as a bundle automorphism of E satisfying

∂̄An∗Bn
gn = 0.

We define hn : E
∣∣∣
V
→ E′

∣∣∣
V

by hn = r−1
n gn/‖gn‖L2 ; then

|gn| = |hn| · ‖gn‖2

because rn was unitary; hn also satisfies the equation

∂̄Bn∗A′nhn = 0.

The ellipticity of this equation will be used to find a limit h for this sequence.
Fix temporarily a compact subset K of V . For each value of n, the equation

∂̄Bn∗A′nhn = 0 is elliptic; thus the usual bootstrapping arguments give an estimate
for the L2

3-norm of hn by some quantity depending only on K, the connections Bn

and A′n, and the L2-norm of hn (all norms with respect to the bundle End(E)). If
we now allow n to vary, then Bn → B0 and A′n → A′ uniformly in C∞ on K; on the
other hand, the L2-norm of hn on K is bounded independently of n by construction.
We therefore obtain a uniform bound on the L2

3-norm of hn, independent of n.
The usual diagonalization argument therefore allows us to choose a subsequence

(which we continue to denote by hn) that converges weakly in L2
3 on compact

subsets to some limit h. But then h satisfies the elliptic equation

∂̄B0∗A′h = 0,

hence is a holomorphic bundle map from E0 to E ′ defined over V . By Hartog’s
theorem, h extends over the missing points to a global holomorphic bundle map.

Nontriviality of the map h. To complete the argument above, we have to show
that h 6= 0. This is done by estimating the L2-norm of hn, finding a fixed compact
subset K ⊂ V with ∫

K

|hn|2dµ ≥
1
2

for all n. Since hn → h strongly in L2 on K, this inequality is enough to ensure
h 6= 0.

The argument requires, first of all, the following Weitzenböck formula. The proof
is straightforward from the Kähler identities.
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Lemma. Let A be an arbitrary unitary (1,1)-connection on a bundle E over a
Kähler surface X, and denote by ∇A the covariant derivative, by ∂̄A the del-bar
operator corresponding to A, and by F̂A = ΛFA the Hermite-Einstein form of the
curvature. If ∗-superscripts denote adjoint operators, then

∂̄∗A∂̄A =
1
2
∇∗A∇A + iF̂A.

To get the necessary estimates, consider for a minute the following general sit-
uation. Let g be a complex gauge transformation of E, and A and B = g(A) two
connections in A(1,1). If we set

τ = tr(g∗g),

then the L2-norm of g, viewed as a holomorphic section of End(E), is simply the
integral of this function τ over X. If ∇ = ∇A∗B is the covariant derivative on
End(E), then

∆τ = tr
(
∇∗∇(g∗g)

)
= tr

(
(∇∗∇g∗)g + g∗(∇∗∇g)− 2(∇g∗) · (∇g)

)
≤ tr

(
(∇∗∇g∗)g + g∗(∇∗∇g)

)
Now use the Weitzenböck formula on the bundle End(E); for the holomorphic

section g, it reads

∇∗∇g = −2iF̂A∗B(g) = 2i
(
gF̂A − F̂Bg

)
,

and for the dual section g∗, it reads

∇∗∇g∗ = 2i
(
F̂Ag

∗ − g∗F̂B

)
.

Substitute into the formula above to obtain

∆τ ≤ 2i tr
(
F̂Ag

∗g − g∗F̂Bg − g∗F̂Bg + g∗gF̂A

)
.

Together with the definition of τ , this gives

∆τ ≤ 4τ ·
(
sup|F̂A|+ sup|F̂B |

)
.

If we apply this inequality to our case, using g = gn, A = An and B = Bn, then
F̂An

is zero (because An is ASD and has first Chern class zero), and F̂Bn
→ F̂B0 .

Thus the curvature terms are uniformly bounded, and we have

∆τn ≤ Cτn
for some constant C that is independent of n.

To conclude the argument, one applies the following lemma.

Lemma. If a non-negative function τ on X satisfies ∆τ ≤ Cτ , then there is a
constant C ′′, depending only on C and X, such that for any r-ball B(r) in X,∫

B(r)

τdµ ≤ C ′′r3
∫

X

τdµ.

Proof. Multiply the inequality ∆τ ≤ Cτ on both sides by τ and integrate to get∫
X

|∇τ |2dµ ≤ C
∫

X

τ2dµ.

With this estimate on the gradient of τ , the four-dimensional Sobolev inequality
shows that ∫

X

τ4dµ ≤ C ′
(∫

X

τ2dµ

)2
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for some constant C ′ depending onX and C. On the other hand, Hölder’s inequality
(with exponents 3 and 3/2) gives∫

X

τ2dµ ≤
(∫

X

τdµ

)2/3(∫
X

τ4dµ

)1/3

,

and when this is combined with the first inequality, we obtain∫
X

τ2dµ ≤ C ′
(∫

X

τdµ

)2

.

Finally, substitute this back into the first inequality to get∫
X

τ4dµ ≤ (C ′)3
(∫

X

τdµ

)4

.

Now if B(r) is any r-ball in X, then∫
B(r)

τdµ ≤
(∫

B(r)

τ4dµ

)1/4(∫
B(r)

1dµ
)3/4

≤ (C ′)3/4
(
volB(r)

)3/4
∫

X

τdµ.

Since volB(r) is O(r4), this gives the result. �

In our situation, we have a uniform estimate ∆τn ≤ Cτn; on each r-ball B(r),
we thus get ∫

B(r)

|gn|2dµ ≤ C ′′‖gn‖L2 .

from the lemma. This tells us that the contribution to the L2-norm of gn, and
hence of hn, from an r-ball around each point yi is O(r3), independently of n. We
can therefore select a compact set K ⊂ V such that∫

K

|hn|2dµ ≥
1
2

for all n, and because hn → h in L2 on K, the limit h cannot be zero.

4. Proof of the Theorem, Part 2

At this point, we know that the bundle E′ and the connection A′ are both trivial.
Because the second Chern class of the limit connection

(
[θ], (y1, . . . , yl)

)
is still k,

we get that l = k. It remains to show that the two multisets (x1, . . . , xk) and
(y1, . . . , yk) also agree. For this, an essentially topological argument will be used.

Consider the situation on the open set U = X \
{
x1, . . . , xk

}
. There, the section

s of the bundle E0 gives a trivial subbundle O ⊂ E0; by choosing a C∞-complement,
we find a trivialization of E0 over U .

In this trivialization, the del-bar operator ∂̄B0 may be written as

∂̄B0 = ∂̄ +
(
φ β
0 −φ

)
,

if ∂̄ + φ is the del-bar operator on the trivial subbundle. With respect to the same
trivialization, write ∂̄Bt

as

∂̄Bt
= ∂̄ +

(
φ+ ε1(t) β + ε2(t)
ε3(t) −(φ+ ε1(t))

)
;

as t→ 0, each εi(t)→ 0.
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To allow comparison with the connections At, we shall now find a complex gauge
transformation gt on X such that gt(Bt) converges to the trivial connection over
U . First, a complex gauge transformation on O allows us to eliminate φ. Then,
apply a transformation of the form(

λ(t) 0
0 λ(t)−1

)
,

under which ∂̄Bt
changes into

∂̄ +
(

ε1(t) λ(t)2(β + ε2(t))
λ(t)−2ε3(t) −ε1(t)

)
.

A choice of λ(t) = ‖ε3(t)‖1/4, for example, will have the desired effect. The reader
should note that this complex gauge transformation, which is a priori defined only
on the open set U , extends to all of X by Hartog’s theorem.

The situation can therefore be stated as follows. Firstly, there is a trivialization
τ of E on U = X \

{
x1, . . . , xk

}
, and connections B′n = B′tn

on E over X that
represent the holomorphic structures Etn

and converge to the product connection
on U . Secondly, because of the convergence of An, there is a trivialization σ of E
on V = X \

{
y1, . . . , yk

}
, such that the connections A′n (which represent the same

holomorphic structures Etn
) converge to the product connection in σ over V , and

|FA′n
|2 → 8π2

∑
j

δyj .

Let gn be the complex gauge transformation of E on X for which gn(B′n) = A′n.
On the intersection U ∩ V , we can represent gn by a matrix-valued function with
respect to the trivializations σ and τ . A convergence argument similar to the one
given above allows us to assume that gn → g. By Hartog’s theorem, the limit g
extends to a matrix-valued function on all of X, hence is constant. As before, g
can be shown to be nontrivial.

Now comes the topological part. Observe that the group GL(2,C) is homo-
topy equivalent to SU(2), and therefore to S3. Any map from a three-sphere into
GL(2,C) is therefore characterized by its degree, which is an integer. To each point
xi, we can thus associate the degree of the trivialization τ over a small three-sphere
around xi, relative to a fixed trivialization of E in a neighborhood of xi. This
degree is of course simply the multiplicity of the zero of s at xi.

To each yi, we can similarly associate the degree of σ over a small sphere, relative
to a fixed trivialization of E near yi. If this degree is, say, di, then by Chern-Weil
theory we have for any function f on X and any n that

1
8π2

∫
X

f trF 2
An

=
∑

i

dif(yi).

Now each An is an ASD connection, and so trF 2
An

= |FAn
|2dµ; the formula above

then becomes
1

8π2

∫
X

f |FAn |2dµ =
∑

i

dif(yi).

But now the left-hand side converges by assumption to
∑

i f(yi), and therefore di

is simplify the multiplicity of yi in the multiset (y1, . . . , yk).
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For each point z in
{
x1, . . . , xk, y1, . . . , yk

}
, the difference of the multiplicities

with which z occurs in the two multisets is thus the degree of gn over a small three-
sphere around z. But since we know that gn → g, we can use the following lemma
to conclude that this degree is zero, hence that the two multisets are the same.

Lemma 1. Let g be a non-zero 2×2 complex matrix, and let Nr be the intersection
of an r-ball around g with the open subset GL(2,C) of invertible matrices. Then
H3(Nr,Z) = 0 for small values of r, hence any map from S3 to Nr has degree zero.

Proof. Since g 6= 0, the hypersurface defined by the vanishing of det is smooth at
g; Nr is thus the complement of a smooth hypersurface inside a small ball, hence
homotopy-equivalent to an S1. �

Because of this lemma, each of the maps gn, for n sufficiently large, has degree
zero over a small sphere around z, and the same is therefore true for g.


