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LECTURE 6: SEPTEMBER 16

The Hodge structure on the endomorphism algebra. Our goal today is to
construct a Gr-invariant metric on the period domain D. Let us first finish up the
linear algebra construction from last time. Recall that

V= vre
ptg=n

is a Hodge structure of weight n, polarized by a hermitian pairing h: V ®@cV — C.
Let C € End(V') be the “Weil operator”, defined by the rule

C(v) =(—1)Pv for v e VP4,
Since h is a polarization, the expression
(W', v") = h(CV' 0"
defines a positive definite inner product on the vector space V; the Hodge decom-

position is orthogonal with respect to this inner product.
Last time, we showed that F = End(V') has a Hodge structure of weight 0 with

E“ ' ={A€End(V) | A(VP?) C VP forallpge Z }
and with Hodge filtration
FFE={A€End(V) | A(FPV) C FP™*V for all p € Z }.

In particular, FOFE is the subspace of those endomorphisms that preserve the Hodge
filtration on V. For A € E, we defined A* € E as the adjoint with respect to the
non-degenerate hermitian pairing h, and we noted that

Ep={AcEnd(V)| A=A"}
gives E a natural real structure. We had also started to prove the following lemma.
Lemma 6.1. The pairing
E®cE —C, (A, B)w— tr(ABY),
polarizes the Hodge structure on E.

Proof. Tt is easy to see that tr A* = tr A for every A € End(V'). Therefore

tr(BA*) = tr((AB*)*) = tr(AB"),

and so the pairing is hermitian symmetric. Last time, we already proved that the
Hodge decomposition is orthogonal with respect to the trace pairing. The point
was that if A € B4~ and B € E*~F, then AB* € E*~%*~is a nilpotent operator
when k # ¢, and so tr(AB*) = 0.

Finally, we need to explain why (—1)*tr(AA*) > 0 if A € E%~* is any nonzero
endomorphism. The point is that (—1)°A* is exactly the adjoint of A with respect
to the inner product on V. Indeed, for x € VP9 and y € VPT497¢ we have

(Az,y) = (1P h(Az,y) = (~1)"h(z, A'y) = (-1)"(z, A"y).

Consequently, the endomorphism (—1)¢A* A is self-adjoint with respect to the inner
product, and also positive definite, because

<(—1)€A*Ax,x> = (Az, Az) = ||Az|?.
This clearly implies that (—1)* tr(AA*) = (—1)*tr(A*A) > 0. I invite you to check,

with the help of an orthonormal basis, that this expression is exactly the operator
norm of A with respect to the inner product on V. O
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The conclusion is that if V' is a polarized Hodge structure, then E = End(V)
inherits a positive definite inner product, which is given by the simple formula

(4,B) = 3 (1) tr(A.B));
LET
here A, and By are the components of A and B in the subspace E%~¢. Of course,

the Hodge decomposition of F is orthogonal with respect to this inner product.

Brief review of homogeneous spaces. Let X be a complex manifold, acted on
by a real Lie group G, in such a way that for every g € G, the diffeomorphism
g: X — X is a biholomorphism. The action of Gg on the period domain D is an
example of this type. Suppose that the action is transitive; then for every point
x € X, we get an isomorphism of smooth manifolds

G/H, = X,

where H, C G is the stabilizer of the point x. If g denotes the Lie algebra of G,
and h, C g the Lie algebra of the subgroup H, C G, then

g/b. =T, X

as R-vector spaces; in particular, the quotient on the left has the structure of a
complex vector space. Denote by Ad(g) € End(g) the adjoint action of an element
g € G on the Lie algebra; in the case of GL(V), we have Ad(g)A = gAg~!. Since
Hg, = gH,g™ ", the Lie algebras of the stabilizers are related by by, = Ad(g)b..

Ezample 6.2. Suppose that G is a matrix group, and ¢: [0,1] — G is a smooth
curve. Fix a point x € X, and consider the function

[0 —X, f@)=9() -z,
I claim that under the isomorphism
g/bg(to)r = Tg(tg)xX7
the tangent vector f*%‘t:to € Ty(1)X is the image of

dg 4
Eg |t:t0 €g

To understand why this should be the case, write
Ft) = g(t)g(to) " - g(to).

Now the curve g(t)g(to) ™" goes through the identity element of G for ¢t = to, and
o its derivative at that point is an element of g.

For every x € X and every g € GG, we have an induced isomorphism
Gt Tp X = Ty X
on holomorphic tangent spaces. It is not hard to see that the diagram

o/be ~2% g/ Ad(g)b,

koL

TeX —2— Tpo X
is commutative. This observation implies that
G x (9/hs) = TX, (9,A+bs) = (92, Ad(9)A + bge),
is surjective, and hence that the tangent bundle of X satisfies
TX = (G % (9/bz))/ Ha,
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where H, acts on the product by the rule
(9. A+bs) -h=(gh, Ad(h™")A + ).

We say that a hermitian metric A on the complex manifold X is G-invariant if, for
every pair of tangent vectors £, € T, X, one has

hz(§7n)== hgm(g*fyg*n)

for all group elements g € G. Using the above description of the tangent bundle,
we see that a G-invariant hermitian metric on X is the same thing as a hermitian
inner product on the (complex) vector space g/b, that is invariant under the adjoint
action of the stabilizer H,.

Period domains and their tangent spaces. We return to the study of period
domains. Fix a complex vector space V and a hermitian pairing h: V ®c V — C.
Also fix a reference Hodge structure

V= vre
ptg=n

of weight n that is polarized by h. To keep the notation consistent, let us denote the
resulting Hodge filtration by F,, and the corresponding point in the period domain
by o € D; this will be our reference point. We also use the notation

<x,y>o= Z (_1)ph(xp,q7yp,q)
ptq=n

for the resulting positive definite inner product on V. For clarity, we may denote
the Hodge filtration corresponding to a point z € D by the symbol F,, the Hodge
decomposition by VP4, etc.

Recall from last time that the homogeneous space

D=GL(V)/B

parametrizes all filtrations F' with the property that dim F? = dim F? for every
p € Z. By construction, D is a closed submanifold of a product of Grassmannians,
and therefore a compact complex manifold. Here

B=B,={geGL(V)|gF,=F,}

is the stabilizer of the reference Hodge filtration F,. The period domain D C D is
the open subset of those filtrations that correspond to Hodge structures of weight
n polarized by h. We also observed that

D =Gr/H
is a homogeneous space for the real Lie group
Gr = {g € GL(V) ‘ h(gx,gy) = h(x,y) for all x,y € V },

which is one of the many different real forms of GL(V'). Since Gy is a subgroup of
GL(V), it acts on D via biholomorphisms. We showed last time that the subgroup
H = H, = Gg N B, is compact. In fact, D is also a homogeneous space for a real
Lie group, namely the unitary group

U=U(V,()o) ={g€GL(V) | {92, 9y)0 = (x,y)o for all z,y € V' },
which is the unique compact real form of GL(V).

Lemma 6.3. We have D 2 U/H.
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Proof. Tt is easy to see that the action of U on D is transitive: choose an orthonor-
mal basis of V adapted to the filtration Fy, and another orthonormal basis adapted
to the filtration F', and consider the linear transformation that takes one to the
other. I will leave it as an exercise to check that

UNnB=GrNB,
which means that the stabilizer of Fj is the same subgroup H. O

The Lie algebra of GL(V) is of course End(V'), and as we discussed above, the
holomorphic tangent space at an arbitrary point z € D is therefore

T.D = T.D = End(V)/F? End(V) = @ End(V).™,
<1

where the subscript z means that we give End(V') the Hodge structure of weight 0
that comes from the Hodge structure on V corresponding to the point z € D. This
Hodge structure is polarized by the trace pairing, and so it has a positive definite
inner product ().. Its restriction to the subspace

D End(v)e*
<—-1

therefore induces, via the above isomorphism, a positive definite inner product
on the holomorphic tangent space T,D. It is not hard to see that the Hodge
decomposition, and therefore also the inner product, depend real-analytically on
the point z € D.

Proposition 6.4. The resulting hermitian metric hp on D is Gr-invariant.
Proof. For any g € Gg and any z € D, we have
End(V)f;’;E =g- End(V)ﬁ’J gL

For A, B € End(V)%~¢, we thus have

(9Ag~".gBg™") . = (—1)”1‘(9149‘1(939‘1)*) = (—1)”1"(9149‘193*9‘1)

= (1) tx(AB*) = (4, B).,

because g* = g~ for elements g € Gg. This is enough to conclude that the metric
hp is Gr-invariant. O

Similarly, we can construct a U-invariant hermitian metric on D.

Proposition 6.5. The compact dual D has a U-invariant hermitian metric hp.

Proof. As explained above, the holomorphic tangent bundle of D = U /H is iso-
morphic to the quotient

(U X TFOD)/H,

where H acts on Tr, D = End(V)/F°End(V) by conjugation. The inner product
on T FOD that we constructed above is invariant under the group U; this follows
from the fact that the inner product on End(V) is induced by the inner product
()o on V, which is by definition invariant under U. Since H is a subgroup of U, we
obtain a U-invariant hermitian metric on the complex manifold D. O

Ezercise 6.1. Check that the inner product on End(V'), which is given by
(4,B) = (—1)" tr(AB")
for A, B € End(V)%~*, is invariant under conjugation by the unitary group U.
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Ezercise 6.2. In Example 5.4, we found that the unit disk is an example of a period
domain, with compact dual P'. What are the hermitian metrics on D and D in
this case?

Example 6.6. Consider Hodge structures of the form H'° @ H%! on C"*! that are
polarized by the pairing

ha + o anal = T
and satisfy dim H"% = 1. Clearly, the compact dual is P" in this case. Describe
the period domain D and the hermitian metric hp explicitly.

Poincaré metrics. Suppose that M is a one-dimensional complex manifold with
a hermitian metric hy;. Pick a local coordinate z, and consider the smooth function
h=ha (£, 2). The expression
K=——-——logh
Z

is called the sectional curvature of the hermitian metric.

Ezample 6.7. On the unit disk A = {t € C | |t| < 1}, the Poincaré metric

(2 9y_ 2
A\atat) — 1—[t2)?

has constant sectional curvature —1. Indeed,

0 0 2t
1 =—2—1log(l—|t|?) =
a7 log g7 los(1 = [t]") = 1= rEk
and therefore
9 0 2(1 — [t]?) + 2[t]2 2
e T a—pe ="

This shows that K = —1.

Ezample 6.8. The half space H = {2 € C | Rez < 0} is of course isomorphic to
the unit disk, for example via the function

z+1

z—1

The induced hermitian metric on H is also called the Poincaré metric; you can
check that it is given by the formula

o (9 9y _ _1
B\02702)  2(Rez)?’

Of course, the sectional curvature is still —1 everywhere.

H— A, z—

Ezample 6.9. The exponential function exp: H — A* realizes the half space as
the universal covering space of the punctured disk A* = {t eC ‘ 0< |t <1 }
The group of deck transformations is Z(1) = 2mi - Z C C, which acts on H by
translations. The Poincaré metric on H is invariant under these translations, and
therefore descends to a hermitian metric on A*. Again, you should verify that

o (2 90y 1
A \ot’ at) — 2tP(loglt)?

This metric is also called the Poincaré metric.
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