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Lecture 6: September 16

The Hodge structure on the endomorphism algebra. Our goal today is to
construct a GR-invariant metric on the period domain D. Let us first finish up the
linear algebra construction from last time. Recall that

V =
⊕

p+q=n

V p,q

is a Hodge structure of weight n, polarized by a hermitian pairing h : V ⊗C V → C.
Let C ∈ End(V ) be the “Weil operator”, defined by the rule

C(v) = (−1)pv for v ∈ V p,q.
Since h is a polarization, the expression

〈v′, v′′〉 = h(Cv′, v′′)

defines a positive definite inner product on the vector space V ; the Hodge decom-
position is orthogonal with respect to this inner product.

Last time, we showed that E = End(V ) has a Hodge structure of weight 0 with

E`,−` =
{
A ∈ End(V )

∣∣ A(V p,q) ⊆ V p+`,q−` for all p, q ∈ Z
}

and with Hodge filtration

F kE =
{
A ∈ End(V )

∣∣ A(F pV ) ⊆ F p+kV for all p ∈ Z
}
.

In particular, F 0E is the subspace of those endomorphisms that preserve the Hodge
filtration on V . For A ∈ E, we defined A∗ ∈ E as the adjoint with respect to the
non-degenerate hermitian pairing h, and we noted that

ER =
{
A ∈ End(V )

∣∣ A = A∗
}

gives E a natural real structure. We had also started to prove the following lemma.

Lemma 6.1. The pairing

E ⊗C E → C, (A,B) 7→ tr(AB∗),

polarizes the Hodge structure on E.

Proof. It is easy to see that trA∗ = trA for every A ∈ End(V ). Therefore

tr(BA∗) = tr
(
(AB∗)∗

)
= tr(AB∗),

and so the pairing is hermitian symmetric. Last time, we already proved that the
Hodge decomposition is orthogonal with respect to the trace pairing. The point
was that if A ∈ E`,−` and B ∈ Ek,−k, then AB∗ ∈ E`−k,k−` is a nilpotent operator
when k 6= `, and so tr(AB∗) = 0.

Finally, we need to explain why (−1)` tr(AA∗) > 0 if A ∈ E`,−` is any nonzero
endomorphism. The point is that (−1)`A∗ is exactly the adjoint of A with respect
to the inner product on V . Indeed, for x ∈ V p,q and y ∈ V p+`,q−`, we have

〈Ax, y〉 = (−1)p+`h(Ax, y) = (−1)p+`h(x,A∗y) = (−1)`〈x,A∗y〉.
Consequently, the endomorphism (−1)`A∗A is self-adjoint with respect to the inner
product, and also positive definite, because

〈
(−1)`A∗Ax, x

〉
= 〈Ax,Ax〉 = ‖Ax‖2.

This clearly implies that (−1)` tr(AA∗) = (−1)` tr(A∗A) > 0. I invite you to check,
with the help of an orthonormal basis, that this expression is exactly the operator
norm of A with respect to the inner product on V . �
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The conclusion is that if V is a polarized Hodge structure, then E = End(V )
inherits a positive definite inner product, which is given by the simple formula

〈A,B〉 =
∑

`∈Z
(−1)` tr(A`B

∗
` );

here A` and B` are the components of A and B in the subspace E`,−`. Of course,
the Hodge decomposition of E is orthogonal with respect to this inner product.

Brief review of homogeneous spaces. Let X be a complex manifold, acted on
by a real Lie group G, in such a way that for every g ∈ G, the diffeomorphism
g : X → X is a biholomorphism. The action of GR on the period domain D is an
example of this type. Suppose that the action is transitive; then for every point
x ∈ X, we get an isomorphism of smooth manifolds

G/Hx
∼= X,

where Hx ⊆ G is the stabilizer of the point x. If g denotes the Lie algebra of G,
and hx ⊆ g the Lie algebra of the subgroup Hx ⊆ G, then

g/hx ∼= TxX

as R-vector spaces; in particular, the quotient on the left has the structure of a
complex vector space. Denote by Ad(g) ∈ End(g) the adjoint action of an element
g ∈ G on the Lie algebra; in the case of GL(V ), we have Ad(g)A = gAg−1. Since
Hgx = gHxg

−1, the Lie algebras of the stabilizers are related by hgx = Ad(g)hx.

Example 6.2. Suppose that G is a matrix group, and g : [0, 1] → G is a smooth
curve. Fix a point x ∈ X, and consider the function

f : [0, 1]→ X, f(t) = g(t) · x,
I claim that under the isomorphism

g/hg(t0)x
∼= Tg(t0)xX,

the tangent vector f∗ ddt
∣∣
t=t0
∈ Tg(t0)X is the image of

dg

dt
g−1

∣∣
t=t0
∈ g.

To understand why this should be the case, write

f(t) = g(t)g(t0)−1 · g(t0)x.

Now the curve g(t)g(t0)−1 goes through the identity element of G for t = t0, and
so its derivative at that point is an element of g.

For every x ∈ X and every g ∈ G, we have an induced isomorphism

g∗ : TxX → TgxX

on holomorphic tangent spaces. It is not hard to see that the diagram

g/hx g/Ad(g)hx

TxX TgxX

∼=

Ad(g)

∼=
g∗

is commutative. This observation implies that

G× (g/hx)→ TX,
(
g,A+ hx

)
7→
(
gx,Ad(g)A+ hgx

)
,

is surjective, and hence that the tangent bundle of X satisfies

TX ∼=
(
G× (g/hx)

)
/Hx,
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where Hx acts on the product by the rule
(
g,A+ hx

)
· h =

(
gh,Ad(h−1)A+ hx

)
.

We say that a hermitian metric h on the complex manifold X is G-invariant if, for
every pair of tangent vectors ξ, η ∈ TxX, one has

hx(ξ, η) = hgx
(
g∗ξ, g∗η

)

for all group elements g ∈ G. Using the above description of the tangent bundle,
we see that a G-invariant hermitian metric on X is the same thing as a hermitian
inner product on the (complex) vector space g/hx that is invariant under the adjoint
action of the stabilizer Hx.

Period domains and their tangent spaces. We return to the study of period
domains. Fix a complex vector space V and a hermitian pairing h : V ⊗C V → C.
Also fix a reference Hodge structure

V =
⊕

p+q=n

V p,qo

of weight n that is polarized by h. To keep the notation consistent, let us denote the
resulting Hodge filtration by Fo, and the corresponding point in the period domain
by o ∈ D; this will be our reference point. We also use the notation

〈x, y〉o =
∑

p+q=n

(−1)ph(xp,q, yp,q)

for the resulting positive definite inner product on V . For clarity, we may denote
the Hodge filtration corresponding to a point z ∈ D by the symbol Fz, the Hodge
decomposition by V p,qz , etc.

Recall from last time that the homogeneous space

Ď ∼= GL(V )/B

parametrizes all filtrations F with the property that dimF p = dimF po for every
p ∈ Z. By construction, Ď is a closed submanifold of a product of Grassmannians,
and therefore a compact complex manifold. Here

B = Bo =
{
g ∈ GL(V )

∣∣ gFo = Fo
}

is the stabilizer of the reference Hodge filtration Fo. The period domain D ⊆ Ď is
the open subset of those filtrations that correspond to Hodge structures of weight
n polarized by h. We also observed that

D = GR/H

is a homogeneous space for the real Lie group

GR =
{
g ∈ GL(V )

∣∣ h(gx, gy) = h(x, y) for all x, y ∈ V
}
,

which is one of the many different real forms of GL(V ). Since GR is a subgroup of
GL(V ), it acts on D via biholomorphisms. We showed last time that the subgroup
H = Ho = GR ∩ Bo is compact. In fact, Ď is also a homogeneous space for a real
Lie group, namely the unitary group

U = U
(
V, 〈 〉o

)
=
{
g ∈ GL(V )

∣∣ 〈gx, gy〉o = 〈x, y〉o for all x, y ∈ V
}
,

which is the unique compact real form of GL(V ).

Lemma 6.3. We have Ď ∼= U/H.



34

Proof. It is easy to see that the action of U on Ď is transitive: choose an orthonor-
mal basis of V adapted to the filtration F0, and another orthonormal basis adapted
to the filtration F , and consider the linear transformation that takes one to the
other. I will leave it as an exercise to check that

U ∩B = GR ∩B,
which means that the stabilizer of F0 is the same subgroup H. �

The Lie algebra of GL(V ) is of course End(V ), and as we discussed above, the
holomorphic tangent space at an arbitrary point z ∈ D is therefore

TzD = TzĎ ∼= End(V )/F 0
z End(V ) ∼=

⊕

`≤−1

End(V )`,−`z ,

where the subscript z means that we give End(V ) the Hodge structure of weight 0
that comes from the Hodge structure on V corresponding to the point z ∈ D. This
Hodge structure is polarized by the trace pairing, and so it has a positive definite
inner product 〈 〉z. Its restriction to the subspace

⊕

`≤−1

End(V )`,−`z

therefore induces, via the above isomorphism, a positive definite inner product
on the holomorphic tangent space TzD. It is not hard to see that the Hodge
decomposition, and therefore also the inner product, depend real-analytically on
the point z ∈ D.

Proposition 6.4. The resulting hermitian metric hD on D is GR-invariant.

Proof. For any g ∈ GR and any z ∈ D, we have

End(V )`,−`gz = g · End(V )`,−`z · g−1.

For A,B ∈ End(V )`,−`z , we thus have

〈
gAg−1, gBg−1

〉
gz

= (−1)` tr
(
gAg−1(gBg−1)∗

)
= (−1)` tr

(
gAg−1gB∗g−1

)

= (−1)` tr(AB∗) = 〈A,B〉z,
because g∗ = g−1 for elements g ∈ GR. This is enough to conclude that the metric
hD is GR-invariant. �

Similarly, we can construct a U -invariant hermitian metric on Ď.

Proposition 6.5. The compact dual Ď has a U -invariant hermitian metric hĎ.

Proof. As explained above, the holomorphic tangent bundle of Ď ∼= U/H is iso-
morphic to the quotient

(U × TF0
Ď)/H,

where H acts on TF0Ď
∼= End(V )/F 0 End(V ) by conjugation. The inner product

on TF0
Ď that we constructed above is invariant under the group U ; this follows

from the fact that the inner product on End(V ) is induced by the inner product
〈 〉0 on V , which is by definition invariant under U . Since H is a subgroup of U , we
obtain a U -invariant hermitian metric on the complex manifold Ď. �

Exercise 6.1. Check that the inner product on End(V ), which is given by

〈A,B〉 = (−1)` tr(AB∗)

for A,B ∈ End(V )`,−`, is invariant under conjugation by the unitary group U .
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Exercise 6.2. In Example 5.4, we found that the unit disk is an example of a period
domain, with compact dual P1. What are the hermitian metrics on D and Ď in
this case?

Example 6.6. Consider Hodge structures of the form H1,0⊕H0,1 on Cn+1 that are
polarized by the pairing

x′1x
′′
1 + · · ·+ x′nx

′′
n − x′n+1x

′′
n+1

and satisfy dimH1,0 = 1. Clearly, the compact dual is Pn in this case. Describe
the period domain D and the hermitian metric hD explicitly.

Poincaré metrics. Suppose that M is a one-dimensional complex manifold with
a hermitian metric hM . Pick a local coordinate z, and consider the smooth function
h = hM

(
∂
∂z ,

∂
∂z

)
. The expression

K = − 1

h
· ∂
∂z

∂

∂z̄
log h

is called the sectional curvature of the hermitian metric.

Example 6.7. On the unit disk ∆ =
{
t ∈ C

∣∣ |t| < 1
}

, the Poincaré metric

h∆

(
∂

∂t
,
∂

∂t

)
=

2

(1− |t|2)2

has constant sectional curvature −1. Indeed,

∂

∂t̄
log h = −2

∂

∂t̄
log(1− |t|2) =

2t

1− |t|2 ,

and therefore

∂

∂t

∂

∂t̄
log h =

2(1− |t|2) + 2|t|2
(1− |t|2)2

=
2

(1− |t|2)2
= h.

This shows that K ≡ −1.

Example 6.8. The half space H̃ =
{
z ∈ C

∣∣ Re z < 0
}

is of course isomorphic to
the unit disk, for example via the function

H̃→ ∆, z 7→ z + 1

z − 1
.

The induced hermitian metric on H̃ is also called the Poincaré metric; you can
check that it is given by the formula

hH̃

(
∂

∂z
,
∂

∂z

)
=

1

2(Re z)2
.

Of course, the sectional curvature is still −1 everywhere.

Example 6.9. The exponential function exp: H̃ → ∆∗ realizes the half space as
the universal covering space of the punctured disk ∆∗ =

{
t ∈ C

∣∣ 0 < |t| < 1
}

.

The group of deck transformations is Z(1) = 2πi · Z ⊆ C, which acts on H̃ by

translations. The Poincaré metric on H̃ is invariant under these translations, and
therefore descends to a hermitian metric on ∆∗. Again, you should verify that

h∆∗

(
∂

∂t
,
∂

∂t

)
=

1

2|t|2(log|t|)2
.

This metric is also called the Poincaré metric.
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