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 Introduction

 In an unpublished manuscript on Hodge theory [7], Deligne has proved

 a Hodge decomposition theorem for twisted coefficient systems like those

 arising in algebraic geometry. Specifically, given a non-singular projective

 variety 3 over C (or more generally, a compact Kihler manifold), and a

 locally constant system V of complex vector spaces on S which underlies a

 polarizable variation of Hodge structure of weight m, Deligne constructed

 polarizable Hodge structures of weight m + i on Ht(S, V) naturally

 associated to the variation of Hodge structure. In the case V= C (with

 the trivial variation of Hodge structure of weight zero), the construction

 reduces to classical Hodge theory; at the other extreme where S is a point,
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 416 STEVEN ZUCKER

 it recovers on H0(S, V) the Hodge structure on V.

 In practice, V is a system Rmf*C of cohomology along the fibers for

 some smooth family of projective varieties (more generally, compact Kaihler

 manifolds) f: X -3 S. In this case, the Hodge structures constructed for all
 i and m are compatible with the Leray spectral sequence for f, so we may

 view the construction of Deligne as giving the "right" Hodge structures

 for H*(S, V).

 However, a family of projective varieties over a complete base generally

 has some singular fibers. Assuming that the generic fiber is non-singular,

 there is a Zariski-open subset S c S over which flI-l(s) = f: X -+> S is smooth;

 the family is said to degenerate on the complement of S in S. For most

 applications, one would need a generalization of Deligne's construction to

 degenerating families. It is the purpose of this paper to provide such a

 generalization when S is a curve, and to give applications of the result.

 (The hope of allowing S to be higher dimensional will always be at the back

 of our minds.) We prove (7.12) (also (11.6)):

 THEOREM. Let S be a non-singular algebraic curve over C, S its smooth

 completion, j: S,=dS, and V a locally constant system of complex vector
 spaces on S underlying a polarizable variation of Hodge structure of weight

 m. Then there is a natural polarizable Hodge structure of weight m + i

 on H'(S, j* V) associated to the variation of Hodge structure.

 When V = Rmf*C, j* V is the sheaf of local invariant "cycles". The
 Hodge structure above is then most interesting when i = 1. A Hodge

 structure can always be placed extrinsically on H'(S, j*Rmf*C) via the

 Leray spectral sequence for / (cf. [23, ? 3]). We eventually show that the
 Hodge structure constructed in (7.12) agrees with this other Hodge struc-

 ture. It was the lack of an intrinsic definition that created most of the

 technical difficulties in [23]. In fact, as a consequence of (7.12), we obtain

 a direct proof of the optimal form of the theorem on normal functions (9.2)

 (cf. [23, (3.7)]), which relates sections of the associated family of intermediate

 Jacobians to integral cohomology classes on X of type (p, p).

 The proof of the main result depends on establishing the machinery of

 de Rham cohomology, in both the holomorphic and L2 (replacing C~o) senses,

 for degenerating variations of Hodge structure. We then show that cohomo-

 logy classes are uniquely representable by harmonic forms (the Hodge
 theorem), and that these forms decompose according to bi-degree (Hodge

 decomposition).

 In Sections 1 and 2, we review Deligne's construction for the non-
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 HODGE THEORY 417

 degenerate case. There are two good reasons for doing this. First, his ideas

 are carried over to the degenerate case, and we introduce them without the

 complication of degenerating coefficients. Secondly, his Kahler identities

 are local results that we will later use. The key point in Section 1 is to use

 the infinitesimal period relation (horizontality) to define the Hodge filtration

 on the complex Qs( V) resolving V. This filtration induces on cohomology

 the Hodge structure in question. In Section 2, the Kiihler identities for the

 Laplacians associated to the exterior derivative on V-valued forms are

 deduced from the classical ones.

 The construction of the Hodge theory for Hi(S, jB V) takes place in

 Sections 3-7. The main theme is to use differential forms that are square-

 summable with respect to a suitably chosen Kiihler metric on S, to compute

 cohomology groups on S. The metric is asymptotic to the Poincare metric

 of the punctured disc near the points of S - S. The Hodge theorem for this

 setting, then, really concerns L2 cohomology on the non-compact manifold

 S, where standard theory does not apply. We are forced to work on S,

 since we wish to use Deligne's Kihler identities, and the "Hodge metric"

 on V (from a polarization of the variation of Hodge structure) has singu-

 larities where V degenerates, as described in [17]. However, we use the

 presence of the compactification S to circumvent this difficulty.

 Degenerating coefficients (by which we mean j*, V, with its degenerating

 variation of Hodge structure) are introduced in Section 3. In Section 4, we

 prove a holomorphic Poincare Lemma, giving a resolution of ji V which

 restricts to the usual resolution V-< Q;( V) on S. The extension is describ-
 able in two ways: either in terms of the weight filtrations of the local

 monodromy transformations, or, more significantly, as the germs of

 holomorphic V-valued forms which are square-summable near the punctures.

 For the latter reason, we call this complex Q%(V)(2). In Section 5, the L2

 condition is forced through the Hodge filtration of Section 1 to filter the

 above complex. Then in Section 6, the relevant L2 Poincare and Dolbeault

 Lemmas for this setting are proved, to provide complexes of weakly differen-

 tiable forms that compute the hypercohomology of Q ( V)(2,) and its successive
 quotients under the Hodge filtration. In then turns out to be a relatively

 simple matter to see that harmonic forms represent cohomology and

 decompose according to type (S 7). It should be remarked here that the
 choice of metric for S (up to equivalence) is dictated by the numerous

 properties we wish it to have. Statement (6.1) is very significant, asserting

 that the "linear part" of the differentiation on Q (V) is a bounded operator

 in L2 norm.
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 418 STEVEN ZUCKER

 In Section 8, we describe functorial properties of the Hodge structure

 we have constructed. As a blanket statement, all of the reasonable asser-

 tions that one might make are true. The simplest of these gives another

 way to prove that the globally invariant part of V is a constant Hodge
 sub-structure.

 Section 9 is devoted to a proof of the theorem on normal functions (cf.

 [23]) for general mappings, which was for me the main motivation for Hodge

 theory with degenerating coefficients. Given

 X y

 flj _ I
 So >

 there is a diagram:

 Horizontal sections of the

 family of p-th intermediate

 Jacobians JP over S

 Codimension p relative cycles Z Horizontal normal functions

 on X with Z.X. homologically =horizontal sections of the

 equivalent to zero on X, - -f-(s) family of p-th generalized
 for all s C s intermediate Jacobians Jil over S

 Cycle class cohomology 1K ~~~~~ ~~~~class
 ker{H2,,(X, C) , H"(S, R?2)f'C)} , H'(S, I?'`-'f C)

 from Leray spectral

 sequence

 H V(Sj,, I?-P C)

 On the subset of cycles for which the Abel-Jacobi mapping extends to S, so

 that v is defined, the square commutes. The theorem on normal functions
 asserts that the image of I: is the set of integral (p, p) classes. Later (15.3),
 we show that a is a morphism of Hodge structures. We are then perhaps

 a step closer to the Hodge Conjecture that (im C) (? Q is the set of rational
 (p, p) classes in H2v(X, C).

 We continue with other applications of (7.12). In Section 10, we prove

 miscellaneous consequences of the Hodge theory. In Section 12, we give an

 interesting application of the theory: to provide an interpretation of the
 Hodge structures of Shimura [18]. If F is a Fuchsian subgroup of the first
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 HODGE THEORY 419

 kind in G = SL (2, R), and Vm is the mth symmetric power of the standard

 representation of G, then the parabolic cohomology H1(r, Vm) acquires a

 decomposition Q (D Q, where Q is a space of Vmvalued automorphic forms.
 Letting S be the quotient of the upper half-plane by r, we see that S is an

 algebraic curve. Building a variation of Hodge structure on S from Vm,

 we show that Q is the (m + 1, 0) component of the Hodge theory with

 degenerating coefficients. Q is then, of course, the (0, m + 1) component,

 and the intermediate terms vanish.

 We move on to mixed Hodge theory in Sections 13, 14. While there is

 something for every S between S and S, we will consider now only S = S.

 There are functorial mixed Hodge structures on Hi(S, V) (respectively

 Hi(S, V), the cohomology with compact supports) with Hi(S, ji V) as the

 Hodge structure for the lowest (respectively highest) non-zero weight

 quotient. The most interesting case is again i = 1, V = Rmf*C.

 In the last section of the paper, Section 15, we show, for V- Rmf*C,

 the compatibility of the Hodge theory of H*(S, j* V) with that of H*(X, C).
 By this, we mean that certain homomorphisms of cohomology associated to

 the Leray spectral sequence for f are morphisms of Hodge structures; for

 a precise statement, see (15.16). The proof begins with the compatibility of

 the mixed Hodge structures for H*(S, V) and H*(X, C) (15.4), and it uses

 recent results of Steenbrink [19], [20] and Clemens [4] on mixed Hodge
 theory.

 I am indebted to Pierre Deligne for many helpful suggestions, which

 both extended the scope of this paper and simplified some of the proofs.

 Specifically, the ideas for Sections 11, 12 and 14 fall into the first category,

 and the abandonment of CO forms in Sections 6 and 7 the second. The idea

 for this paper began with a conversation with Deligne over the content of

 [7], in which he shared with me his belief that a Hodge theory with
 degenerating coefficients should exist, and that it might come from some L2

 cohomology on the noncompact curve. His optimism stemmed from a formal

 comparison with etale cohomology. Throughout this work, I have been

 guided by the desire to explain the following more earthly phenomenon.

 Since the methods are blind to the actual degeneration of V, assume V C,

 but take S = S. The harmonic forms are generated by constants in degree

 0, holomorphic differentials and their conjugates in degree 1, and the Kahler

 class in degree 2. One checks the L2 condition to see that 1 ? L2 (S has finite

 area) and that any L2 holomorphic differential on S actually has removable

 singularities, i.e., extends holomorphically to 3. Thus, we see the usual
 Hodge decomposition of H*(S, C) arising in a different way.
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 420 STEVEN ZUCKER

 I would also like to thank William Sweeney for several discussions

 concerning differential operators, relevant in Section 7, which also led to

 an earlier proof of the Hodge theorem for j* V.

 I am grateful to the referee for pointing out the need for corrections

 in the original manuscript, and for suggesting simplifications, clarifications

 and improvements. The results in this paper have been announced in [24].

 Notations and conventions

 An attempt has been made to use the same notation as appears in the

 literature, especially in [8], [9], [17] and [23], whenever feasible.

 Complex projective varieties are viewed solely as analytic varieties,

 and thus all coherent sheaves are in the analytic sense.

 A holomorphic (or anti-holomorphic, or Co) bundle will not be distin-

 guished from its locally-free analytic (respectively anti-holomorphic, respec-

 tively Cal) sheaf of germs of sections. If 10 is a holomorphic (or anti-) bundle,

 &(0) will denote the underlying C~o bundle.

 0 and QP are used to denote Q, and QP.
 The letters C and K are used in Sections 6, 11 to represent unspecified

 constants which appear in the norm estimates.

 The temptation to shift the weight of a Hodge structure so as to make

 HPq a= 0 whenever p < 0 or q < 0 has been resisted, with the one exception

 of Section 10a.

 In defining finite filtrations (e.g., on complexes of sheaves) indexed by

 Z, we will omit mentioning the infinitely many sub-complexes which are zero
 or everything.

 1. Gauss-Manin and the Hodge filtration

 Let f: X -> S be a smooth family of complex projective varieties over

 the non-singular quasi-projective variety S. Let V denote a local system

 Rmf*C of cohomology along the fibers, and TD = Os ?c V the corresponding

 cohomology bundle over S. aD carries a natural flat holomorphic connection

 V = a (g1 (Gauss-Manin), from which we obtain a complex Q( V) =Qs (?c V =
 Q?($ Oes. On O, there is the decreasing filtration {jP} of Hodge filtration
 sub-bundles. The filtration is not preserved under Gauss-Manin, but instead,

 there is the so-called infinitesimal period relation

 (1.1) VP C Q, X TP-1

 (where we have begun to suppress the S: Q' = Q). Letting 'SP denote the
 successive quotient bundles PIP/YPA, we note that the induced mapping
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 HODGE THEORY 421

 is 0-linear. Gauss-Manin is easily extended to an operator D on &d(V)

 rs' ?), V, the Coo differential forms with values in V, by taking D = d (01,
 so that for a (local) CO r-form s and holomorphic section v of 9U,

 D(o ( v) = do5 ?v + (-l)r A Vv.
 It follows, then, from (1.1) that

 (1.2) DLt'8(STp) C &r+ls(Tpl) ? Ars+l(f P)

 where r is the sheaf of Coo forms on S of type (r, s).

 If we pass to the underlying CO bundles, which we will denote by &(Z),
 etc., &(t9) splits according to the Hodge decomposition as

 (1.3) &(M) Ek XCkm-k
 with

 C(Cf) -DkP p XCk,--k
 and hence

 6(7 J) f p r-p

 The C' bundles Xpq satisfy cJPq =X~q' and admit the useful description

 (1.4) X = L(jfP) n (jq) ,

 where :Tq is the conjugate bundle to Jyq and &(ffq) is the underlying C-
 sub-bundle of 6(t).

 Returning to the discussion of Gauss-Manin, if we view everything

 from the complex conjugate viewpoint, we obtain the analogues of (1.1)

 and (1.2), namely

 (1.5) V:fq c K1 X fq-

 (1.6) D~ '8({fq) C 6rs+l( q-l) ? ( tr~ls({fq)

 and combining this with (1.2), we obtain

 (1.7) D6X7'8(PIF n Sfq) C r+l,?8(P-l n fq) ? cr,8l(jP n q-1)
 or

 (1.8) D&~ _(}C &)C6r+lsX(vn}pq (DJCV-I,q+l ) (D &r,s+l (,q (] JXp+l,q-1)

 In other words, under the Hodge decomposition, the Gauss-Manin operator

 splits into four components:

 (1.9) (i) a': ir8(JPVq) , &r+ls(Jpq)

 (ii) at: ?rs(J7Cpq) > &rs+l(X7fCPq)

 (iii) V': Fr( 8PC pq) > )r+,s+(Xp-1, q1)

 (iv) IV? C gr 8 (X7p,q) >6 FrJs+1(JCp+1,q-1)
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 422 STEVEN ZUCKER

 The following is an immediate consequence of the definitions:

 (1.10) LEMMA. The following diagrams commute:

 6rS(X7p7q) ' rs+l(pq)

 6rs( P) 5rs+l(? 'P)

 rs(w5pq) V 6r+1s(cp-,q+I)

 &r, s p) 1 A V &>r+l,s( p-1

 (1.11) COROLLARY. V' and V' are linear over CWO functions (i.e., V' and

 V are 0th order operators).

 The following construction is due to Deligne. A Hodge filtration is

 placed on Q ( V) by setting

 (1.12) FPQr(V) = Qr(Tp-r)

 Because of (1.1), this defines a filtration {FPQ( V)} of Q( V) by sub-complexes.

 For C?? differential forms, one defines

 (1.13) 6 (V) 'Q = (P+r=P4S
 q+s =Q

 (1.14) FPCk( V) = Hpp'>k(V)P'Q
 2: er + k(Ss (?f )p

 i.e., FP&( V) consists of all forms having at least a total of p holomorphic

 parts coming from both S and T. The {F&'( V)} filter the complex &( V),
 and the successive quotients, denoted GrPS&(V), are complexes under the
 differential D" = at + V'.

 (1.15) LEMMA. GrPQ'( V) -> GrPC&( V) is the Dolbeault resolution.

 Proof. From (1.14), GrP ( V) is the double complex of sheaves

 rs = 6rXs(Gp-rm-p+r)

 with differential D". By Lemma (1.10), this complex is isomorphic to

 J rs = 6 rs( p-r)
 which is clearly giving the Dolbeault resolution (for each r) of Qr('Pr),

 the sheaf in degree r in GrPQ ( V).

 (1.16) COROLLARY. (i) H*(S, GrPQ ( V)) - H*(r(S, Grim ( V)))
 (ii) H*(S, FP0Q'(V)) -_ H*(r(s, FPC '(V))).

 Since Q' resolves Cs, we also have

 (1.17) H*(S, Q(V)) H*(S, V)
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 HODGE THEORY 423

 2. The Kahler identities

 Before proceeding any further, it is useful to introduce the natural

 "abstract" setting of this paper. Observe first that the entire construction

 of Section 1 depends only on the existence of a local system V with an

 underlying real structure (i.e., there exists a real local system VR such that

 V = VR ?RC), and a bounded decreasing filtration {jP} on 9==s 0, 3? V
 satisfying (1.1), (1.3) and (1.4). This collection of data is known as a varia-

 tion of Hodge structure of weight m. In addition, we require that V be

 polarizable: there should exist a non-degenerate flat bilinear pairing, denoted

 (,), defined over R,I with the property that for each s E S,

 <v, W>8 = ip-q(V, iV).

 is a positive-definite Hermitian inner product on HP ', the subspace of V.
 determined by XCpq, and that the Hodge decomposition is orthogonal. In
 the case V =Rmf*C for f: X- S (the geometric case), the Kihler (hyperplane)

 class g C L'(S, R2f*Z) splits V into its primitive decomposition (see [22]),
 which is compatible with the Hodge filtration, and the primitive part of V

 is polarized by the pairing induced from cup product,

 (V, W). (_J)m(m 1)/2<[ ] g>%m

 Summing over the primitive decomposition, one gets a polarization on each

 Rmf*C. Note that in the geometric case, SJm+- = 0 and i = FU, i.e., Xpq = 0
 if p or q is negative, though we need not presume this in general.

 With the exception of (2.13), the methods and results in the remainder

 of this section are essentially borrowed from Deligne's manuscript [7].

 Recall that we have a direct sum decomposition

 (9k(V) = ep Gr(V).
 We aim to show that this decomposition passes to cohomology, as it does in

 classical Hodge theory (V = C). &'(V) has the bigradation (1.13), under

 which D splits as the direct sum D' + D", where D' = a' + V' is an operator
 of type (1, 0) and D" = 3' + V' is of type (0, 1).

 We now set up norms for r(S, &-(V)). On -O, there are two pairings:

 the pairing ((v, w)) = (v, iv) which is horizontal, i.e.,

 d((v, w)) = ((Dv, w)) + ((v, Dw)),

 I In practice, V is defined over Z and (, ) over Q, so rationality is often included in the
 definition of a variation of Hodge structure. For analytic questions, as Schmid remarks in
 [17], the extra structure is only excess baggage, so we drop it for the purposes of this
 paper. However, if V has additional structure, it will be passed along in our constructions.
 Also, we have separated the notion of the polarization from the definition of a variation of
 Hodge structure, in contrast to [17, p. 220].
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 424 STEVEN ZUCKER

 and the positive-definite Hermitian form

 (2.1) <v, w> = ((Cfv, w)) = (v, Cvw))

 where C, is the Weil operator of V, given as the direct sum of the scalar
 operators jP-q on HP q. Taking the tensor product of either of these with

 the usual norms on 6s induced by the Kihler metric on S, we obtain
 (pointwise) pairings on &(V). By integrating these against the volume

 form, one obtains pairings on the global sections (we impose a square-

 summability hypothesis if S is non-compact); for a, e ?r(S, Sk(V)), these

 will also be denoted ((a, /3)) and <a, /3>, the latter being the norm form, and

 the two are related by (2.1). By consideration of type alone, we have

 (2.2) PROPOSITION. The (P, Q)-decomposition of r(S, Sk(V)) is ortho-

 gonal under <, >. In fact, the spaces r(S, CrX8pq)) are all mutually
 orthogonal.

 Let L,: r(S, &k(V)) __ r(S &k+2(V)) denote the operation of exterior
 multiplication with the Kiihler form of S. For the operators D, D', D", and
 L, respectively, let b, b', b", and A, denote their (formal) adjoints with
 respect to the inner product (so for a e F(S, k( V)) and 'S C F(S, Sk-(V)),
 with one compactly supported, <a, Df> =<ba, f>, etc.), and let bo, bl, b"', A0
 denote the corresponding adjoints under the indefinite pairing ((, )). For the

 purpose of simplifying the notation, we identify an operator on Us with the

 induced operator on ( V) =% ?& V.

 (2.3) LEMMA. (i) bo- *D*, where * is the Hodge star operator on

 (ii) A0o is the usual operator A on &, adjoint to L.

 Proof. (i) says that bo is, under a local horizontal trivialization of V,
 equal to the adjoint of d on &;. This is obvious, as is statement (ii).

 (2.4) PROPOSITION. Let P be an operator on '( V), and let w (resp. wro)
 be the adjoint of P relative to the positive-definite (resp. horizontal) pairing.

 Then w = C-'w0C,.

 Proof. <Pat, f> = ((Pa, Cvf)) -((a, w0?CO))
 ,((a, CXCV'0C-1rj))

 <a, Cv'wr0CTf3> .

 In particular, if the commutator [w0, Cv] vanishes, w =r. Thus,

 (2.5) COROLLARY. Av -A.

 One defines the Laplacian operators of D, D', and D" in the usual way:
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 LID' = D'b' + b'D'
 LID''= DLV' +I b"L1
 F-]Dff = D"b" + b"Y'

 (2.6) PROPOSITION. O.,, LIV and ID", are formally self-ad joint elliptic

 differential operators.

 Proof. The formal self -adjointness is obvious from the definitions. For

 the ellipticity, one argues as in [22, p. 1201, observing that by (1.11), D"
 and a have the same symbol.

 The key to the Hodge decomposition is the relation among the various

 Laplacians:

 (2.7) THEOREM. LI, = LID and LID = LID' + LID" = 2LIDf.

 Proof. The proof of these equations is formally identical to the proof

 of the corresponding formulas in classical Hodge theory. It hinges on the

 following computation:

 (2.8) PROPOSITION. [A, D] = -bc, where b' = CW'bC, and C = -CC is

 the total Weil operator, in which C0 is the Weil operator of &;.

 Proof. By (2.3) and (2.5) we infer from the classical case the identity

 [A, D] =-bco =-C bCo = CoboQC1.

 Applying (2.4), we get b, = CvbC11. Therefore

 [A, D] = CCbCr'C-1 = CbC-' = -C-'bC

 The remainder of the proof of (2.7) follows from (2.8) as in the classical case

 (see [22, P. 186]).

 At this point, when S is compact one can invoke the standard machinery

 of elliptic operators on compact manifolds and conclude

 (2.9) THEOREM (Deligne [7]). Let S be a non-singular pro jective variety

 (compact Kdhler manifold), V a locally constant system of complex vector

 spaces which underlies a polarizable variation of Hodge structure of weight
 m over S. Then H1(S, V) has a natural Hodge structure of weight i + m

 associated to the variation of Hodge structure.

 While it would be redundant to write out a proof of this theorem, it

 will be useful to recall the main points of the proof, for this will serve as

 an outline for the next five sections of the paper.

 (2.10) Outline. (i) From (1.17), H'(S, V) is isomorphic to the hyper-

 cohomology group H'(S, Q-(V)), and the latter group is computed as the
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 426 STEVEN ZUCKER

 cohomology of the complex of Co differential forms F(S, ( (V)).

 (ii) As a graded sheaf, G(V) splits as a direct sum of sub-sheaves

 GrP,6 ( V). The latter is a complex under the differential D", and by (1.16, i),

 the cohomology groups of F(S, GrP &(V)) are also hypercohomology groups,
 namely H*(S, GrPQ (V)).

 (iii) The cohomology groups in (i) and (ii) are isomorphic to spaces of

 harmonic forms, i.e., solutions of OD) := 0 or C1D ?)= 0 respectively. In

 each cohomology class, there is exactly one harmonic representative.

 (iv) From (2.7), it follows that a form is harmonic if and only if all of

 its (P, Q)-components are harmonic (in any of the equivalent senses). If

 ik(V) (resp. UP Q(V)) denotes the space of harmonic forms of degree k (resp.
 of type (P, Q)) with values in V, then

 kk(V) = &DP+Q=m+kV'Q(V)

 This decomposition passes to Hk(S, V) via (ii) and (iii) above.

 (2.11) COROLLARY. (i) The spectral sequence

 E -P q= HP+q(S, Gr Q-(V)) HP+q(S, Q-(V)) : HP+q(S, V)

 degenerates at E1.

 (ii) The filtration on HI(S, Q (V)) defined by {FPQY(V)} is the Hodge
 filtration

 FPHI(S, V) - EP?+Q=ji+m Q(V)
 p!p

 (iii) There are canonically isomorphic short exact sequences

 o - Hq(S, FPQg(V)) - Hq(S, V) - Hq(S, Q-(V)/FPQ-(V)) - 0

 and

 o FpHq(S, V) - Hq(S, V) - Hq(S, V)/FPHq(S, V) - 0.

 In particular, the Hodge structure on H'(S, V) is independent of the Kdhler

 metric on S and the polarization of V, though the two combine to determine

 a polarization of H'(S, V).

 There are several consequences of the Hodge theory that follow formally

 as in the classical case (Poincare duality, primitive decomposition, etc.), but
 these corollaries will be left to the reader.

 To illustrate the power of (2.9), let V underlie a variation of Hodge

 structure of odd weight m = 2p - 1, which is defined over Z. One may

 associate families of complex tori, whose sheaves of germs of cross-sections

 j P are defined by the short exact sequences

 (2.12) 0 - Vz ) Tj-P P 0.
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 When we take V = Rmf*C for some smooth family of Kihler manifolds, the

 tori above are the pth intermediate Jacobians of the fibers. Elements of

 H0(S, jv) are called normal functions; a normal function is said to be
 horizontal if it is annihilated by the mapping induced from V:

 If v e H0(S, AMP), then its image under the connecting homomorphism,

 a(v) e H'(S, V,), is called the cohomology class of the normal function. (See
 [23] for remarks concerning the significance of these concepts in the

 geometric case.) This class maps into the integral lattice in H'(S, V). As

 the principal corollary of Theorem (2.9), we have the following:

 (2.13) THEOREM. Let V underlie a variation of Hodge structure of odd

 weight m = 2p - 1 over the complete non-singular curve S, which is defined

 over Z. Then the set of all cohomology classes of horizontal normal func-

 tions is equal to the set of integral classes of type (p, p).

 Proof. Incorporating horizontality into (2.12), we have a short exact

 sequence of sheaves (cf. [23, p. 198]),

 0 -> -z > (W/i),h > ah 0?

 from which we obtain the exact sequence

 H?(S, (J-") >Hz' H'(Sy (WF_")h)
 where we have written Hz' for H'(S, Vz), so we are looking for the kernel
 of 0. On the other hand, the set of integral elements of type (p, p) is

 precisely

 ker{Hz- Hc/F-Hc'}-

 From the Hodge theory (2.11, iii),

 HC/FPHC = H'(S, QY( V)/FP.Q( V)),

 and QY(V)/FPQ'(V) is the complex

 (2.14) V Q1? (0C/Fp'-)

 Since V is surjective (in fact, V: 10 - g'Q1 ?0 is surjective), (2.14) gives a

 resolution of ker V= ('1/fFP)h. Thus

 Had/F thete Hr(Sem f s) .

 and the theorem follows.
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 (2.15) Remark. Taking V = R2P-fC in the above, we obtain a sharp

 version of the theorem on normal functions [23, (3.7)] for smooth fibrations.

 Since the Leray spectral sequence for f degenerates at E2 [6], there is

 another Hodge structure induced on Hi(S, RmIfC) from H'+1(X). (This is

 true for S of arbitrary dimension.) In the case dim S -1, i = 1, m. = 2p- 1,
 it comes from the isomorphism

 H'(S, R2P'-f *C) ker{H2P(X) > H2P(X,)}liml{H2PH2(X) Gs 12P(X)}
 for any s e S.

 (2.16) PROPOSITION. For all values of i and m, the two Hodge struc-

 tures on H'(S, Rmf*C) coincide.

 Proof (Deligne). In addition to its Hodge filtration {FF}, the complex

 Qx has a filtration {LP} determined by the mapping f: X --> S. It is given by

 L"Q' = image of f*QP ?( Q-;
 so

 GrPQ- = f *QP (? Q-zst-ap]

 With Rf*Q' denoting the associated object in the derived category of the
 category of sheaves on S, the spectral sequence determined by L for its

 cohomology sheaves (i.e., the hyperderived sheaves of Q;) is

 LEl = fCP+q(GrPRf*Q r) - Q-v (? Rqf *Qx s L Qp( Vq) (Vq-Rqf*C
 with differential d, given by V [15]. Shifting the spectral sequence via the

 filtration decalee [8, p. 15], we obtain a mapping

 Dec(L)EO > - QLPEI V- ,
 i.e.,

 (2.17) GrPCC(LRf*Qx > QS(V-P)[P],

 which is a quasi-isomorphism. The associated spectral sequence of hyper-
 cohomology

 EIP q = HP+q (S, QS'(V--")[P])

 = H2P+q(S, R--f*C)

 is the Leray spectral sequence for f (after a shift of indices).
 Since

 GrPRf*Qx - Q?(gRf*Qx/s[-up]
 and the spectral sequence

 ElPq= Rqf*QP s Rr+qf*Qgls

 degenerates at E, (by classical Hodge theory), it follows by [8, (1.3.15)] that
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 the morphism (2.17) is an isomorphism in the filtered derived category (with

 respect to F). In particular, the filtration induced by F on the former is

 carried to the filtration induced by F on Q;(Vq), which is easily seen to be
 the Hodge filtration in (1.12). Because of this, it follows by (2.11) that the

 cohomology spectral sequence for F on GrDec(L)Rf*QX degenerates at El: i.e.,

 the differential in the complex Rr Grec(LRf*Qx is strictly compatible with

 F. As d7 = 0 for all differentials in the Leray spectral sequence [6], we

 obtain (2.16) from Deligne's lemma on two filtrations [8, (1.3.17)] (viewing

 both Hodge structures as being defined on the EIA term).

 Thus, Theorem (2.12) has topological and geometric significance.

 3. Degenerating coefficients: the preliminaries

 It was remarked in the introduction that smooth families of projective

 varieties over a complete base variety S, which would give rise to variations

 of Hodge structure satisfying the hypothesis of Theorem (2.9), are rather

 rare. We turn now to the problem on a quasi-projective base S, and let S

 be a projective compactification of S so that ? = S - S is a union of smooth
 divisors with normal crossings.

 The underlying theme of this paper is to use complexes of differential

 forms with values in V, both L2 and holomorphic, which are regular on S

 and which have specified growth near ?, to compute cohomology groups of

 sheaves on S. This will generalize items (i) and (ii) in (2.10).

 The first step is to construct a good Kihler metric on S with singularities

 along ?, which, though not removable, are negligible in the sense that

 differential analysis on S is like that of S. Since E has normal crossings on

 S, for any point t e Y there is a coordinate neighborhood U of t that is

 isomorphic to A", the unit polydisc, in which S n U = {z = (z, * * , zn.,
 z, # 0, - - *, z, # 0 for some 1 _ ?_ n} ( A*)X where A* is the punc-
 tured disc. Such coordinates will be called special coordinates. Recall that

 the Poincare metric of A* is given by (dx2 + dy)/1 z I2log2 z 2, and has
 associated 2-form (i/2) dz A dz/j z 12 log2 I z 12. (For notational convenience, we
 identify a metric with its 2-form.) We regard the product (A*)' x Anl as

 having the metric

 (3.1) 2 [k= I zk 1j1g20 + Zk1 l kdZk A d=kj

 which possesses the singularity of the Poincare metric near the punctures

 (and away from the outer boundaries).

 (3.2) PROPOSITION. Let S be a projective variety (compact Kdhler

 manifold), ? a union of smooth divisors on 3 with only normal crossings,
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 S = S - E. Then there exists a Kdhler metric on S which in special

 coordinates is equivalent to the metric (3.1), in the sense that the two norms

 are mutually uniformly bounded.

 Proof. The construction is essentially the same as that appearing in [5].

 Let E = UN=,Yi, where each St is non-singular. Let [id] be the line bundle
 on S associated to St, of a holomorphic section of [Y2] which vanishes to first

 order on Yj, and I I I i the norm from a C- Hermitian metric on [id] normalized
 so that ai i < 1 on S. Let (o be the Kahler form of S. The desired metric
 is

 ry = (ki) - - a3 log log2 II a

 for k sufficiently large. In special coordinates U in which St is defined by

 z = 0,

 IlaiII2 = IZ12u

 for some function u that is C- on U. Then

 (3.3) -_ 1 a log log2 l ai 1 (1 2 = 1 Z au ( Z + )
 (logz I 2 +u)2 \Z

 _ 1 aau.
 log z 2 + u

 It is now clear that r is positive near A, with singularities like (3.1); the

 term kio is added to make g positive on all of S. It is also evident that the

 two metrics are equivalent if k is taken sufficiently large.

 The metric r has many excellent properties, as we shall see, but we can

 at least state some of the more obvious ones.

 (3.4) PROPOSITION. S, endowed with the metric ry, is a complete mani-

 fold of finite volume.

 Proof. Because of the compactness of S and the asymptotic properties

 of A, it suffices to verify the statment of the proposition for the subset

 {z: 0 < I z ? : A} of A*, for any A < 1, with the Poincare metric. Using polar
 coordinates, we see that this follows from the computations

 A dr = log log r]O= ?
 o r log r

 2? A rdr - 2 log'r] A < CO
 Jo Jor2 log2r

 We turn now to the degeneration of (V, {ff}) on S. This problem was
 studied in great detail by Wilfried Schmid. His best results were obtained
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 in one variable (the SL2-orbit theorem and its consequences [17, ?? 5, 6]);
 generalizations to several variables are anticipated, but are yet unknown.2

 We must therefore restrict ourselves to the case where S is a curve, and so

 E consists of a finite number of points. The points of ? will be called the

 singular points of V, even though the variation of Hodge structure may

 extend across some of them. In fact, the discussions in this paper ignore

 the removability of singularities, and therefore include the case of constant

 coefficients V = C.

 We localize our attention to one of the singular points, and we establish,

 once and for all, a complex coordinate t centered at the point; thus S = A*

 for the purposes of local arguments. Choosing a base point s e S, there is a

 monodromy transformation y obtained by following elements of V8 horizon-

 tally around the origin.3 By the Monodromy Theorem [17, (6.1)], " is quasi-

 unipotent if V is defined over Z: (yP - 1)1+1 = 0 for some positive integers
 v and M. (In the geometric case, we may take M = in.) We will also assume

 for the time being that t is actually unipotent (v = 1). We are then in the

 set-up of [23, ?2]. XO has a canonical extension Id on S (= A locally),
 generated at the origin by elements of r(A*, 'V) which are of the form

 (3.5) = exp(21. Nlog t)v,

 where v is a (multi-valued) horizontal section of V, and N = logY =

 -EkI (1 - -i)k/k.

 On V8, there is the (increasing) monodromy weight filtration { Wk}
 defined over R (over Q if V is defined over Z), which is 7-invariant and

 which therefore determines a filtration of V by locally constant sheaves,

 also denoted { WkJ. For the basic properties of the weight filtration, see [17,
 ? 6]; significantly, there are isomorphisms

 Nk: Grw[+k(V) - Grw k(V).
 According to Theorem 6.6' of [17], the weight filtration is characterized by

 the asymptotic behavior of the norm:

 ve Wk if and only if II vI2 = <v, v> = O(logk-mtI)
 for all t in any angular sector of A*.

 Furthermore, the above estimate is sharp for v e Wk- Wk1. We introduce
 the notation "-" to mean "has the same order of growth as"; thus

 2 Schmid has informed me that the theory goes through if ? is smooth.

 I We take the path to be clockwise around 0, so as to avoid the conflict of notation with

 [171, which occurs in [23, ? 2], over the meaning of N=log r.

This content downloaded from 129.49.5.35 on Mon, 26 Aug 2019 02:00:05 UTC
All use subject to https://about.jstor.org/terms



 432 STEVEN ZUCKER

 (3.6) PROPOSITION. If v e Wk projects non-trivially in Grk" V then

 jj j' | 2 I|log r I k-.

 The weight filtration induces a filtration {fk} of 70 by canonical exten-
 sion, and we have, by making minor changes in the discussion in [17]:

 (3.7) PROPOSITION. V G Wk - Wk-1 (V G i%- lk-l) if and only if

 ||H2- v logr k-m.

 4. The holomorphic Poincare Lemma

 We are ready to attack (2.10, i). Let j: S -> S be the inclusion mapping,

 (4.1) PROPOSITION. The following sequence is exact

 0~~*j*V*V~~m~t~OvY dt
 O > j* > [Tfl + tab t ( $ [7Dn-2 + taT] ?1

 t

 Remark. The above is a well-defined extension to S of the exact sequence

 of sheaves on S,

 0- > V > (V) >QI(V) >0;

 though written in local notation, it makes global sense (by making the

 indicated extension at each singular point).

 Proof. We first note that we have an exact sequence

 (4.2) tCO k dt 0 Tk >
 for all k. This is precisely the content of [23, (3.12)]. It is also true that

 (4.3) ) 1+2 dtt ($ (V1 + M1-2) >
 t

 is exact whenever 1 < n: for a holomorphic function f, and v e W1+2,

 f(dt/t (0 Nv) = 2wi [V(fv) - df 0 V], so that exactness of (4.3) follows from

 (4.2) for ki = 1 + 2, and the fact that N: W1+2 -> W. is surjective whenever
 1 < n. Combining (4.2) and (4.3) with the inclusion ker N = VT c W., we
 obtain (4.1).

 For reasons that will be apparent in a moment, we introduce the

 notation

 6(9V)(2) -nm + tt O
 dt

 QIT)( dt ()[Um-2 + tT] t
 t

 and define Q'(V)(2) to be the complex

 O(DV)(2 , Q'(V)(2,
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 (4.4) PROPOSITION. Sections of Q (V)(2) near t = 0 are precisely those
 sections of j*QY(V) which are square-summable near t = O.

 In the proof of the above proposition, we use an idea that recurs in

 Sections 5 and 6. Let T be a trivial bundle (either analytic or CW) and

 V {V1, * , Vr} a framing of '. We also assume that 'O is given a Hermitian

 metric. Then v is said to be L2-adapted if Efivi e L2 implies fivi e L, for all
 i. The condition is invariant under change of scale, so we may normalize

 the frame without changing the issue of whether v is L2-adapted.

 (4.5) LEMMA. Let v be a frame for ' with sup viII < for all i. A
 sufficient condition that v be L2-adapted is that the matrix of the inner

 product E = [dJj, where djj = <vi, v;>, has a bounded inverse.

 Proof. If g = Efivi e L2, then the functions as = <g, vi> e L2. We have
 the identity $D EF, where $D (resp. F) are the column vectors of tbj's
 (resp. fi's). Then F = a-Is, from which the lemma follows.

 We should recall the source of the norm estimates (3.6) and (3.7). Given

 v e V8, it determines a multi-valued horizontal section of T, which becomes

 single-valued when it is lifted to the upper half-plane H = {z = x + iy C C:

 y > O}, covering A* by z: H-> A*, with z(z) = e2i. Writing v(z) as the sum

 of its (p, q)-components

 V(Z) 2 Eptq=Vm VX(Z) 2

 VWII,( ) z = E II Vp, q(Z)11

 The norms as a function of z are best understood by transporting v(z) by

 an isometry Lz to a reference Hodge structure, and then measuring there.
 For a suitable basis {v1} of V flagged according to the weight filtration (see

 the proof of (5.2)), Schmid has obtained the expression [17, p. 253]

 Lzv1(z) h(z)[y(k-m)/2 exp (-xN)v, + (lower order terms)],

 where the term in brackets is a Laurent series in y"2, h(z) is strongly

 asymptotic to the identity, and k is some integer. From this, we obtain

 (4.9) LZ aj(z) = h(Z) y (k-m)/2 E M 0 (i)j Njv, +***]

 since iY(z) exp (zN)v,. As {y(m-k)/2 LzaX(z)} is asymptotically a basis of V
 as y -* oo, {va(z)} is L2-adapted by the criterion (4.5). In fact, given any
 basis {v1} of V flagged according to the weight filtration, the leading

 (V-valued) coefficients in the expansion (4.6) are linearly independent, so

 {V,} is L2-adapted. Similarly, the L2-adaptedness of any basis for c (near
 the origin) is determined only by its image in 0(0)) = -O/tl.
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 Proof of (4.4). We first work with O(V). It will suffice to consider

 a = tiY for v e Wk - Wkl. Then

 Il I o|| r ' I |log ri |k

 so for A < 1, we must check the convergence or divergence of the integral

 z logr -rn idr dO I log rI |- 2 l~ 2 0 0 rlogr

 It is finite precisely when ki ? m and n > 0, or k > m and n > 0, i.e., when

 a is a section of O(V)(2). That a cannot have an essential singularity in t at
 t -0 follows from an argument estimating the Laurent series coefficients

 of a (very similar to the calculations to come in ? 6), which also gives an
 alternate proof of (4.4). The conclusion for Q'(V) follows from what we

 have already deduced, because

 dt 2 lg (4.7) H log2r

 As a corollary of (4.4), we obtain

 (4.8) THEOREM. If V is the local system of a polarized variation of

 Hodge structure over an algebraic curve S, with unipotent local monodromy,

 H'(S, j*, V) ~- H'(Sy Q-(V)(2) .

 We will take care of the C- end of (2.10, i) in Section 6.

 5. The Hodge filtration on Q (V)(2)

 We turn our attention now to item (ii) of (2.10). Having defined the

 Hodge filtration on Q'(V) in (1.12), we define FvQ'(V)(2) by forcing the L2

 growth condition through (1.12), to be the complex of sheaves on 8,

 (5.1) (2 v (Q' ,8 IT"-')(

 where the sub-(2) means, as before, that we take the locally-L2 germs to

 define the stalks of the sheaves at the singular points. The bundle S'P =

 9p1/9p-l on S inherits a quotient norm from iP which, in fact, makes 6(P)
 isometric to yJpm-p We define S'P2) in the obvious way. In order to compute

 readily with the Hodge filtration on Q( V)(2), it is useful to know the fol-
 lowing:

 (5.2) PROPOSITION. The sheaves 9, (Q1 0 ") (2) and (Q' 0 VP)(2)
 are locally free, and the sequences

 0 97+ 97vl WP) > ?" V) > (2) , X(2) > (Q2 3S( ,

 0 -~(Q' 0 97"+') 2)- (Q'& 0 7F)(2) - (Q'O0 '")(2 0
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 are exact.

 Remark. Before beginning the proof, I should comment that the

 exactness of the above sequences is not a priori obvious; (5.2) says that the

 Hodge filtration is "L2-adapted".

 Proof. The proposition at hand depends on the existence of good local

 bases for t at the singular points, which respect both the Hodge and weight
 filtrations, at least to Oth order. As usual, we localize at a singular point.

 It is necessary to do a careful reading of [17, pp. 255-263], and to make a

 translation of Schmid's results from V to T3 (cf. [23, ? 2]). The main point
 is that for v e V8, v e FoP (in the notation of [17]) if and only if there exists

 a holomorphic section w of 'O such that v + tw is a section of FP.

 By [17, (6.20)], F0. is the left-translate of a suitably chosen reference

 Hodge structure F0 by a linear mapping g0,o which preserves the weight

 filtration and acts as the identity on GrW V. By the SL2-orbit theorem, F.
 has a horizontal -(2, C)-action, which splits it (over R) into a direct sum of

 orthogonal irreducible sub-structures. The basic irreducible structures are

 called S(n), the nt' symmetric power of S(1); the latter is obtained by taking

 C2 = Ce, (0 Ce2 with the usual _K(2, C)-action as the underlying vector space,
 so that Ne2 = e,, Ne1 = 0, and with

 v+ = e? + ie2 of type (0,1),
 v_ = e1-ie2 of type (1, 0) .

 For the polarization, (v+, v_) = 2i, and therefore {e1, e2} is orthonormal in
 the associated norm (cf. (2.1)); from this it follows that {e ke"} is an

 orthogonal basis of S(n) (the one used for (4.6)). All irreducibles are realized

 by tensoring S(n) with a trivial factor, be it E(p, q) with basis eP q and its

 conjugate e P or H(l) = Chl,', so we first examine S(n).
 As a basis of S(n), we choose

 ak-= Nn-k(v_)n (0??- k < n).
 This basis has been selected so that

 ak G FO A W2k

 and ak projects non-trivially in both Gr kS(n) and Gr'VS(n). Using this we

 build a basis for V0, inducing bases for each Grk0 V0, by taking

 a ?k- (h hl I (if k ? 1) from S(m - 21) (? H(l)

 and

 ak-p 0 eP~q (if k p)
 (if kq) f rom S(m- p -q)?(DE(p,q) .
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 For simplicity, we assume that V0 S(m). Then there exist sections fl
 of V( so that

 up =g.(aP) + tfp

 represents a generator for W2',. Furthermore,

 IHlapI2- IlogrlP-,n

 since one can verify from (4.6) that

 (5.3) L,(op) - h(z)[y(2P-m)/2 a + ]

 and II tSp 112 = O(r2 logn r). By (5.3), the <s give an L2-adapted basis for the
 FP'sc, for L~g,,(ap) and L,(agp) are asymptotically the same, and we may apply
 (4.5). Then 9YP) is freely generated by the sections {t6 k}k=p, with k = 0 if
 2k ? en and sk = 1 otherwise. Furthermore, it also follows from (5.3) that
 the (p, m - p) component of L,(ap) is asymptotic to y(2P-m)/2 ap; i.e., up carries
 much of its norm in this Hodge component. Therefore, a generator of P(2,
 is the projection of tcrap.

 It is easy to see, again using (5.3), that if there are several irreducible
 factors in the decomposition of V0, all bases constructed from {ok} are
 L2-adapted. The statement of (5.2) follows.

 (5.4) Remark. The statement of (5.2) generalizes to the inclusion

 0-> ipF2) > :YT2) for all p' > p.

 6. The Poincare and Dolbeault Lemmas

 The purpose of this section is to show that the cohomology groups

 Hi(S, j* V), which are isomorphic by (4.8) to Hi(S, Q-(V)(2)), and

 HiP(, GrPQY(V)(2)) are computable from complexes of L2 differential forms.
 We will not insist on using Cm forms, a simplification suggested by Deligne.
 This is the formal link between hypercohomology and harmonic forms, as
 described in (2.10).

 Let 2P(V)(2) be the sheaf on S of germs of locally L2 V-valued p-forms
 5 for which Do exists weakly as a locally-L2 form. We thus obtain a complex
 ( V)(2, of fine sheaves on S. Similarly, we have a complex [GrP ( V)](2)
 which is formed of the sheaves 2o0(2<P)(2) and 21,q('P-1)(2), consisting of
 forms 0 for which 0 and 80 are L2.' This suffices because

 (6.1) LEMMA. V' (and hence also V') is a bounded operator.

 Proof. As we see from the discussion in Section 5, V' acts, up to some
 asymptotically negligible terms, as (1/2wi) dt/t 0 N. N lowers weights by

 Observe that [GrP 2(V)](2) is not the same as Gr4l[2( V)(2)], for in the latter complex,
 one is insisting on control over D'.
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 two, but I Idt/t I2 I log2 r, so VI V'I 1 fiberwise, hence V' 1H(2) < A.

 (6.2) THEOREM (Poincare Lemma). 2 (V)(,) is a resolution of j., V.

 (6.3) THEOREM (Dolbeault Lemma).

 HiP3 GrQ(V)(2)) = H'(r(3- [GrP2 (V)](2,)) .
 On S, exactness follows from the solution of the Neumann problem, so

 the trouble comes from the singular points, and we localize to A* as usual.

 We first prove simple approximations to (6.2) and (6.3); we work with the

 latter first.

 (6.4) PROPOSITION. Let 'C be a holomorphic line bundle on A* with

 generating section a, and with a Hermitian metric satisfying

 II a 112 _ llog rl Ok k + 1 .

 Then for every germ of an L2 (0, 1)-form 5 fdt 0 a at the origin, there

 exists an L2 section u 0 a with au = fdt.

 Proof. Using polar coordinates, we write u and f as r-dependent

 Fourier series

 u - fin=0 u.(r)e0 , f = Lfjr)e
 As ala =(1/2)e'0[a/lr + (i/r)a/3a], the equation Au = f becomes

 -[u - !-u] =f,?1 for all neZ,
 2 q

 for CW germs u and f, or

 -d [ruj(r)] = r
 2 dr

 We are given that for some A < 1,
 2,-, A

 11011(2) = 2 {f 2loggrIk(rdrdO)

 = 4w El& If, 1 I2log rIk (e dr) < co

 and we want to have

 l11u 12) = 2 En IUllo211lgr k-2(r-ldi) < KA

 We try to arrange that u l l2 < C lI f C l2 ((2) for some constant C.' Take
 / (7r

 1 2rn? p nf,+? (p)dp if n<0, or n =0 and kl>1
 un = A

 t-27-' P-"f,,+I(p)dp if n > 0, or n = 0 and k < 1.

 5 We remark that we are replacing the actual norms by their asymptotic forms. This
 is permissible, for the two are equivalent.
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 The estimates will be carried out for only the first formula, the other case

 being similar. If n < 0,
 A

 I uq, j2r- Ilog r Ik-2dr 0

 < V4r(5Pf-2 {1 fl(P) 12p)(5 dp ) r-1 I log r k-2dr

 - |4r2n 1log r Ik-2 (P2n Ifn+ (P) 12 dp) dr

 p-2n Ifn (p) 12 (54r2,| log r Ik2 dr) dp

 < + lfn+f1(p)j2p logp k-2dp

 with the last inequality holding because

 r2nl Igrk-2dr I p2n+IlogpIk-2 P r logr dr -2n + 1
 uniformly in n < 0 provided A is taken to be sufficiently small. This is

 much better than we need. Similarly, if n = 0, k > 1,

 U=- 2 f1(p)dp,
 0

 I UD 12 < 4( I fl(p) 12 p I log p 11+6 dp)('- o 1-6-do 2? 4(\Ifi(p)2pllogpldp)(llogp dp)

 (Ifn() 'PI log p 1?6dp> log r 1-

 where0<s<k-1. So

 0 l uO,(r) 12r-1 log r I k-2dr

 4 AfI1f /A

 < I log r dr)dp

 A

 C Ifl2pI log p 1+s Ilog plk-l-edp

 - CA f1(p)12 log pIk(pdp).

 If f is C` on (0, A] and has compact support therein, the section u thus
 constructed is a Cm solution to 5(u ? a) = fdT ? o. This can be seen by

 noticing that u is holomorphic near the origin, and has rapidly decreasing

 Fourier coefficients us, as a function of n (because f does). Since such forms
 f are dense in L, and by the above inequality, Cauchy sequences are taken
 to Cauchy sequences in the solution process, by passing to the limit the same

 formula gives a weak solution for L2 forms fd T 0A.
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 The case k = 1 will pose a technical problem-for it occurs in Wm+i

 that, fortunately resolves itself. In fact, n 0 gives examples of Hardy's

 inequality with weights (see [16]): there is a necessary and sufficient con-

 dition for getting u I I2,) < C I I f I 122) , and this condition is not satisfied when
 k - 1. We define

 (6.5)

 {measurable functions f: I jf(r) 12 log r I (rdr) < 0o for some A < 1

 If:f = u' weakly with I u121 logrI-'(r-ldr) < oo for some A < 1}

 OR, gives the L2 a-cohomology in dimension one for the case k = 1.

 We can now prove (6.3). Recall that Gr"Qi(V)(2) is the complex

 b(2) > (Q(3 (2)

 The statement would follow by elementary homological algebra, as in (1.16,

 i), if

 ? > () ->[OO<P) (2) >[20,1(afP)](2 > 0 ~ '(2) [20'0(&',)2 (2(&~)b- 0
 were exact. As an L2-adapted basis decomposes the a problem into a direct

 sum of a problems in a line bundle, (6.4) covers most of these problems.

 However, it is possible that, at a singular point, &2',) has among its

 generators a section a, part of an L2-adapted basis, with II a 112 log r 1. If
 so, then V(a) will be part of an L2-adapted basis for (Q2' ?9 S-V1)(2), with
 II V(i) 112 _I log r 1. Then V establishes an isomorphism between the a-coho-
 mology groups at the singular point. This enables one to conclude that

 I(V, Gr1S ( V)(2)) computes the hypercohomology of GrPQi( V)(2).
 In the direction of (6.2), we first prove

 (6.6) PROPOSITION. Let V be a constant one dimensional local system

 over A*, with generator e, and assume that 6(V) has a Hermitian metric

 with jlej2 - IlogrIk. Then the cohomology sheaves for 2'(V)(2) have stalks
 at the origin,

 Xyc(2jy(v))) {V if k ?!~0
 0 if k>O

 (dt ($v if k<-1 dt

 0( (2 = if k ? -1, k 1

 OR 'dr (& e if k = 1,
 0O if k = -1

 C2 (2({V) (2)) ' OdrA dt (De if k = -1,
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 with OR, as in (6.5).

 Proof. The statement about 2)C0 is clear. To compute XIC, we use Fourier

 series again. A germ of an L2 1-form at the origin,

 sl - fdr + gd6',

 with d=O0 is approximated by compactly supported C- germs co =fdr lid8

 on (0, A] for some A < 1, with

 dCo = EdrA dO- 0 in L2.

 In terms of Fourier coefficients, with E = Esnei"?,

 o= inf/ + en *

 As E -> 0, so do all e". Letting so -> , we have go - 0, so go is constant (godO
 will be giving the XIC if k < -1). Assume that go = 0. Taking

 un = g (n = 0)
 n

 we obtain for i =E neinoY

 (dil)n = indr- + in it dO

 = _-g dr -g + gcdo
 n

 = fdr + gV'dO - -endr;
 n

 i.e.,

 dit - -fodr =-iE1""oi'nei dr .
 n

 By the same estimate that we will soon use in computing TC2,

 IIdit- -fOdrHI(2- - 0 as IldColL(2- 0?
 Calculating the norms for n # 0, we have

 1 (2) = n-2 l2llogrl 2(r- dr)

 < Cnj-2 I no 12r-2 1 log rIk(rdr).

 These inequalities also show that Cauchy sequences of 63's are taken into

 Cauchy sequences of 9's, so by passing to the limit, we obtain a solution to

 du = so - f(r)dr with

 j jJ(2) < KlgdO J(2) <

 For fodr = duo, we must solve u4 = fo as in (6.4), leaving Ol1dr X e as the
 cohomology when k = 1.
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 To compute JC2, let w = fdr A dO. We solve dr7 = a with 77 gdr
 whenever fA 0, for it suffices to take go = - (i/n)f,. Then

 q?2 ()= 2zwg5gn!2 log r k(rdr)

 = 2z n-2 12 1log r Ik(rdr)

 < CEnf-2 IfIlogr1k?2(rdr)

 < K II GC) 11 2(2

 Given w0 f0(r)dr A dO, we must try 70= ho(r)dO. Then ho f0, with

 lI2o (2 = 2 h12 |log ri I(r-l dr)

 1 (0 112) = 2 121 log r k?2(r d1 )

 As before, we can solve the equation in L2 provided k + 2 # 1, i.e., k # -1;
 if k =-1, Oilcdr A dO ? e appears as the cohomology. (6.6) follows from

 these results because dt/t = idO + d(log r), with log r e L2 if k < -1, and
 dr A dt/t -dr A do.

 Proof of (6.2). Use the spectral sequence

 El,= :CP(Gr' 2 ( V)2(2)

 The differentials in the spectral sequence arise by lifting v e V to vY (as

 defined in (3.5), noting (3.7)), and applying D. Then d1 0, because N lowers
 weights by two, and

 d2: fC0(S2[Gr1+2( V)](2)) - 1C'(S [GrW'( V)](2))

 is induced by (1/2zi)dt/t?N. Recall that GrW corresponds to k = 1-rn in (6.6).

 If k < -1, N: Wk+m+2 > Wk+m is surjective; hence by (6.6) d2 is surjective.
 Likewise, d2 sets up an isomorphism between the unpleasant cohomology

 groups

 ?{1(2[GrIv (V)](2)) and SC2(S [Gr"1 (V)](2))
 Thus, the spectral sequence degenerates at E3, for all non-zero terms are

 E?', -P. ji V must remain as YCO(XS( V),2).

 (6.7) Remark. In the non-degenerate case (S = 3), the usual Dolbeault

 Lemma and holomorphic Poincare Lemma, i.e., the standard versions of

 (6.3) and (4.1), imply the Coo Poincare Lemma. Here (having dropped the Coo

 condition) we have proved (6.2) and (6.3) separately so that we could avoid

 worrying about D' when studying D". Thus, we are using two different

 complexes to compute D and D" cohomology; however, they will have the
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 same harmonic forms.

 Having established (4.1), (6.2), and (6.3) for unipotent monodromy, we

 see that it is a relatively simple matter to generalize these results to varia-

 tions of Hodge structure in which the local monodromy is only quasi-

 unipotent. When V carries a geometric variation of Hodge structure,

 the quasi-unipotence follows from the monodromy theorem.

 Localizing as usual to S = A*, we let -r be the local monodromy

 transformation, with (zY - 1)M+1 = 0. Then V., and hence V, splits into
 generalized eigenspaces

 V = a'='O Va/i
 with

 Va/9 = {V e V,: (^ - Ca)m+l V = 0}

 where C = exp (2zi/v). Then 10 = V ?& (9 has a quasi-canonical extension
 t. Writing y 1va/> = Ca-ya with Ya unipotent, and Na == log yaw one defines [10]
 Id to be generated at the origin by

 (6.8) v (t) = exp (log t[ a + 1 Na ]

 where v is the multi-valued flat section of ZO associated with v e Vla/, and a

 ranges from 0 to v - 1.

 Information about 1 can be obtained by pulling V back via the

 v-sheeted covering

 A: W*->A +u) = u") -
 In A*(V), we have y" as (unipotent) monodromy transformation, hence

 N = Do:a:v->2)Na -

 We may assume without loss of generality that V = Va, and inasmuch as

 the previous results cover the unipotent part V0, we also assume that
 a 0.

 (6.9) PROPOSITION. If V has quasi-unipotent monodromy, with no

 unipotent part, then

 O(V)(2)=- and Q?(V)(2,) = dtt & .
 t

 Furthermore, Q-(V)(2, resolves j*V. (N.B. - j*V has the zero stalk at
 t = 0.)

 Proof. If V C Va,

 (6.10) v*(i)=uaexp(P. Na logu v,
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 and, of course,

 (6.11) V*(tn) =s U,( dt du

 As * respects the Poincare metrics, the first statement follows immediately
 from (4.4). Since V patently maps O(V)(2,) into Q'(V)(2,), in order to prove
 the second assertion, we must show that this mapping is surjective. But

 this follows by (4.1) and the explicit description of the anti-differentiation

 given in [23]:

 'P*( dt ail tA a(t) )= du (3) unv-Fa (u)

 = V(u nu+a Wv (U))

 for some w e Va, and we may descend to A*.

 (6.12) COROLLARY. If V has quasi-unipotent monodromy, Q-(V)(2,) is a
 resolution of j* V.

 The idea of pullback and descent also works effectively in the case of

 L2 differential forms. Let G be the group of covering transformations for

 A, a cyclic group of order v. The following is obvious:

 (6.13) LEMMA. There is a one-to-one correspondence between

 G-invariant L2, *(V)-valued i-forms on A* and L2 V-valued i-forms on A*.

 We may place the Hodge filtration of (1.12) on Q?(V)(2,) to obtain

 complexes of locally free Og-modules, with the analogue of (5.2) holding;
 that is, we can find an L2-adapted basis of tU at a singular point which
 respects the Hodge filtration, for the ,2 decomposition of V is compatible

 with the eigenspace decomposition.

 (6.14) COROLLARY. The L2 Poincare' and Dolbeault Lemmas ((6.2) and

 (6.3)) hold when V has quasi-unipotent monodromy.

 Proof. If )' is an L2 solution to D72 = w or D"72 = co on A*, where co is
 G-invariant, then 1/2vg,,g*)? solves the corresponding problem on A*.
 (For D", we need to observe that G acts as automorphisms of the variation

 of Hodge structure, so (1.10) implies that g* and D" commute.)

 As in (1.16) and (1.17), we have

 (6.15) COROLLARY. If V underlies a variation of Hodge structure with

 quasi-unipotent monodromy:
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 7. The strong Hodge decomposition

 We will show in this section that the Laplacian operators FD, LID' and

 LD", have closed range when extended to suitable L2-spaces of differential
 forms. It is this fact which enables one to conclude that the spaces of

 harmonic forms represent cohomology.

 First, we introduce some new notation. Let

 L"(S, V) = {square-summable global V-valued p-forms on S

 with measurable coefficients},

 AP(S, V) = e0 C LP(S, V): 05 is C- on SI,
 AP(S, V) = e0 e AP(S, V): 5s has compact support}.

 Similarly, we can define L'"Q(S, V), A',Q(S, V) and A',Q(S, V).
 Beginning with AP( V), one extends the differential operator

 D: A"(S, V) -- A"+'(S, V) to a densely-defined closed operator on L"(S, V),
 which we denote by D: LP(S, V) -4 LP+1(S, V). The same is done for

 D': A, Q(S, V) - A+', Q(S, V) and for D": A, Q(S, V) - A Q+"1(S, V) .
 A priori, there are several possible domains for these operators.6 The

 smallest, obtained by taking the closure of the graph of D, is called the

 strong (or minimal) closure of D; it is computed by taking limits of Cauchy

 sequences {l5o} in AP(S, V) for which {D0,} converges in LP+'(S, V). The largest,
 the weak closure, is defined by the adjoint condition:

 )7 =Do if for all +eAP+I(M) , <0Y, b,+> = <)q, *>

 i.e., if + > <5, b*> is a bounded linear functional. The domain of the weak
 closure may alternatively be described as the set of L2 forms whose distri-

 bution derivative is also in L2. We observe that this space is equal to
 r(S, 2P(V)(2)). There is no ambiguity in our case, for we have

 (7.1) PROPOSITION. For each of the operators D, D', D", the strong and

 weak closures coincide.

 This is a consequence of the following two similar results:

 (7.2) THEOREM. Let 1 be a flat vector bundle on a complete Riemannian

 manifold M. Then the strong and weak closures of D = d (Q 1 coincide.

 The proof of (7.2) is almost identical to that of

 (7.3) THEOREM [1, P. 92]. Let 1 be a holomorphic vector bundle on a
 complete complex manifold. Then the weak and strong closures of a coincide.

 8 The uninitiated reader should be forewarned that the issue over the domains must be
 treated with care.
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 Pr-oof of (7.1). Of course, (7.2) contains the statement for D. To prove

 the same for D" (and hence for D' by conjugation), we recall that D" =

 5' + V', where a' is unitarily equivalent to the direct sum of a operators

 (1.10), and V' is a bounded operator (6.1). The assertion follows from (7.3).

 As strong and weak closures are necessarily adjoint to each other, it

 follows that the strong and weak closures of the adjoints also coincide.

 Having established this, one can define a closure for the Laplacians, with

 domain (in the case of LID)

 (7.4)

 g(iDP) { e LP(S, V): v e 9)(Dv) nf (bl), Do e 9(bP+V), and by e O(W-1)l
 where the superscripts indicate the degree of the forms in the domain. It

 is well-known that LID is self-adjoint (in the strict operator sense) [12].

 We define the spaces of harmonic forms. Some care needs to be taken,

 in light of the subtle issue of the domains: a priori, it is not clear that

 (7.5) ElD = @])P+Q=m+ p [ D"f

 as operators, though, of course, one does have the identity on a dense subset

 of the domains. However, because S is complete, LD and LID" are essentially

 self-adjoint, i.e., their strong closures are self-adjoint [3]. We then neces-

 sarily have equality of the strong closure and the operator defined in (7.4).

 Since strong closure commutes with orthogonal direct sums, we do have

 the decomposition (7.5).

 Let

 O ( {V) = (0 C O( D): DL ?} I

 b" Q(V) = =0 0} .(MD" ) D"O = -

 Using (7.5) and the Kihler identities of Section 2, we obtain

 (7.6) PROPOSITION. KP( V) = &p+Q=m+p 4 PQ( V).

 In order to conclude that the harmonic forms represent L2 cohomology,

 we need to know that the range of LID (hence also of LID'" and EDD, by (7.5))

 is closed. Viewing the operator as the one defined in (7.4), we would then

 have

 (7.7) L2P(S, V) = VP(V) (D EIDLP(Sp V)

 by self-adjointness. If D e LP(S, V) we could write

 (7.8) 0 = h + Cry

 where h e fr(V), and ' e- LP(S, V). Rewriting (7.8), we have

 (7.9) 0 = h + Db7 + bDV,
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 with each term in LP(S, V). Moreover, if Do = 0, then we must have

 bD7 = 0. From (7.4), we have that b7 e L'-'(S, V). This gives the isomor-
 phism

 (7.10) tP(V) HP(F(S, 2Y(V)(2))

 = {0 e LP(S, V): Do = 0}/{D7 e L"(S, V): 7 e LP-'(S, V)} .
 It is a well-known fact about operators that L2P has closed range if and

 only if DP and DP-' have closed range. The statement for D is, however, a

 simple consequence of (6.15), for the range of DI is the image of the bounded

 linear mapping of Hilbert spaces

 D: 93(DP) ->ker DP+'

 (using the graph norm for D on the domain), and the cokernel is finite-

 dimensional.

 (7.11) Remark. With (7.7) established, regularity theory for elliptic

 operators gives the statement

 EFl e AP(S, V) implies e A2(S, V).
 Therefore, we may conclude that the intrinsic Coo, L2 cohomology groups of

 S with values in V:

 H(v)(S, V) = {0 e Av(S, V): Do = 0=}/{D) e A2(S, V):y e AP-'(S, V)},
 H(2Q(S, V) = {0 e AP Q(S, V): D"? = 0}/{D"ry e AP'Q(S, V): 7 e AP'Q-'(S, V)},

 are also isomorphic to the cohomology groups (6.15) and are represented by

 harmonic forms.

 Incorporating the analogous results for D' to give complex conjugation

 on harmonic forms, we have finished the proof of the following:

 (7.12) THEOREM. Let V be a locally constant sheaf of vector spaces

 underlying a polarizable variation of Hodge structure of weight m on the

 algebraic curve S (with completion j: S -> S), having quasi-unipotent local
 monodromy transformations. Then there is a Hodge structure of weight

 m + i on H'(S, ji* V), with classes of type (P, Q) represented by pP Q(V).

 Letting FPHi(S, j*. V) denote the subspace of H'(S, j*. V) generated by

 the L2 harmonic forms,

 EP+Q=m+Ai t(V)
 P2 p

 we have,

 (7.13) COROLLARY. (i) The spectral sequences

 E1P = HP (S, GrPQ (V)(2)) H|?(S, Q ( V)(2)
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 degenerate at E1.

 (ii) H'(S, FPQ( V)(2)) H'(S, Q( V)(2)) is injective for all p.
 (iii) Hi(S, FPQ(V)(2)) = FPH'(S, j,. V) under the above inclusion.

 Of the above statements, only (iii) is not completely standard, because

 of (6.7). However, (iii) is proved by a simple "chase", which we omit. In

 particular, the Hodge structure is independent of the choice of Kihler

 metric on S and polarization of V, though these choices determine the

 polarization of the Hodge structure.

 (7.14) Remarks. (i) In the language of [9], the pair ji VR and its

 resolution Q-(V)(2) with Hodge filtration F form a cohomological Hodge

 complex of weight m.

 (ii) The isometries

 L: tP'Q(V) > P+"+(V) (P + Q = m)

 induce an isomorphism between H'(S, j* V) and H2(S, j* V) which is com-
 patible with the Hodge decomposition.

 As the hypotheses of (7.12) are automatically satisfied for geometric

 variations of Hodge structure, we have as the main application of the

 theorem:

 (7.15) THEOREM. For the geometric situation

 X AX

 53

 where f and f are projective and f is smooth over S, there are natural

 polarizable Hodge structures of weight m + i on the cohomology groups

 Hi(S, j*Rmf*C).

 8. Functoriality of the Hodge structure

 We have, via (7.12), associated to every variation of Hodge structure

 of weight m over a smooth curve S, with underlying locally constant sheaf

 V having quasi-unipotent monodromy, Hodge structures of weight m + i

 on H'(S, j* V). These structures, being defined geometrically, figure to
 have functorial properties, and we will show that this is the case.

 To begin with, we know that the Hodge structure is intrinsically defined,

 given S c 3, and is independent of the metric (within the class of metrics

 having the right asymptotic form at the singular points) used to define the

 Laplacian.
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 (8.1) PROPOSITION. The Hodge structure is independent of the choice
 of S.

 Proof. It suffices to check that if we restrict from S to a Zariski-open

 subset S', we do not change the complex Q(V)(2). But this is clear, since

 Q ( V)(2) = Q;( V) at any point of S where V extends as a locally constant sheaf .

 We now show that the Hodge structure is compatible with morphisms:

 (8.2) PROPOSITION. The Hodge structure defined in (7.12) is functorial;

 i.e.,

 (i) For any diagram of variations of Hodge structure of weight m over

 a smooth curve S,

 \ /

 S

 *: H'(S, i * V') -> H'(S, i* V) is a morphism of Hodge structures.
 (ii) For any diagram

 A~*(V)=- VI V
 V'* _ , .1 I j

 To < T > So > S (+ dominant),

 : H'(, i* V) -> H'(T, j*+*(V)) is a morphism of Hodge structures.
 Proof. In either case Hodge filtrations are respected, so it suffices to

 check that in the morphism (i) 0*: Q (V') -> Q(V), resp. (ii) A*: *-'Qs(V) >
 Q((V'), the L2 conditions are preserved. We retain the notation from the

 end of Section 6. In case (i), we define v relative to V', then O( V') C Va,
 and for unipotent monodromy O(WW) c Wk (because No = 0 oN'), from
 which the desired conclusion is obvious using the definition of Q(V)(2,). In
 case (ii), the result follows as easily from (6.10) and the fact that if the local

 monodromy in V is unipotent, N' = rN, where p is thelocal degree of t at
 the singular point of V, so Wk = **(Wk).

 Remark. There is never any trouble from the non-unipotent part of V,

 since, by (6.10), the corresponding sections of ? "vanish" at the origin.

 Applying this result to the geometric situation,

 Y <X

 T d Sm

 a diagram of smooth projective morphisms over smooth curves, we obtain
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 (8.3) COROLLARY. The induced mapping

 * H'(S, j*Rmf*C) -p Ht(T, j*Rmg*C)
 is a morphism of Hodge structures.

 There is one more obvious functorial property:

 (8.4) LEMMA. If s e S, the restriction mapping

 H0(Sjj*V) V.

 is a morphism of Hodge structures.

 Proof. The above mapping is induced by the morphism of filtered

 complexes

 Q ( V)(2) CTV) (g OS, = V.
 From this, we obtain a purely Hodge-theoretic proof of the result of Deligne

 [8, (4.1.3.1)] and Schmid [17, (7.22)], and all of its consequences:

 (8.5) COROLLARY. If a e F(S, V), then its Hodge components Upq (which

 a priori lie in F(S, & 0))) are elements of F(S, V). Thus, if a is of type
 (p, q) at one point, it is of type (p, q) everywhere.

 Finally, the following is true:

 (8.6) PROPOSITION. If V' and V" underlie polarizable variations of

 Hodge structure over S, then, with V= V'?& V", the cup-product mappings

 H'(S. j* V ) (3c H (S. j* V") Hik(S, j* V)
 are morphisms of Hodge structures (using the natural tensor product struc-

 ture on the left hand member).

 Proof. The above cup-products will be induced by the extension to S

 of the morphism of complexes Qs(V') ?9, Q'(V") --> Qs(V). This mapping
 preserves the L2 conditions, for in the unipotent case W (? W/' c Wk+z and

 the L2 conditions are determined by position relative to the middle weight

 mn = m' + m"; and the Hodge filtration is respected since

 IT 9S Iraq c _p+q.

 Hence the mapping induces on cohomology morphisms of Hodge structures.

 (8.7) COROLLARY. In the geometric situation, the cup-product map-

 pings

 H (S. j*RPf *C) $)&Hk(Sj j*Rqf *C) Hi~k(S' j*Rp+qf*C)

 are morphisms of Hodge structures.

 9. The theorem on normal functions

 In Section 2, we showed that the theorem on normal functions for
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 smooth fibrations .f: X S (2.12) follows as an immediate consequence of the
 definition of the Hodge filtration. In this section, we prove the analogous

 result for general fibrations. It was also shown in Section 2 how the Hodge

 structure on H'(S, R2P-'f*C) is related to that of H2P(X, C); however, for

 the discussion of this matter in the degenerating case, we defer until Section

 15.

 Let V underlie a variation of Hodge structure of weight 2p - 1 defined

 over Z. Recall that there is an exact sequence - j. Vz )(/ IT)h j h .
 We consider the filtered complex K- defined by

 K' =
 Ki = 5 = im IV: ? - Q5 (log A) T }

 with {FPKE} defined by restricting the Hodge filtration (1.12) of Deligne from

 j*Q'(V) to K'. We show that Ka is a replacement for Q'(V)(2,) in the coho-
 mological Hodge complex:

 (9.1) PROPOSITION. The inclusion of complexes

 Q(V)(2) - K

 is a filtered quasi-isomorphism.

 Proof. Let Q' denote the quotient complex K'/Q'(V)(2), with induced

 filtration. Since K- and Q'(V)(2) differ only at the singular points in the

 summand of V corresponding to eigenvalue 1, we may assume that V has

 unipotent monodromy. We will show that

 Gr QO -* GrnQ1

 is an isomorphism of finite-dimensional vector spaces, hence Gr Q' is acyclic.

 As usual, the non-trivial issue is at the singular points. We use the At(2)

 decomposition of V, and the basis for O used in the proof of (5.2). For

 irreducible component S(m - p - q) 0 E(p, q) (the case S(m - 21) X H(l) is

 similar), we obtain as basis elements of type (n, m -),

 a.-P (9 eP" if pa n m-q,

 a,_q (X eq^P if q ! n : m-p .

 If f3,_P denotes the section of yFe c O corresponding to the former, we have
 fln, as one of the generators for GrnK0; for GrnO(V)(2), we have

 43n-p if n-p p (m-p-q)

 t tanp otherwise .
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 Similarly, for Gr"K', we use yn-= Vfln- unless n = m - q, in which case

 t'Y.-; in Gr"Q'( V),2,:

 7'A-p if n - p (m - p - q)

 2 <t-In-p otherwise.

 Thus, we have, in a basis for Gr"Q0, the element fln- p(0), and for GrTQ', t,-p(O)
 if p > 0 and n - p > (1/2)(m - p - q); there is no contribution from eP q
 otherwise. A similar discussion can be carried out for eq P. Evidently, V

 induces an isomorphism from Gr7Q0 to Gr"Q' for all n.

 Proposition (9.1) asserts that there is no discrepancy arising from the

 use of Ki versus Qi(V)(2,. This fact will be of use in later sections of this
 paper; we use it now to prove

 (9.2) THEOREM ON NORMAL FUNCTIONS (optimal version). The image of

 H0(S, JP) (the horizontal normal functions) in H- = H'(S, i* V,) is equal to
 the set of elements which are of type (p, p) in H'(S, j* V) (V - R2'P-fC).

 Proof. As in (2.12), we are seeking

 ker {Hz' ) H'(99 (VU/TP)1')1
 and the set of integral elements of type (p, p) is precisely

 ker {Hz- > Hc/FPHc. 0

 But by (9.1),

 Hc'IFPH,' H'(S, Q (V)(2)/FPQ'(V)(2))
 = H'(S, K7FPK)

 H'(V/USp V-Y- /FP'3)

 = H'(S, (V/1iP)h).

 (9.3) Remark. As in Section 2, we have the result (9.2) for arbitrary

 variations of Hodge structure of odd weight defined over Z.

 10. Miscellaneous results

 (a) Sections of Hodge bundles. For notational simplicity, we assume
 that JF0 = '; this can always be arranged at the cost of artificially shifting

 the weight of the variation of Hodge structure (tensoring with a constant

 one-dimensional Hodge structure of sufficiently high weight). In [13],

 Griffiths calculates that the last Hodge bundle (my)?) of a variation of Hodge

 structure is a negative (semi-definite) vector bundle. Using the Hodge

 theory with degenerating coefficients, we prove an analogous result for the

 canonical extensions. Let i.P = -P/fP+'.
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 (10.1) PROPOSITION. Under the hypotheses of (7.12), every global section

 of S? is induced by a flat section of -= a.

 Proof. In the surjection

 H'(S3 i V)- (FlIF')H'(9, j V),
 the right hand side is, by (10.1), equal to

 H'(S, Gr% KD) = H'(S ki)

 (10.2) COROLLARY (theorem of the fixed part for Abelian varieties, cf.

 (9.2) for p = 1). Let f: X-* S be a family of Abelian varieties, and f: X -
 its Neron model. Then there is a short exact sequence

 0 * Xfixed - FO(S, X) > Hi (j* V) -+ 0

 where V Rlf*C, Xfixed is the Abelian variety

 (FOIF')HO(S, j* V)IHO(S, j* Vz) ,

 with S x Xfixed embedded in X over S, and FO(S, X) denotes the group of
 sections of X passing through the identity components of the singular fibers.

 Proof. FO(S, X) is the set of sections of the sheaf (d defined by

 0 - j*VZ > V > - > - .

 Now take cohomology.

 By the same argument as was used in the proof of (10.1), but applied

 to O we obtain the following more general statement (cf. [17, (7.19)]):

 (10.3) PROPOSITION. If r e HO(S, S'P) and V7( e Ho(S, QM(log Z) (? S'P 1))
 is zero, then there exists a flat section 6 of jP, which may be taken to be

 everywhere of type (p, m - p), so that r is induced by 6.

 (10.4) COROLLARY. If 05 e H'(S, TP) and Vat takes its values in JP, then
 there exists a flat section a of TP so that 5 - u e H'(S, TP+l).

 (b) Duality. The inner product < > (defined in ? 2) is non-degenerate
 on cohomology, as <Cv, v-> > 0 for any non-zero harmonic form v. Using

 instead the natural cup-products (along with the polarization of V), we

 conclude:

 (10.5) PROPOSITION. The natural pairings

 H0(S, j* V) x H2(S, j* V) - H2(S, C) C,

 H'(S, j* V) x H'(S, j* V) - H2(S, C) C

 are dual pairings.
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 11. General real variations of Hodge structure

 For a general variation of Hodge structure over R, one does not have

 quasi-unipotence for the local monodromy transformations, only that their

 eigenvalues are all of norm one. In this section, we prove the Poincare and

 Dolbeault Lemmas for the general case. Of course, this gives an alternate

 proof of (6.14). Consequently, we immediately obtain the existence of a

 functorial Hodge structure on H'(S, ji V).

 At a singular point, we decompose V into its generalized eigenspaces

 v = (eo07<1 Va

 so that (T - e2tiaI) is nilpotent on Va.

 The quasi-canonical extension T of T is defined as in (6.9), with

 generators

 (11.1) Jr~(t) =exp(La + 1. N ]logt)v (ve Va)

 tcexp ( .Na log t) v .

 The theory of [17] generalizes to arbitrary variations of Hodge structure

 (unpublished correspondence between Deligne and Schmid), and we have

 (11.2) LEMMA. I 12 2a logk-m r if v e W,(Va).

 The statement here is the natural extension of the norm estimates that

 come from [17]. Assuming (11.2) and the existence of L2-adapted bases

 achieving these norms, we proceed as in Sections 6 and 7. We work with

 a fixed summand Va with a ? 0. If we grade Va according to Na, and write

 forms in Gr'( V,,) as 6og, D becomes the operator

 L,(co) = dsol + adt co.
 t

 Generalizing (6.6), we have

 (11.3) PROPOSITION. Let coi be an L2 i-form (i 1 or 2) with La(60) = 0.

 Then there exists an L2 (i- 1)-form r)v with LQ(7) =o.

 Proof. We will carry out the argument only for the case i = 1, the

 other case being similar. From our experience in Section 6, we work expli-

 citly in polar coordinates, and we may permit ourselves to compute formally.

 Writing o = f dr + g dO, and using the identity

 dt = dr + MO ,
 t r

 we see that the condition La(co) = 0 becomes
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 ag - a +f -if =0o

 or, expressing this in terms of Fourier coefficients, with

 f - E f(r)e" , g - g(r)e

 (11.4) ggn + =g - i(n + a)fn.
 r

 If u = Eu,(r)e'n9 is to satisfy Lu = co, then

 (11.5) (i) u a ?-un = r

 (ii) i(n + a)u, = gn.

 Because a V Z, we may use (11.5, ii) to obtain

 __ i

 un = - gn -
 n + a

 Then (11.4) guarantees that (11.5, i) is simultaneously satisfied. Estimating

 L2 norms, we have

 (2) = (n + a) I g 2r2 log r k2(r-ldr)

 < C(n + a)-2 1 g. 1 2r-2 (r2a I log r Ik)(rdr)

 C(n + a)2 jgd8 1(2).

 So llUV11(2 =< K , oII l2
 Likewise, extending (6.4), we have

 (11.5) PROPOSITION. Let 'O be a holomorphic line bundle on A* with

 generating section 6, and with a Hermitian metric satisfying

 I I a |112 - r2a I log r. 11 (O <at<l1) .

 Then for every L2 (0, 1)-form 5 = fdT 06 there exists an L2 section u 06
 with au = fdT.

 Proof. As in (6.4), we define u to have Fourier coefficients

 2rn \ p-"f,(p)dp if n <O
 Un =

 l-2rn\ p-'nf,+(p)dp if n> 0

 for some A < 1, so that au = fdt. Checking L2 norms in the first instance

 (the other being similar), we see that
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 Il u2r-1+2` log r Ik-`dr

 < 4r2 (5r p-2n If+1 (p) 12 dp)(5 dp )r-1+2a I log r I-2 dr

 - 5 4q log r k2 ( fn+p)12 dp) dr

 - 5 p-2n If+i(p) 2( 4r2(nf+ a) log rI k-2dr) dp

 2(n + a) + 1 j Ifn|+1(p) p llgPK 2dp
 rbA

 < K 5 If|f+i() 12pi+2a I log p Ikdp
 0

 So Jlu (&U1(2, <KjjfdT0 U v11(2- So u~aH(2)K fdT a2).
 The rest of the theory proceeds as in Section 7, so we may conclude

 (11.6) THEOREM. If V is the sheaf of local constants underlying a

 polarizable variation of Hodge structure of weight m (defined over R) on

 the smooth algebraic curve S, then there are associated functorial Hodge

 structures of weight m + i on H'(3, j*, V) = Hi(S, Q ( V)(2)), whose Hodge
 filtration is induced by the Hodge filtration (1.12) on the complex Q-(V)(2,).

 (11.7) Remark. As in (9.1), we may use the complex K- instead to give
 the Hodge filtration. (This affects only the unipotent summand.)

 12. The Hodge structures of Shimura

 In [18], Shimura shows the existence of what is, in effect, a Hodge

 structure (defined over R) on some group cohomology of Fuchsian subgroups
 of SL(2, R) in terms of vector-valued automorphic forms (see also [21, (4.2.6)]
 and [11, (2.10)]). The Hodge structure appears in a somewhat ad hoc manner.7
 In this section, we show that these Hodge structures are examples of the

 Hodge theory associated to a variation of Hodge structure over a curve.
 We follow for the most part [21]. Let G = SL(2, R) with standardized

 notation

 /a by

 g c d/

 for the elements of G, and let H denote the upper half-plane. Using i e H

 as the base-point, we identify H as the quotient GIK where

 K {k) (~Cos2 sin6 )
 K= k(O) =-si . o ,, ,, e RF

 7 If the subgroup is cocompact, the Hodge theory for vector-valued forms on Hermitian
 symmetric spaces (see [25]) provides another interpretation.
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 is the stabilizer of i. If F is a Fuchsian group of the first kind (r is a

 discrete subgroup of G such that G/F has finite invariant measure), by

 putting S = H/F we obtain an algebraic curve whose smooth completion S
 is obtained by adjoining a finite number of cusps to S.

 Let (Pm, VEm) denote the mth standard irreducible representation of G;
 namely, V, = C2 with G operating in the usual way, and (Pn, Vm) is the mth
 symmetric power of (p1, V,). It will suffice to consider V1 for most purposes.
 Since K is a circle, p, necessarily diagonalizes under K, and the eigenvectors

 are computed to be e1 = u1 + iu2 and e-1 = u1-iu2, where {us, u2} is
 the standard basis of C2. It follows that Vm has a basis of K-eigenvectors

 {es, Sm-2 *- 6-,m} where

 (12.1) Sm-21 =(el) (e_1

 the vector sp corresponding to eigenvalue e'P0 under the matrix k(Q).
 Let Sk(F, m) denote the space of Vm-valued cusp forms for F. Explicitly,

 these are holomorphic functions f: H > Vm which satisfy

 (12.2) f(yz) = (cz + d)kpm(Y)f(Z) for all e F,

 and, in addition, a cusp condition [21, (A,)] which will not be repeated now.
 If

 -I (-1 ?)

 we must insist that m + k be even in order that the construction to be done
 shortly make sense. (Also, if m + k is odd, Sk(F, M) = 0.) In fact, for
 simplicity, we assume -I2 V r. We expand a cusp form as

 f(z) = 5pfp(z)(ci + d) p pm(g)es, if z =gi
 One easily verifies that this expression does indeed define f,(z), independent
 of the choice of g.

 (12.3) LEMMA. Iff Sk(F m) andfr=Ofor all r>p, thenfp e Sk-p(F 0).

 Proof. See [21], specifically (1.1.9) and (2.3).

 In particular, there is an injection

 Q: Sk+m(F, 0) -+ Sk(F, M)

 given by Q(F) = F(z)(ci + d)-mpm(g)esm.
 For any value of m one constructs a locally constant system, also denoted

 Vm, on S by taking H x Vm/r, where r acts by the product action. Let
 TOm = Vnm ?&C, The space SJ(F, m) may be identified with a subspace of the
 global sections of T.I,, over S (equivalently, the F-equivariant holomorphic
 Vm-valued functions on H). Similarly, S2(F, m) is contained in the space of
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 Vm-valued holomorphic one-forms on S. From the short exact sequence of

 F-modules,

 O-* Vm H0(H, 03II & Vm) >H0(H, Q' Xc Vm) - ,

 one obtains a mapping

 H?(Hy QH f& V.)r >H'(]P, V,.)

 S2(F, m) > H'(S, Vm)

 It can be checked that O' is infective, so we identify S2(F, m) with its image
 under 3.

 Let IF be a parabolic subgroup of r. This means that rF is the stabilizer

 in F of a cusp of S, and necessarily IF is cyclic with HFO A*. One defines

 the parabolic (or Eichler) cohomology group

 H'(r, Vm) = nfOcrker{H1(r, Vm) H1(F0, Vm)}I
 Then the Hodge structure of Shimura is given by the following:

 (12.4) THEOREM [18]. Q[S2+m(F, 0)1 E Q[S2+m(F, 0)] = H'(F, Vm).

 We begin to translate into the context of this paper:

 (12.5) PROPOSITION. H'(F, Vm) is naturally isomorphic to H'(S, j* V).

 Proof. From the Leray spectral sequence for j, we obtain the exact

 sequence

 0 - H'(S, j* Vm) - H'(S, Vm) - HO(S, Rl'* Vm).

 Since R'j* Vm is supported on the set of cusps I c S, we may write

 H0(S, Rlj* Vm) = EseH1(A*(s), Vy) I

 where A*(s) is a small punctured disc around the cusp s. The mapping w
 then decomposes into a direct sum of restriction mappings

 (12.6) H'(SY Vm) HO(A *(s), VM) .

 But A*(s) is a deformation retract of the larger punctured disc H/FO (FO

 being the parabolic subgroup for s). Thus, the mapping (12.6) is none other

 than

 H 1(F , Vjm - H'(ro, V.m)

 Now, (12.5) follows immediately.

 In order to apply Hodge theory with degenerating coefficients, we need

 to put a polarized variation of Hodge structure on TOm. The structure on 'Om
 will be of weight m, and it will be induced by symmetric product from 01.
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 At the point z = gi e H, define

 HP Im( Vm) = CPm(g)'m_2pP

 Since K acts diagonally with respect to {ep}, this is a well-defined subspace
 of Vm. It is clear that

 HZ -PHP,,-P

 and

 Vm - (DP= 0 Hpp

 By construction, whatever F is, the variation of Hodge structure descends

 to S = H/F, giving a variation of Hodge structure on CZm. To polarize this

 structure, we observe that Pm is isomorphic as a representation to its con-

 tragredient, so there is a G-equivariant isomorphism

 On: Vm- V, n

 (determined uniquely up to a multiplicative constant). Since Am is neces-

 sarily (proportional to) the mth symmetric power of ,51 we need only polarize
 V1, and this may be checked at the one point i, where e, is of type (0, 1) and

 e-1 is of type (1, 0). Explicitly, if {e*, e*1} is the dual basis for V2*,

 01(el)=--2ie*l,
 51(el) =2ie*1

 so we obtain a skew-symmetric C-linear pairing with

 (12.7) (el, e-1) = <Mel, 0l1(e_,)> =2i .

 It is easy to see that this pairing is, in fact, defined over R. Then V1 is

 polarized by the Hermitian form <, >, with

 (12.8) <el, e1> (Ce1, Cj) =(i'lel, e_1)= 2
 <e1, e_1> 2 -

 (12.9) LEMMA. o(Z) = zu1 + u2 is a nowhere-vanishing holomorphic
 section of the first Hodge bundle WF on H.

 Proof. We know that at z gi, F' is spanned by ge1. If z x+iy,
 we may choose

 g - y-/2 (Y x)

 Then

 -1/2 1(Y ix) i-1/2( )
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 Thus, zu, + u2 is a section of F1, and it is patently holomorphic and nowhere-
 vanishing on H.

 Now let s e S be a cusp, and F0 the associated parabolic subgroup. As

 was remarked earlier, X/FO is a punctured disc A*, and the natural mapping

 X, --> 1X/ is an embedding on a sufficiently small deleted neighborhood of
 s. We may assume without loss of generality that s is the image of the

 parabolic point co. A generator y of IF must then be of the form

 /1 h

 I0 1)
 where : ?+1 and h e R. By the definition of Vm, y is the local monodromy

 transformation around the cusp. The associated nilpotent logarithm is

 /0 hi

 and the covering z: H-> A* is given by

 t = Z(z) = e2iz/

 (12.10) LEMMA. If X = 1, (o(z) = zu1 + u2 and ul are (local) generating
 sections of the canonical extension bundle t,; if X -1,

 e /zh (0(z) = tV'2(zu1 + u2) and t"2 u1

 are generators.

 Proof. This is obvious, once one writes

 (0(z) = (z/h)(hu1) + u2

 = exp 2Wi Nlog t)u2 -

 (12.11) COROLLARY. If X 1, or if X--1 and m is even, up =

 [co(z)]Pu--P generates yPm modulo SYP,+'; if A=-1 and m is odd, up=
 t1/2 [Go(z)]Pun-P is a generator.

 This takes care of the Hodge filtration. Though it is not essential for

 the discussion, we briefly take note of the weight filtration. For V, (the

 rest being induced by symmetric product), we have trivially:

 (12.12) LEMMA. On V1, u1 spans W0(= W1), and U2 spans Grid( V1).

 We can compute directly the norms of the two elements u1 and u2.

 Breaking each into its Hodge components, we have

 U, = (2iy)- [a)(z) - ((z)],

 U2 =(2iy)-'[zii(z) - Ro(z)j ,
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 so by (12.8), we calculate, as Go(z) = iy"2ge,, that

 l ul %1 = (4y2)-1 [2 l 12] = (2y2)-l [y<e1, e1>] -

 1U2,112 (4y2)-1[2IzIa) 112] = y-lzJ2

 (12.13) Remark. It deserves to be mentioned that we are looking here

 at perhaps the "purest" example of Schmid's asymptotic description of the

 degeneration of a variation of Hodge structure. In fact, the asymptotic

 and the actual coincide here. The structure on V1 is the model S(1), with

 v+ = el and v_ = e-1, and there is a correspondence of polarizations (compare
 (12.7) to [17, (6.23)]).

 We are ready to analyze the Hodge structure on H1(S, j, Vm).

 (12.14) LEMMA. The complex GrpK' is acyclic except for p = 0, m + 1.

 Proof. This is very simple: for 0 < p < m, Gr`'KK is the complex

 yVap Q, Q(log ?) @t-

 Even at a cusp (which we take to be given by z = oo), ?iMP is generated by

 up, and Vap = pdz ? up-, generates Qs (log ?) 0 &2p-1, according to (12.11).

 Since V is OS-linear, it is an isomorphism, i.e., GrPK' is acyclic.

 As H'(S, GrPK ) gives the subspace HP'+1-P in the Hodge decomposition

 of H'(S, j,* V.), most of the components are zero, and we have

 H'(S, j* V) = Hm+'"0 0o HO,'m`
 = Hm+1,O 0D Hm+1,

 We complete the interpretation of (12.4) by showing

 (12.15) LEMMA. Hm-+0= Q[S2+m(FY, 0)].

 Proof. H -+' Fm+lHl(S, j* Vm)

 - H'(S Fm+`Q'( Vm)(2))

 - H0(S, (Q' 0g Fm) 2).

 Thus, it remains to verify that the De-valued one-forms in Q[S2+m(F, 0)] are

 those with the requisite growth at the cusps. Write f e Q[S2+m(F, 0)] as

 f(z) = F(z)(ci + d)-mpm(g)sm = F(z)[a)(z)]m

 which represents

 =7 [F(z)dz] (0 [w)(z)]w e H0(S, Q' 0 em)
 At a cusp (taking z = o again), we must distinguish two cases:

 Case 1: X = 1, or X =-1 and m is even. Then F(z) is a cusp form if

 and only if it has a power series expansion in t = e2 iz/h, with constant term

 zero. Thus, 77 is of the form tg(t)(dt/t) 0 COn, where g(t) is analytic at the
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 origin. As j om 2 logmjt , this gives (Q'0Sm)(2) at the cusp.

 Case 2: X =-1 and m is odd. Then F is a cusp form if and only if F

 has a power series expansion in (odd powers of) t1"2. The leading term of )

 is then proportional to dt/t X t1/2aY', which generates (Q' ? TF,)(2) at the cusp.
 In either case, this completes the proof of (12.15).

 13. Mixed Hodge theory

 We return to the general set-up where V underlies a polarizable varia-

 tion of Hodge structure of weight m over the smooth curve S, j: S EA,
 ? = S - S. Let S be any open subvariety of S; restricting S if necessary

 (noting (8.1)), we may assume that S c S c S. In this section, we show that

 there is a functorial mixed Hodge structure on H'(S, j*, Vjs). Since we are
 working over R, a mixed Hodge structure on a complex vector space E,

 with real structure ER (so E = ER OR C), consists of two filtrations-an

 increasing weight filtration { Wj defined over R, and a decreasing Hodge
 filtration {FP}-such that {FP} induces on GrwY(E) a Hodge structure of

 weight k. Again, if V is defined over Z, the weight filtration will be defined

 over Q.

 Let j: S >S jSoS->S. X S-S, Yo = ?-E. We build a two-term
 complex K(S) by setting K(S)0 - aT, and letting K(S)1 be the extension to

 S of Qs(V) given by Q' (log ?) ?( at points of X, and by K' = S (see ? 9)
 at the points of E0. Then we have

 (13.1) LEMMA. Hi(9, K(S)') - H(S, j V).

 Proof. The assertion follows by combination of the fact that Ki resolves

 j* V with [10, p. 105] (that j*j*K(S) is quasi-isomorphic to K(S)1), since
 jo* V j i* Vls .

 We can use the Hodge filtration (1.12), as before, to define {FPK(S)-}.

 To define a weight filtration, we start by letting

 WkK(S)-=0 if k n< ,

 WmK(S) = Ki

 to define the higher weights, we must first introduce some notation. As

 K(S) and K( = K(S) agree for non-unipotent monodromy, the non-unipotent
 local summands of V will not enter into the discussion, so we may assume

 without loss of generality that the local monodromy transformations are

 unipotent. At each s e Y., V decomposes into irreducible 1I2-components (cf.

 ? 5), each of which contains real basis elements of highest weight filtration
 -viz., e- in S(m), etc.-which span the cokernel of
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 dt
 t

 (via the residue of V) or, equivalently, the cokernel of N. Let P denote

 their span. For 0 < r ? M + 1 define (at s e E)

 (13.2) Zm+r = NV? (P n W.+rl (V))
 - W+r-I + NV

 and let Zm+, be the corresponding sub-bundle of 'C. In this notation, K(S)'
 is equal to

 t ? + t?].

 Define Wm+rK(S) to be the complex

 dt R3 >[Zm [Sm+r + tv]a
 t

 (On S, we use K'.) As in Section 4, this gives well-defined complexes of

 sheaves globally on S, such that taking FP or GrP gives complexes of locally-

 free OS-modules (cf. (5.2)).

 Let N, denote the nilpotent monodromy logarithm associated to s e
 Then the following is immediate:

 (13.3) LEMMA. For 0 < r ? M + 1,

 Res: GrW+rK(Sf) >_* (it, e Pm+r-, (8)[-1]

 where Pk(S) is the primitive part of Gr"T( V) at s [17, (6.4)]:

 Pm+i = ker {N'+': Gr +T( V) Grw i2( V)}.
 (13.4) Remarks: (i) The isomorphism in (13.3) is non-canonical, in the

 sense that the identification Zm+r/NV = P n Wm+rl( V) involves a splitting;
 intrinsically,

 Zm+r/NV = Wm+r-l/( Wm+r-I n NV).

 (ii) In the case where V is non-degenerate at s, N 0 and V- Win, so

 Z= 0, and (WmK(S)1). - (Qs ( V)),. Similarly, (Wi+lK(9)'), - (Qs (log 2)( V)),.
 In the spectral sequence

 EP q= Hp+q(3, Grw K(f) ) H*(S, K(S)') - H*(S, jo* V) I
 we see that the El terms are zero except for

 -p =m, q = m, m + 1, m + 2

 -(M + m- 1) p<-m, q=-p-1,

 and therefore, the only possible non-zero differentials are
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 (13.5) dr: H'(S, Grv +rK(S)') - E- (1 ? ? M + 1)

 In particular, there is

 (13.6) di: @8 e Pm(s) H2(S, j* V)

 Define the coarse weight filtration { WJk on K(S) by setting

 {Wk if kIc m or k>?MA+m+l

 (. W if m<k<M +A-r +1i.
 (13.8) PROPOSITION. The spectral sequence associated to { Wk} on K(S)-

 is the Leray spectral sequence for j and the sheaf jo* V, shifted so that the
 EM+l term of the former equals the E2 term of the latter. Moreover, the
 following diagram is commutative:

 Residue

 918 e Pm(8) <- H1 (3S Gr"'?+lK(S)-
 \wdi

 f 17 >H2(S,j*V);

 /,.-dguli

 @8 e L [?r=o Pm+r(5)] < H (S. Gr??M+l K(S))

 and the mapping -rd+M1 is equal to the composite

 @8 e Z [(DrI=0 Pm+r(S)]

 @ 8E3 V/N8 V i8e (ker N)* (n8.e kerN8)* (nfl8FkerN8)*

 - (Ho(3,9 i* V))* - H2(,j )

 with the unlabeled arrows indicating surjective mappings provided X + 0
 (i.e., S # S).

 Proof. The first assertion follows as in [8, (3.18)], using [10, p. 85
 (3.15)]. (We remark that j* V = i *(j,* V).) The second assertion is obvious,
 so it remains to check the last statement. Let A*(s) be a small disc centered

 at s e E. Given v e V/N8 V, let v be a generating section for 1 which projects
 onto v at the origin. As the differential in the spectral sequence is equal to

 the connecting homomorphism a in the cohomology sequence of

 0 - + Wm W K(3) - Grw'M 0,

 we use Dolbeault cohomology to compute that

 -dM~( , dtt (Dv a)=8 1, dttXv= ( dttX)
 2Wci t i 27i t/ 27

 where p is a Cm function supported in A*(s) that is identically 1 in a
 neighborhood of the origin. If w e HO(S, j* V), then
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 = 1 .tlime0 \ pk(v w)

 = (v, w) .

 Summing over X, we see that the proof is complete.

 As a consequence of the preceding, we have the following results of a

 topological nature, which may also be deduced directly.

 (13.9) COROLLARY. If X + 0, H2(S, jiy V) = 0.

 (13.10) COROLLARY. If V is a locally constant sheaf on A* and T7O is

 the unipotent summand, with associated N, then

 Hl(A\*, V)~ 1 dt ?d(V0/NV0).
 2Wi t

 (The statement of (13.10) remains true even if the monodromy has arbitrary

 non-zero eigenvalues, as can be seen directly using Cech cohomology.)

 With the aid of Proposition (13.8), we see that the spectral sequence

 associated to the weight filtration { Wa} on K()w is a refinement of the Leray

 spectral sequence for wh* and jc V. Each of the non-zero Ecly. terms possesses
 a lodge structure induced by {F#K(SH}. For p = -m, it is Hodge theory

 with degenerating coefficients. For E1 m~Tr'm~r7l' Bees Pm+7l(s) (0 K< ?

 M + 1), there is a lodge structure of weight n + r + 1 which can be

 described as follows. On a a*, the mapping v-*V' sets up an isomorphism

 V~ R3(0), imparting a real structure to the latter vector space. The

 filtration {Ft} of [17, (6.15)] on V is carried into {te(0)} under the above

 isomorphism. With the monodromy weights { Wk( V)}, there is then a mixed

 lodge structure on V such that Pm+ri1 is a Hodge sub-structure of GrW+7~1( V)

 [17, (6.16)]. The isomorphisms in (13.3) decrease lodge filtration levels by

 one, so we obtain a lodge structure of weight m r + 1 on El arbitrar
 with the isomorphisms (13.3) now appearing as morphism of type (-1,-1).

 We have a complex (defined over C) that seems ripe for mixed Hodge

 theory. However, we need to know that the weight filtration is defined

 over R. To do this, we will complete (Kot)h, W, F) to the data of a coho-

 mological mixed Hodge complex [9] by showing that we may refine the

 canonical filtration {If 6k} on Rj V to obtain a weight filtration consistent
 with the above. Since the singular points are isolated, there is no harm in
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 assuming S- S. Furthermore, it will suffice to make the construction

 locally, so we assume that S = A*, A = a. Associated to {Zk} in (13.2) are

 locally constant sub-sheaves of V, which we also denote {Zk}. Define

 W,,(Rj* V) = r ?Rj* V z j* V;

 for 0 < r ? M + 1, define Wmr(Rj* V) to be the complex whose non-zero
 terms are

 (Rj* V)0 in degree 0,

 d(Rj* V)0 + (ker d) n (Rj*Zm+r)' in degree 1

 for i > 1, Wmkm+i(Rj* V) = 7fi(Rj* V).
 Then

 Grmv(Rj* V) j* V

 Grm?+r(Rj* V) ?R'j*(Zm+r/Zm-r-1)[-1] + < < M + 1
 Pm+r-i[-l] i

 and for i > 1, GrM+,m+(Rj* V)z-R'j* Ve= 0. The weight filtration is evidently
 induced by the analogous filtration on Rj* VR. Moreover, the mappings

 K(S)' > *Q-( V) < Rj* V

 are easily seen to be W-filtered quasi-isomorphisms when we filter j*Q( V)

 by setting Wm(j*Q( V)) = j* V and for 0 < r ? M + 1,

 Wm+r(j*Q (V)) - j*C(V) > [V(j*O(V)) + J*Q'(Zm+r)]

 - j*0(V) > v(j*V9(V)) + dt ? Wm+r-I v
 t

 As in (8.2), one easily verifies that the bi-filtered complex K(S)- is
 functorial in its construction, and therefore we conclude

 (13.11) THEOREM. With notation as above, there is a functorial mixed

 Hodge structure on Hi(S, jo* V) induced by W and F.

 Expressed for the geometric situation, this theorem reads

 (13.12) COROLLARY. If we have the diagram

 X y

 If) f
 S A-S

 with f smooth pro jective, then there is a natural mixed Hodge structure on

 H'(S, jo*Rmf*C), for all i and m.

 Most significantly, taking S =S, we state for emphasis

 (13.13) COROLLARY. If f: X-> S is a smooth pro jective morphism, there

 is a natural mixed Hodge structure on H'(S, Rmf*C) for all i and m.
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 Because of (13.8) and the fact that d, is the only non-zero differential
 in the spectral sequence for W, we necessarily have that d, is surjective.
 Taking i to consist of a single point, we obtain the following, which is also
 a consequence of (8.4):

 (13.14) PROPOSITION. If v e r(S, V) and v annihilates every element of
 Pm(s) for some s e I, then v = 0.

 (13.15) COROLLARY. If v e r(S, V) and V C Wmi( V) for some s e I, then

 v = O.

 14. Cohomology with compact supports

 There is a natural mixed Hodge structure on cohomology with compact

 supports, whose existence we derive in this section (14.3).

 We first do the simplest case S ' S. Using standard notation, we write
 ji V for the extension by zero of the sheaf V from S to S. Then

 HC'(S, V) = H'(S, j1 V) .

 At a point s e x, write V = 0oa< Va. The following is immediate:

 (14.1) PROPOSITION. There is a diagram of exact sequences

 o 0V*t0 e~a W 0 (500 e~~a)~ 1~~~ ~~~ 1d 1
 0 ) !V tf)o ED N-of')-] 2 ZT (Vig (D 19[@a+o td) '

 ?_ _*V __ -- - * 0

 1 1P N=ResV 1 ____P
 0 * De.(j* V)s (>Des5( VO) N= ese ( (im NJ) -->0

 0 0 0

 (where again we are using local notation in the first row to define global

 objects).

 (14.2) COROLLARY. The cohomology groups of i! V on 3 are given as the

 hypercohomology of any of the following complexes:

 t7@@ 3 vy dt tg ]
 (i) t~1o0 ( [ea7~_o T .] t ?) (tGbo 0 [ea- o c1)A

 t

 (ii) j*V + seC(i*V). I

 (iii) 0 )- [(se(VO)8] E [e N8D- (DsZj(imNs)
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 Define for k < m,

 Wk(j, V) = [(ker N.) n Wk+l(v),][ - 1] (using (14.2, ii) to resolve j1V;

 as before, we may tacitly assume that all local monodromy is unipotent),

 and let W. be the whole thing. Then for k < m,

 Grw(j, V) = @86 Grw,(Vn ker N,)[-1]
 Grw(j. V) = ji V.

 In the complex (14.2, iii) (call it K"), we define for k < m,

 Wk = Cs (1Wk+l( Vo)s Wk- 1 (VO).)[-11
 W.' = K' .

 N
 Then Gr"' =D3,.E(Grw1 (V0), - Grw_1(Vo),)[-1], which is quasi-isomorphic to

 Grw'(ji V); and Grw' is (the single complex associated to)

 I N
 @.62[V0/Wm( Ve)]J8 es [ im NS/ Wm-2( V0)8]

 which is a resolution of ?f( V)(2), hence is quasi-isomorphic to Grw(j, V). As

 in Section 13, it follows from [17, (6.16)] that F induces on H1(S, Grw'(j1 V))
 a Hodge structure of weight k + 1, whereas for H'(s, Grw(j1 V)) =

 H'(S, j, V), it induces Hodge theory with degenerating coefficients, of
 weight m + i. Thus, the data (j, V,, W), (K', W', F) determine a coho-
 mological mixed Hodge complex over R, and we have

 (14.3) THEOREM. The filtrations W[i] and F induce a functorial mixed
 Hodge structure on HR(S, V). Furthermore, the exact cohomology sequence

 o H0(S, j* V) -+3$6 (* V). -? H(S, V) H1(S, i* V) - 0
 is an exact sequence of mixed Hodge structures.

 We can combine the content of Theorems (13.11) and (14.3) to get the

 following (where we are retaining the notation from the beginning of ? 13):

 (14.4) THEOREM. There is a natural mixed Hodge structure on

 H:(S, jo* V) = H'(S, ijio* V), and an exact sequence of mixed Hodge struc-
 tures

 O- HX(99 j* V) ED 13e2(j* V), H,'(Sp jo* V) H'(S, j* V) 0 ?

 (14.5) Remark. The above exact sequence is dual (up to a shift of

 weights) to

 o HX1(S, j* V) - H'(S, io* V) - D. e e Vo/N. Vo H2(S, j* V).
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 15. Compatibility of the Hodge structures with the

 Leray spectral sequence

 We wish to demonstrate that in the geometric situation

 X C_).X

 4 1'
 S C_ 3

 the Hodge structures on HI(S, j*Rmf*C) are induced by those of Hm-+(X).

 As the case S = S is covered by (2.14), we assume that S / S. We

 further assume initially that the singular fibers f-(z) are unions of smooth

 divisors with normal crossings, denoted Y, which we can always arrange

 via a resolution of singularities from a general situation. The case i = 0 is

 well-known, and the case i = 2 comes rather easily by duality (15.11), so

 we will concentrate on the more interesting group H'(S, j*Rtmf*C). Ascer-

 taining this result will impart full significance to the theorem on normal

 functions (9.2).

 The proof is based on the mixed Hodge theories for H'(S, Rmf*C) given

 in Section 13, and for Hm+'(X) [8]. The relations among the various coho-

 mology groups involved are given by the diagram with exact rows:

 o > L H'41(X) > H(S, Rm+lf*C)

 ja 1

 H'(S, Rmf*C)

 (15.1) jr

 H'(S, j*Rmf*C)

 o > H'(S, Rmf*C) - Hm'+(X) -> H0(S, Rm+lf*C) - 0.

 That y is an isomorphism follows from the local invariant cycle theorem

 (see [4, (3.7)]), which asserts that Rmf*C -> j*Rtmf*C is surjective (with
 kernel supported on A).

 (15.2) Remark. There is no need to assume that the singular fibers are

 reduced, as in [4], for the proof needs only the existence of mixed Hodge

 structures on the hypercohomology of certain complexes, all of which are

 defined in general.

 With the notation from (15.1), we are asserting

 (15.3) THEOREM. The mapping -i o a is a morphism of Hodge struc-

 tures.
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 We will continue and prove the following stronger result:

 (15.4) THEOREM. The mapping fi is a morphism of mixed Hodge struc-

 tures.

 While (15.4) contains (15.3), we will first prove (15.3) and then use another

 argument to establish the rest.

 The proof begins with a discussion of the Hodge filtrations F, proceeding

 along the lines of (2.14).

 (15.5) PROPOSITION. The Hodge filtration on H'(S, Rmf*C) is induced

 by that of Hm"'(X).

 Proof. The cohomology of X is computed by means of the log complex

 My = QX(1og Y) .

 Filtering this complex by

 LPMB = image of f*Q (log x) 0 Q (log Y),

 so that

 GrPM = f*QP(log Z) X Q>1s(log Y),

 we get a spectral sequence abutting to the cohomology sheaves on S of

 Ra = Rf*M', with

 LEl q Q5 (log A) R? Rqf*Q' s(log Y)

 Q5 (log A) U q by [19, (2.20)].
 Therefore, there is a quasi-isomorphism

 (15.6) Grec (L)Rf *M - ' Qj (log Z) ? 9'-P [p]
 (cf. (2.15)). The hypercohomology of the right-hand side gives H*(S, R-Pf*C)

 [10, II (6.10)]. Hence, the spectral sequence associated to the filtration

 D = Dec (L) is, as before, the Leray spectral sequence for f. Furthermore,

 we have the relative Hodge spectral sequence

 ,FE p, q = Rq f* Qr,!_(log Y) -RP+qf*Ql 'g(log Y)

 degenerating at FEl, because all sheaves above are locally free on S [20,
 (2.11)], and all differentials vanish on S by classical Hodge theory. Con-

 sequently, (15.6) is actually a filtered quasi-isomorphism with respect to the

 filtrations induced by F; on the latter complex therein, it is the filtration

 given by (1.12).

 The remainder of the argument can be simplified from (2.14). We have

 both

 DElpq -H2p+q (Sy R-Pf*C) HP+q (X)
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 and

 F(D)El = HP q (5, GrPQj(log I) ? Mm) HP+q (S, Vtm)
 with VIm = RLfC, degenerating at E1, the first by [6] (note the shift), and

 the second by the mixed Hodge theory [9, (8.19)]. Necessarily the D(F)

 spectral sequence degenerates at E1 (as does the F spectral sequence, which

 is precisely [8, (3.2.13, ii)]), and therefore all spectral sequences associated

 to D and F degenerate at E1. From this, using the natural identifications

 that follows from the degeneration, we conclude that

 FPHk(Grq R) - Hk((Dq q FP)R7(Dq+l n FP)R)

 = Hk((Dq n FP)R')/Hk((Dq+l n FP)R')
 = FP[Gr qHk(X)]

 which is the desired result.

 We turn now to the weight filtrations W. On M@, WoMb = Qx, so

 WkHk(X) = image of Hk(X) ;

 and the assertion contained in (15.4) that f8 respects Wmoi follows from the

 fact that a in (15.1) is surjective (S is a curve). It is now a simple diagram
 chase to conclude that (15.3) holds.

 We will work now modulo the lowest non-zero weight. There is a natural

 injection

 (15.7) B: H'(S, K(S)'/ WmK(S)') Hm+'(X, Ml WOM')

 D e E ( Vo/N Vo)8

 which we will now describe. Since both quotient complexes are supported

 on or over A, we may restrict to a small disc A around a point of Z. As is

 implicit in [19, (4.3)], there is a natural isomorphism

 V0 _H (f'(A), Qjls (log Y) 0 O?Jred)

 and it fits into an exact sequence

 (15.8) V0 N V0 A(1/2)dt/t Hm+l(-l(A) M /WoM ).
 Each vector space in (15.8) carries a mixed Hodge structure. As is implied

 in [4], this is an exact sequence of mixed Hodge structures. Taking the

 cokernel by N gives (15.7).

 We will be essentially finished with the proof of (15.4) once we know

 that the mapping B fits into a diagram of exact sequences of mixed Hodge

 structures:
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 o Wm+iH'(S, K(S)@) H1(S, K(S) ) - H'(S, K(S)7/ WmK(S)')

 (15.9) P B

 0 Wm+iHm~l(X M@) - Hm+'(X, M@) - Hm+l(X, Ml/WoM);

 if $ e WkH'(S, K(S')), and k > m + 1, then

 p[jS(e)] = B[u(?)] e WkHm (M / WoM ) y

 so by strictness ,8(e) lies in

 ( WkHm+l(M ) + ker p) - WkHm+'(M).

 So we must prove

 (15.10) PROPOSITION. The right-hand square in (15.9) commutes.

 Proof. It suffices to work on A, as (15.7) is defined locally on E. We

 consider the filtration L on M@. There is an exact sequence

 Hm(f '(A), Qj T8 (log Y)) - Hl+l (-'(A), dt Q* (lo Y)[ )

 ) H'n+lV-1(A)y MI) .

 Since A is a disc, we may rewrite this as

 H0(Ay Rmf*Q'-1 (log Y)) Ho ( Ay dt ?& Rmf* Q' yZ (log Y)) Y J ~~~~~~~t >Hm+'(f -l(A)t M-)I
 Taking the cokernel of the first mapping, we obtain

 0 - H1(A, QH(log a) ? =ij) llm+1(f-1(A) M)

 Thus over small open subsets of S, we have an isomorphism of filtration

 levels L' -D-m on Hlm+1(Q.p(log Y)). We then follow the commutative diagram

 H'(A, Q0- (log I) O Ct) V.1N VO

 _(f'A), dt <E Qn (log y)) -_ H_(f( ), 0? .(log y) ? @ Ld)
 A 1 dt

 27ci t

 H' (f'(A), Q-(log Y)) - -H'i'(fAl), QT(log Y)/I1

 to reach the desired conclusion (15.10).

 For the cohomology group with i 2, there is a mapping

 e: H2(S, j*Rmf*C) Hm+2(X)

 induced by the Leray spectral sequence for f, which fits into a diagram of
 pairings (for m < n- dim X,, the other cases being similar),
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 H- '2(X) H -2(X)/ker {H"'-'(X) -'H"+(X))

 H"(X) / - H"-(X)/ker {H-(X) H-(X,))

 \ ~~~~~~H? ( S. j*R?^--"f.C)

 \ tU~~~~n
 H?(93 R-!f C) onorH?(S. j 7?mf ,C)

 x x x

 H2(S R-f C) iHs(S t hRpfcC)

 H.4 2 (X) _ ker H - g-Hmt'(X t)
 H2(S j 3'R"--s-zf C)

 H~n 'MX (H H,,+2X 2 Di H (XI)- _H.12QY)3= ker (H2"-- (X)- H21- (h'- X')}

 where a) e H (X H0(9, R fC) is the hyperplane class, and cohomology is
 always taken with complex coefficients. We use the facts that cup-products

 are compatible with the Leray spectral sequence [2, p. 143], and that the

 duality (10.5) uses the polarization of Rmf*C, which involves cup-product

 with lt,-m. With the aid of the diagram, we conclude that the mapping c

 is included via morphisms of type (n - m - 1, n - m - 1) in the dual of

 the known morphism of Hodge structures z. Thus

 (15.11) THEOREM. C: H2(3, j*Rmf*C)Q Hm?2(X) is a morphism of Hodge
 structures.

 We can now drop the hypothesis that X have only normal crossings for

 singular fibers.

 (15.12) PROPOSITION. In the geometric situation

 X i

 f j 1
 S c3

 with X and 3 non-singular pro jective varieties, S a curve, and f proper and

 smooth,

 Rmf*C > j*Rmf*C

 is surjective for all m (i.e., the local invariant cycle theorem holds).

 Proof. Let A be a small disc around a critical value (singular point for

 the cohomology system on S), f: X > 3 a resolution of singularities for the

 fibers of f, XAf'(A), XA = f'(A). The assertion (15.12) is that Hm(XA) >

 Hm(Xt) has as its image the cohomology classes invariant under the local
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 monodromy transformation. We have a diagram (a denotes boundary):

 H "' (X,,) - H'(XA)

 H2%+2-M(XA, aX) H2%+2_m(XA, dXA)

 H2!%+2- (XA aXA U Xo) Hs%?+ (XA aXA U Xo)

 Hm(XA-Xo) H"(XA-Xo)

 H'm(Xt)

 The vertical isomorphisms are given by Lefschetz duality, and the squares
 containing these isomorphisms need not commute. By the standard local

 invariant cycle theorem for X, for any invariant 77 e Hm(Xt) there exists
 f e H"(X,) with 7 restricting to 77. Mapping r7 into H2%+2-..m(X, dX,) and
 returning to H"(X,) by duality, we obtain a pre-image of 77 as desired.

 Using (15.12), we obtain Hodge structures on Ht(S, Rmf*C) -
 HI(S, jiR"'f*C) for i = 1, 2. For i 0, we begin by noting that
 HO(S, R"'f*C) is a vector space extension of spaces carrying mixed Hodge
 structures,

 0 - A - H0(S, Rnf*C) - H0(S j*Rmf*C) 0 ,
 where

 A = ker1{$,6EHm(X,) -> A,,e H (X,) Hm(XZf Q.-ZA (log Y) 0 Oyred)}.

 However, with the aid of the basic exact sequence [4, (7.61)], we can

 see that A is a pure Hodge structure. Hm(X,) -* Hm(X,) is infective because
 of the existence of a left-inverse (with notation as in the proof of (15.12)),

 Hm(X,) ~ H2%_m(XA, axA) > H2nm(XA, aXA) H"M(X,)

 Thus we may assume without loss of generality that X = X. Then

 A = @,6zker{H"(X,) -*V} = VI im{H"(X1?, aXA) Hm(XA) Hm(X,)}

 is of pure weight m, for the mixed Hodge structure on H"(XA, aXA) [4, ? 91
 has its weights Am and H*(X,) has its weights <m.
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 (15.13) PROPOSITION. A c im {Hm(X) -> H'(S, RmfC)}.

 Proof. Use the diagram

 Hm(X, X) , 3egeHm(XA, XAX) (by excision)

 1 _ _ 1.
 Hm(X) - (De e E Hm(X.)

 and the definition of A.

 Coupled with the well-known fact [8] that

 Hm(X) - Ho(S3 j*Rmf*C) = H0(S, Rmf*C)

 is surjective for all m, (15.13) yields

 (15.14) COROLLARY. Hm(X) -> H0(S, Rmf!C) is surjective for all m.

 This places, albeit extrinsically, a Hodge structure of HO(S, Rmf*C) for
 any projective morphism onto a smooth algebraic curve with general fiber

 non-singular. Interpreting (15.14), we obtain an interesting consequence.

 (15.15) COROLLARY. Let f: X -> S be a morphism of smooth projective

 varieties, with dim S- 1. Then the Leray spectral sequence for f (Q-coef-

 ficients) degenerates at E2.8

 Proof. Im {Hm(X) > H0(S, Rmf*C)}

 = ker {d2: H0(S, Rmf*C) , H2(S, Rm-lf*c)},

 so we have d2 = 0, and all higher d, are trivially zero by reason of degree.
 As the final compatibility theorem we have

 (15.16) THEOREM. Iff: X -* S is as in (15.12), the natural mappings

 of cohomology,

 (i) Hm(X) - H0(S, Rmf*C)I
 (ii) ker {Hmnl(X) - Ho(S Rm+lf*C)}

 =nleN ker{Hm+l(X) > H-1(Xs)} - H'(S, Rmf C)}I

 (iii) H2(S, Rmf*C) - ker {Hm+2(X) Hm+2(X)}

 are all morphisms of Hodge structures.

 Proof. All of these mappings factor through or compose with the

 injection of Hodge structures

 Hm+i (X) >Hmn+i (X)

 where X is a resolution of the singularities of the fibers of f. The theorem

 follows from the statement for X.

 I It is an easy step to generalize this result to allow X and S to be singular, so long as
 the general fiber is smooth.
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 (15.17) Remark. There is another mapping of the form (15.16, (iii))
 obtained by extending the diagram (15.9) one step to the right. One would

 expect that the two agree.

 We conclude by considering the bearing of Theorem (15.16) on the

 Hodge Conjecture. We have a diagram

 Horizontal sections of the family

 of p-th intermediate Jacobians

 JP over S

 (Codimension p relative cycles Z) Horizontal normal functions (hori-

 on X with Z-X, homologically zontal sections of the family of|

 equivalent to zero on X, for all p-th generalized intermediate

 8 ) (Jacobians JP over S

 cycle class cohomology K
 1 ~~~~~~~~~class e

 ker fH P-P(X, Z) -HO( R>J*) H1(S, R2p-1.( Z)PJ)

 On the subset of cycles for which the Abel-Jacobi mapping v (see [13] for

 definitions) extends to S, so that i> is defined, the square commutes [23].
 This includes all cycles which do not intersect the singular loci of the bad

 fibers (cf. [23, (4.58)]). We now know that K is surjective (9.2). Thus, if
 one can invert the Abel-Jacobi mapping for a given X (a rare phenomenon),

 one can obtain examples where the Hodge Conjecture is true; otherwise,

 the conjecture remains consistent with the present state of knowledge.
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 Added in proof:

 1. (Re Section 12) For curves S=Hlr, the G-invariant Poincare metric
 y-2dx A dy on H induces on S a metric with the desired singularity at E.

 2. The assertion after (12.3) that the system Vm is locally constant

 presumes that r contains no non-trivial elements of finite order. In general,

 one should base-change, via a normal subgroup r' c r, and take (r/r')-
 invariant elements of cohomology.

 3. The author has found further applications of the results of this

 paper. For applications to elliptic surfaces, see Section 3 of D. Cox and S.

 Zucker, Intersection numbers of sections of elliptic surfaces, to appear in

 Inv. Math.
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