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Lecture 8 (February 20)

Abelian varieties. We are now going to look at abelian varieties from the point
of view of algebraic geometry. Let k be an algebraically closed field; the theory
can be developed in that generality, but some of the results are going to be a bit
di↵erent when char k 6= 0.

Definition 8.1. An abelian variety is a complete variety X (over the field k) that
has the structure of a group, such that the group operations

m : X ⇥ X ! X, m(x, y) = xy, i : X ! X, i(x) = x�1,

are morphisms (= regular maps).

Nonsingular cubic curves in P
2 (in characteristic di↵erent from 2 and 3) are an

example: the group law on the points of a nonsingular cubic can be described by
morphisms. We can get higher-dimensional abelian varieties by taking products;
other examples are less easy to come by.

We are going to show later that every abelian variety is projective; but in the
definition, we only assume that X is complete (or, in scheme language, proper over
Spec k). We are mostly going to work with varieties, and not with schemes, so all
the points of X are closed points. Generally speaking, we want to prove the same
kind of results that we proved in the complex-analytic setting: the structure of X
as a group; line bundles and their global sections; maps to projective space; etc.

Let’s start with a few basic observations. First, X is always nonsingular. By
definition, X is a variety, so it is reduced and irreducible. The set of nonsingular
points is therefore Zariski-open and dense in X. Now X, being a group, is homo-
geneous, and so the existence of one nonsingular point implies that all points are
nonsingular. More precisely, for any x 2 X, consider the translation morphism

tx : X ! X, tx(y) = m(x, y).

This is an automorphism (with inverse ti(x)). Choose a nonsingular point x0 2 X,
and let x 2 X be an arbitrary point. Then translation by m(x, i(x0)) takes the
point x0 to the point x, and since x0 is nonsingular, x must also be nonsingular.

Second, let’s prove that X is an abelian group. We will give two proofs for this;
you should remember the technique, because it is very useful for studying group
actions on algebraic varieties.

Lemma 8.2. The group operation on an abelian variety is commutative.

Proof. As in the complex case, we look at the conjugation morphism

Cx : X ! X, Cx(y) = xyx�1.

This is an automorphism, with inverse Cx�1 . It takes the identity element e 2 X to
itself, and so it acts (by pullback of regular functions) on the local ring OX,e. The
idea is to show that this action is trivial, by proving that it is trivial modulo larger
and larger powers of the maximal ideal me. Because e 2 X is a nonsingular point,
the quotient me/m2

e
is a k-vector space of dimension n = dimX; by Nakayama’s

lemma, we have me = (f1, . . . , fn) for a system of parameters f1, . . . , fn 2 OX,e.
Now the automorphism

C⇤
x
: OX,e ! OX,e

preserves the maximal ideal me, and so for each ` 2 N, it induces an automorphism

C⇤
x
: OX,e/m

`+1

e
! OX,e/m

`+1

e
.

Thinking of the elements in the quotient as polynomials of degree  ` in n-variables,
we see that the quotient on the right-hand side is a finite-dimensional k-vector space
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of dimension
�
n+`

`

�
. So we get a function

f : X ! Endk
�
OX,e/m

`+1

e

�

that sends a point x 2 X to the endomorphism C⇤
x
modulo m`+1

e
, viewed as an

element of the k-vector space on the right-hand side. It is not hard to see that c is
a morphism of algebraic varieties. Indeed, the mapping

C : X ⇥ X ! X, C(x, y) = Cx(y) = xyx�1,

is a morphism (by the definition of abelian varieties). Choose a�ne open neighbor-
hoods V, W of the point e 2 X, and U of the point x 2 X, such that C(U⇥V ) ✓ W .
Then pullback of regular functions gives a morphism of k-algebras

C⇤ : k[W ] ! k[U ⇥ V ] ⇠= k[U ]⌦k k[V ],

where k[U ] = �(U, OX) is the k-algebra of regular functions on U . Since C(x, e) = e,
this induces a morphism of k-algebras

OX,e ! k[U ]⌦k OX,e,

and from this, it is easy to see that if we view f |U : U ! Endk
�
OX,e/m`+1

e

�
as a

matrix of size
�
n+`

`

�
, then the entries are regular functions on U . This means that

f is a morphism of algebraic varieties.
The rest of the proof is easy. By assumption, X is complete, and so the morphism

f must be constant; because f(e) = id, it follows that C⇤
x
acts as the identity on

OX,e/m`+1

e
. By Krull’s intersection theorem, we have

\

`2N
m`+1

e
= (0),

and so it follows that C⇤
x
is the identity on OX,e. Therefore Cx acts as the identity on

a Zariski-open neighorhood of e 2 X, and because X is a variety, Cx is the identity
everywhere. But then Cx(y) = y, and this means that X is commutative. ⇤

From now on, we are going to write the group operation on an abelian variety
additively: so m(x, y) = x + y and i(x) = �x, and the identity element is 0 2 X.

As in the complex case, we can describe the tangent and cotangent bundles of
an abelian variety. Let T = TX,0 be the Zariski tangent space at 0 2 X; if we set
⌦0 = m0/m2

0
, then T = Homk(⌦0, k), and both are k-vector spaces of dimension

dimX. For every x 2 X, translation induces an isomorphism

t⇤�x
: m0/m

2

0
! mx/m

2

x
,

and so a cotangent vector ✓ 2 ⌦0 defines an algebraic 1-form !✓ by the rule (!✓)x =
t⇤�x

(✓). As before, one can check on a�nes that !✓ is a global section of the sheaf
of Kähler di↵erentials ⌦1

X/k
, and that this procedure defines a morphism of sheaves

⌦0 ⌦k OX ! ⌦1

X/k
.

By construction, it is an isomorphism on fibers, meaning after tensoring by OX,x/mx;
by Nakayama’s lemma, it is therefore an isomorphism of sheaves. After dualizing,
we find that

TX
⇠= T ⌦k OX ,

and so the tangent bundle of X is trivial. Similarly, we can take wedge powers to
get

⌦p

X/k

⇠=

p^
⌦0 ⌦k OX .

On global sections, this gives

H0
�
X,⌦p

X/k

�
⇠=

p^
⌦0,
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because H0(X, OX) = k by completeness of X. All global algebraic p-forms on X
are therefore translation invariant, exactly as on compact complex tori.

A fourth result, with a similar infinitesimal proof, is that the group of points of
an abelian variety is divisible, provided we avoid the characteristic of the field k.

Lemma 8.3. As long as n is not divisible by char(k), the homomorphism

nX : X ! X, x 7! n · x,

is surjective.

Proof. The morphism m : X ⇥ X ! X induces a k-linear mapping

dm : TX⇥X,(0,0) ! TX,0

on tangent spaces. Set T = TX,0. The tangent space to X ⇥ X at the point (0, 0)
is isomorphic to T � T , with the two copies given by the images of TX,0 under the
two inclusions i1 : X ! X ⇥ X, i1(x) = (x, 0), and i2 : X ! X ⇥ X, i2(x) = (0, x).
Because m � i1 = m � i2 = id, it follows that

dm : T � T ! T

is just the sum map (t1, t2) 7! t1 + t2. From this, it is easy to see that

dnX : T ! T

is multiplication by the integer n. Therefore dnX is an isomorphism if n is not
divisible by char(k). For dimension reasons, this means that nX must be surjective:
otherwise, the dimension of the image would be strictly less that dimX, and so all
fibers of nX would have dimension � 1. But if the fiber through the point 0 2 X
has positive dimension, we can find a tangent vector t 2 T such that dnX(t) = 0,
and this contradicts the fact that dnX is an isomorphism. ⇤

The proof shows more: because nX is a homomorphism, the di↵erential dnX is
actually an isomorphism at every point of X, and so nX : X ! X is finite étale. (In
the case of compact complex tori, multiplication by n was a finite covering space.)
We will later compute the degree of nX , but this is more involved than on compact
complex tori.

The rigidity theorem and its consequences. In order to go further, we need
the following somewhat technical result, called the rigidity theorem. It is one of the
important properties of complete varieties.

Theorem 8.4. Let X be a complete variety over k, let Y, Z be varieties, and let

f : X ⇥ Y ! Z be a morphism. Suppose that there is a point y0 2 Y such that

f(X ⇥ {y0}) is a single point z0 2 Z. Then f = g � p2 for a morphism g : Y ! Z.

This is saying that if one of the slices X ⇥ {y0} is contracted to a point, then all
slides X ⇥ {y} are contracted to a point (and g(y) is that point).

y0

X ⇥ {y0}

X

Y
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Proof. Choose a point x0 2 X and define g : Y ! Z by the formula g(y) = f(x0, y).
Let p2 : X ⇥ Y ! Y be the second projection. In order to prove that f = g � p2,
it is enough to show that this holds on a Zariski-open set containing X ⇥ {y0}; the
reason is that X ⇥ Y is irreducible. Choose an a�ne open set U ✓ Z such that
z0 2 U . The idea is to show that all nearby slices X ⇥ {y} also map into U .

The complement Z \ U is a closed subset of Z. Because X is complete, the
morphism p2 : X ⇥ Y ! Y is proper, which means that the image of any closed
subset is closed. For that reason,

W = p2

�
f�1(Z \ U)

�
✓ Y

is a closed subset of Y . It does not contain the point y0, because f maps X ⇥ {y0}

to the point z0 2 U , and so V = Y \ W is a Zariski-open set containing y0. By
construction, we have f(X ⇥ {y}) ✓ U for every y 2 V . Because U is a�ne
and X is complete, f is therefore constant on X ⇥ {y}. This shows that we have
f(x, y) = f(x0, y) = g(y) for every y 2 V . The identity f = g � p2 therefore holds
on the open set X ⇥ V , as required. ⇤

This has several useful consequences for abelian varieties.

Corollary 8.5. Every morphism between two algebraic varieties is a group homo-

morphism composed with a translation.

Proof. Let f : X ! Y be a morphism from an abelian variety to an abelian variety.
After composing f with the translation t�f(e) : Y ! Y , we may assume that f(e) =
e. We then claim that f must be a group homomorphism. To see that this is true,
consider the morphism

F : X ⇥ X ! Y, F (x, y) = f(xy)� f(x)� f(y).

We have F (x, e) = F (e, x) = e, and so F contracts both X ⇥ {e} and {e}⇥X. By
the rigidity theorem, we must have F (x, y) = e for all x, y 2 X, and so f is a group
homomorphism. ⇤

We can also give another proof for the fact that X is commutative.

Corollary 8.6. The group structure on an abelian variety is commutative.

Proof. For the sake of clarity, let’s briefly revert to multiplicative notation. Consider
the morphism i : X ! X, i(x) = x�1. It satisfies i(0) = 0, and so it must be a
group homomorphism (by the previous corollary). This gives

y�1x�1 = i(xy) = i(x)i(y) = x�1y�1,

which obviously implies that the group operation is commutative. ⇤
The last result for today is another special property of abelian varieties. If S

and T are varieties, we can describe morphisms into the product S ⇥ T (which, in
scheme-theoretic language, would be the fiber product over Spec k). Indeed, the
universal property says that a morphism X ! S ⇥ T is the same thing as a pair of
morphisms X ! S and X ! T (all over k, of course); in other words, we have an
isomorphism of sets

Hom(X,S ⇥ T ) ⇠= Hom(X,S)⇥Hom(X,T ).

For abelian varieties, there is a similar result for maps from a product. Suppose
that S and T are complete varieties, and that each comes with a choice of base
point s0 2 S and t0 2 T . We’ll write (S, s0) for the variety together with the
point. Now suppose we have two morphisms f : S ! X and g : T ! X such that
f(s0) = g(t0) = 0. The composition

S ⇥ T X ⇥ X X
f⇥g m
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gives us a morphism h : S ⇥ T ! X with h(s0, t0) = 0. More concretely, we have

h : S ⇥ T ! X, h(s, t) = f(s) + g(t).

From h, we can of course recover f and g because f(s) = h(s, t0) and g(t) = h(s0, t).
This shows that the function

Hom
�
(S, s0), (X, 0)

�
⇥Hom

�
(T, t0), (X, 0)

�
! Hom

�
(S ⇥ T, s0 ⇥ t0), (X, 0)

�

(f, g) 7! m � (f ⇥ g),

is injective. It is also surjective: Given h : S ⇥ T ! X with h(s0, t0) = 0, we define
f(s) = h(s, t0) and g(t) = h(s0, t), and then h(s, t) = f(s) + g(t) by the rigidity
theorem. (The di↵erence h(s, t) � f(s) � g(t) again contracts both S ⇥ {t0} and
{s0}⇥ T , and so it must be constant.)

So, in somewhat more fancy language, the functor

(S, s0) 7! Hom
�
(S, s0), (X, 0)

�
,

from the category of complete varieties with base point to the category of sets takes
products to products.


