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Lecture 6 (February 13)

Translations. Our next goal is to prove a more precise version of the Kodaira
embedding theorem for abelian varieties. In preparation for that, we first investigate
how the group structure on a compact complex torus interacts with holomorphic
line bundles.

Let X = V/� be a compact complex torus. For every point a 2 X, we have the
translation automorphism

ta : X ! X, ta(x) = a + x.

It is biholomorphic, with inverse t�a. If we choose a vector w 2 V such that
q(w) = a, where q : V ! X is the quotient map, then ta is induced by the linear
translation v 7! v + w.

Let’s consider the pullback t⇤
a
L, where L is a holomorphic line bundle on X.

Write L = L(H, ↵), where (H, ↵) is a Appell-Humbert datum. Choose a vector
va 2 V such that q(va) = a, where q : V ! X is the quotient map. Then L is
represented by the cocycle

� 7! e�(v) = e⇡H(v,�)+
⇡
2 H(�,�)↵(�)

and therefore t⇤
a
L is represented by the cocycle

� 7! e⇡H(v+w,�)+
⇡
2 H(�,�)↵(�) = e⇡H(w,�) · e�(v).

Therefore the tensor product t⇤
a
L ⌦ L�1 is represented by the constant cocycle

� 7! e⇡H(w,�),

and is therefore an element of Pic0(X). After modifying it by a coboundary

e⇡H(w,�) · e�⇡H(v+�,w)

e�⇡H(v,w)
= e⇡H(w,�)�⇡H(�,w) = e2⇡iE(w,�),

it becomes an Appell-Humbert datum for a unique line bundle in Pic0(X), because
� 7! e2⇡iE(w,�) is a group homomorphism from � to the circle group U(1).

Example 6.1. If c1(L) = 0, then we have H = 0, and therefore t⇤
a
L ⇠= L. So any

holomorphic line bundle in Pic0(X) is translation-invariant.

We see from these simple formulas that a holomorphic line bundle L determines
a holomorphic group homomorphism

(6.2) 'L : X ! Pic0(X), a 7! t⇤
a
L ⌦ L�1.

It is holomorphic because the cocycle e⇡H(w,�) depends holomorphically on w 2 V ;
and it is a group homomorphism because the cocycle is linear in w. Note that when
w 2 �, the cocycle e2⇡iE(w,�) is trivial because E(�⇥ �) ✓ Z.

Lemma 6.3. If the line bundle L is ample, the group homomorphism 'L is sur-

jective, and its kernel is a subgroup of X isomorphic to �⇤/�. In particular, ker'L

is a finite abelian group of order (dimH0(X, L))2.

Proof. If we again write L = L(H, ↵), then L is ample exactly when H is positive
definite (and E = ImH is nondegenerate). This means that

V ! HomC(V̄ ,C), w 7! H(w,�),

is an isomorphism of complex vector spaces. According to the discussion above, the
image of 'L therefore contains every line bundle in Pic0(X) that can be represented
by a cocycle of the form ef(�), where f : V̄ ! C is C-linear. But we have Pic0(X) =
H1(X, OX)/H1(X,Z) and H1(X, OX) ⇠= HomC(V̄ ,C), and so this gives all line
bundles in Pic0(X).
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Let’s compute the kernel. We have seen that 'L(a) is represented by Appell-
Humbert datum (0, � 7! e2⇡iE(w,�)), and so it is trivial exactly when E(w, �) 2 Z

for every � 2 �. Now E is nondegenerate, and so the map

VR ! HomR(VR,R), w 7! E(w,�),

is an isomorphism of R-vector spaces. Under this isomorphism, the subgroup �⇤ =
HomZ(�,Z) corresponds exactly to those w 2 VR such that E(w, �) 2 Z for every
� 2 �; the reason is that VR = R⌦Z �. Therefore

ker'L =
�

w 2 V
�� E(w, �) 2 Z for every � 2 �

 
/� ⇠= �⇤/�.

As we saw during the proof of Theorem 4.6, this is a group of order

detE =
�
dimH0(X,L)

�2
,

and so the proof is complete. ⇤
Example 6.4. When L is a principal polarization (detE = 1), the group �⇤/� is
trivial; in that case, our homomorphism

'L : X ! Pic0(X)

is an isomorphism of abelian varieties. Later on, when we treat abelian varieties
using algebraic methods, we are going to use this kind of result in order to define

the Picard variety Pic0(X).

The fact that 'L is a group homomorphism means that

t⇤
a+b

L ⌦ L�1 ⇠= t⇤
a
L ⌦ L�1 ⌦ t⇤

b
L ⌦ L�1.

If we clean this up a bit, it becomes

t⇤
a+b

L ⌦ L ⇠= t⇤
a
L ⌦ t⇤

b
L

for any two points a, b 2 X. This result is known as the “theorem of the square”.

The Lefschetz theorem. We are now going to prove a sharp version of the Ko-
daira embedding theorem.

Theorem 6.5 (Lefschetz). Let L = L(H, ↵) be a holomorphic line bundle such that

the hermitian form H is positive definite.

(a) The line bundle L2
is base-point free, and its global sections give a holo-

morphic mapping

'2 : X ! P
�
H0(X, L2)

�
.

(b) The line bundle L3
is very ample, and its global sections give an embedding

'3 : X ! P
�
H0(X, L3)

�
.

The numbers 2 and 3 are exactly as in the case of elliptic curves: any elliptic
curve has a 2:1 map to P

1, and can be embedded into P
2 as a cubic curve. In

general, by Corollary 5.3, we have

dimH0(X, Lk) =
1

n!
c1(L

k)n = kn dimH0(X, L),

and so the projective spaces in question are fairly big once n gets larger.
Let’s start by proving (a). According to Theorem 4.6, we have

dimH0(X, L) =
p
detE � 1

because H is positive definite. Let s0 2 H0(X, L) be any nontrivial section. The
idea is to use translations in order to generate additional sections of L2. Recall
from above that

t⇤
a
L ⌦ t⇤�a

L ⇠= L2
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for any a 2 X. This shows that t⇤
a
s0 ⌦ t⇤�a

s0 is a global section of L2. The proof
of (a) is now very easy. To show that L2 is base-point free, we need to find, at any
given point x 2 X, a global section of L2 that does not vanish at x. For that, we
only have to choose a 2 X so that the two points x± a do not lie on the zero locus
of s0; then ta⇤s0 ⌦ t⇤�a

s0 does the job.
It remains to prove (b). The argument that I gave in class was incomplete – as

Spencer pointed out, I did not really prove that '3 is injective. So I am going to
deviate from what I said in class, and use the notes to present Mumford’s argument.
Before doing that, let’s briefly review a bit of general theory. Suppose that X is
a compact complex manifold, and L a holomorphic line bundle that is base-point
free. If we set d = dimH0(X, L) � 1, and choose a basis s0, . . . , sd 2 H0(X,L),
then we get a holomorphic mapping

' : X ! P
d, x 7!

�
s0(x), s1(x), . . . , sd(x)

�
.

It is proper because X is compact. To show that ' is an embedding, we have to
prove two things:

(1) ' is injective. By compactness, this ensures that ' is a homeomorphism
between X and '(X).

(2) ' is an immersion. Concretely, this means that for every x 2 X, the map on
tangent spaces d'x : TxX ! T'(x)P

d is injective. This ensures that '(X)
is a complex manifold and ' is biholomorphic.

Proof that '3 is injective. Let’s now prove (1) for the line bundle L3. Recall that
global sections of L = L(H, ↵) are theta functions for (H, ↵); these are holomorphic
functions ✓ : V ! C that satisfy the functional equation

(6.6) ✓(v + �) = e⇡H(v,�)+
⇡
2 H(�,�)↵(�) · ✓(v).

For any two vectors u, w 2 V , the product

✓(v � u)✓(v � w)✓(v + u + w)

is a theta function for (3H, ↵3), and therefore a global section of L3. Suppose that
there are two points x1, x2 2 X with '3(x1) = '3(x2). If we lift x1, x2 2 X to
vectors v1, v2 2 V , then it follows that there is a constant C 6= 0 such that

�(v1) = C�(v2)

for every theta function � for the Appell-Humbert datum (3H, ↵3). In particular,
for every pair of vectors v, w 2 V , we will have

(6.7) ✓(v1 � v)✓(v1 � w)✓(v1 + v + w) = C✓(v2 � v)✓(v2 � w)✓(v2 + v + w)

for all theta function for (H, ↵). We are going to deduce from this condition that
v2 � v1 2 �, and hence that x1 = x2.

Consider (6.7) as a function of v 2 V . To eliminate the constant C, we take
logarithmic derivatives. Let ! = (d✓)/✓, which is a meromorphic 1-form on V .
After di↵erentiating (6.7), we obtain

!(v1 + v + w)� !(v1 � v) = !(v2 + v + w)� !(v2 � v),

and so the meromorphic 1-form !(v2+v)�!(v1+v) is invariant under translation by
arbitrary elements of V , hence constant. We can therefore write it as df(v), where
f : V ! C is C-linear. Since !(v2 + v)� !(v1 + v) is the logarithmic derivative of
✓(v2 + v)/✓(v1 + v), it follows that there is a constant A 2 C such that

✓(v + v2) = Aef(v)✓(v + v1)

for every v 2 V . Set w = v2 � v1, and replace v by v � v1 to put this into the form

✓(v + w) = Bef(v)✓(v),
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where B 2 C is some other constant.
If we now substitute into the functional equation in (6.6) and cancel terms that

appear on both sides, we get e⇡H(w,�) = ef(�) for every � 2 �. This means that

⇡H(w, �)� f(�) 2 2⇡i · Z.

Recalling that E = ImH, we have

⇡H(w, �)� f(�) = ⇡H(�, w)� f(�) + 2⇡iE(w, �) 2 2⇡i · Z,

and so ⇡H(�, w)� f(�) 2 i ·R. Because it is also C-linear in the first argument, it
follows that

(6.8) ⇡H(v, w) = f(v) for every v 2 V .

We conclude that E(w, �) 2 Z for every � 2 Z, and so our vector w = v2 � v1

belongs to the larger lattice

�̂ =
�

v 2 V
�� E(v, �) 2 Z for every � 2 Z

 
.

Recall that �̂ ⇠= HomZ(�,Z), and that �̂/� is a finite group of order detE. This
already shows that some integer multiple of w lies in �.

We are going to finish the proof of (1) by showing that w 2 �. Observe that ✓
is actually a theta function for the larger lattice �0 = �+ Zw. The reason is that,
because of (6.8), we have

✓(v + w) = Be⇡H(v,w)✓(v) = Be�
⇡
2 H(w,w) · e⇡H(v,w)+

⇡
2 H(w,w)✓(v).

Because an integer multiple of w lies in �, the constant Be�
⇡
2 H(w,w) must be of

absolute value 1, and so we can extend ↵ : � ! U(1) uniquely to ↵0 : �0 ! U(1)
by requiring that ↵0(w) = Be�

⇡
2 H(w,w) and ↵(� + �) = ↵(�)↵(�)ei⇡E(�,�) for all

�, � 2 �0. With this choice, every theta function ✓ for the pair (H, ↵) and the
lattice � is then also a theta function for the pair (H, ↵0) and the bigger lattice �0.

The dimension of the space of theta functions for (H, ↵) and � is, according to
Theorem 4.6, equal to the square root of the order of the group �⇤/�. If �0 6= �,
then this is strictly larger than the order of the group �0⇤/�0, and so for dimension
reasons, it is not possible for every theta function for � to also be a theta function
for �0. The conclusion is that �0 = �, and hence that w 2 �. This proves that '3

is injective.

Proof that '3 is an immersion. Next, we prove (2) for '3. Suppose there is a point
x0 2 X and a tangent vector ⇠ 2 Tx0X that is mapped to zero under the di↵erential
of '3. Choose a basis v1, . . . , vn 2 V and let z1, . . . , zn 2 V ⇤ be the dual basis; as
usual, we view z1, . . . , zn as coordinates on V , and hence as local coordinates on
X. Write ⇠ =

P
n

j=1
cj@/@j . Choose a lifting of x0 2 X to a vector v0 2 V . After

computing the derivatives in an a�ne coordinate chart on projective space, we find
that there is a constant c0 2 C such that

nX

j=1

cj
@�

@zj
(v0) = c0�(v0)

for every theta function � for the pair (3H, ↵3). As before, we apply this to functions
of the form �(v) = ✓(v � u)✓(v � w)✓(v + u + w) with u, w 2 V , where ✓ is any
theta function for the pair (H, ↵). For given ✓, consider the meromorphic function

f = ✓�1

nX

j=1

cj
@✓

@zj
.

After substituting into the relation above, we get

f(v0 � u) + f(v0 � w) + f(v0 + u + w) = c0
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for all u, w 2 V . By the usual argument with first derivatives, it follows that
f(v) = `(v) + f(0) for a linear functional ` : V ! C.

Define c =
P

n

j=1
cjvj 2 V . We compute that

d

dt
✓(v + tc) =

nX

j=1

cj
@✓

@zj
(v + tc) =

�
t`(c) + f(v)

�
· ✓(v + tc).

After integration, this leads to the identity

✓(v + tc) = e
1
2 t

2
`(c)+tf(v)✓(v)

for every v 2 V and every t 2 C. If we now plug this into the functional equation
in (6.6) and cancel terms that appear on both sides, we find that

e⇡H(tc,�) = e
1
2 t

2
`(c)+tf(v).

By varying v 2 V , we conclude that f = 0, and hence that ` = 0. By varying
t 2 C, it follows that H(c, �) = 0 for every � 2 �. Because H is nondegenerate,
this finally gives c = 0. We conclude that ⇠ = 0, and hence that '3 is indeed an
immersion.


