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Lecture 5 (February 11)

Our first task is to finish the proof of Theorem 4.6 from last time. In class, I
reviewed the notation and the first half of the argument; look at the notes from
last time before reading on.

Step 4 . Let’s see what the functional equation in (4.7) tells about the Fourier coe�-
cients of #. For that, we need to rewrite the terms with H�B in a more manageable
way. Each � 2 � determines a homomorphism

�̂ : �0 ! Z, �̂(�) = E(�, �).

As we observed during Step 1 of the proof, the mapping

�/�0 ! (�0)⇤, � + �0 7! �̂,

is injective, and the image has index m =
p
detE. Now if � 2 � and � 2 �0, then

H(�, �)� B(�, �) = H(�, �)� B(�, �) = H(�, �)� H(�, �) = �2iE(�, �),

because B|WR⇥WR = H|WR⇥WR and both B and H are C-linear in their first argu-
ment. Consequently,

H(�, �)� B(�, �) = �2i�̂(�),

and because V = C⌦Z �0 and everything is C-linear, we get

H(v, �)� B(v, �) = �2i�̂(v) for all v 2 V .

This allows us to rewrite (4.7) as

#(v + �) = e�2⇡i�(�)↵(�) · e�2⇡i�̂(v)�i⇡�̂(�) · #(v).

If we now substitute the Fourier expansion for # into this identity, we get
X

�

c�e2⇡i�(�)e2⇡i�(v) = e�2⇡i�(�)↵(�) · e�i⇡�̂(�)
X

�

c�e2⇡i(�(v)��̂(v)).

Comparing coe�cients on both sides, we find that

(5.1) c�+�̂ = e2⇡i�(�)↵(�)�1 · ei⇡�̂(�)e2⇡i�(�) · c�.

This shows that all the Fourier coe�cients are uniquely determined once we know
the values on each coset of �/�0 inside (�0)⇤. Since the index of this subgroup is m,
we conclude that there are at most m linearly independent solutions, and therefore

dimH0
�
X, L(H, ↵)

�
 m.

Step 5 . It remains to prove that we get exactly m linearly inpedendent theta func-
tions. For that, we have to prove that each time we have a solution to (5.1),
the corresponding Fourier series actually converges. Let’s fix a homomorphism
�0 2 (�0)⇤, and consider its coset in (�0)⇤. We set c�0 = 1, and c� = 0 unless
� = �0 + �̂ for some � 2 �. Solving the equations in (5.1) above, we find that

c�0+�̂ = e2⇡i�(�)↵(�)�1 · ei⇡�̂(�)e2⇡i�0(�).

The Fourier series with these coe�cients is
X

�̂

e2⇡i�(�)↵(�)�1 · ei⇡�̂(�)e2⇡i�0(�)e2⇡i�0(v)+2⇡i�̂(v).

Note that each term only depends on �̂, as indicated, because all the factors where �
appears are equal to 1 when � 2 �0. Anyway, the Fourier series is clearly dominated,
in absolute value, by the series

X

�̂

e�⇡ Im �̂(�)e�2⇡ Im�0(�)e�2⇡ Im�0(v)�2⇡ Im �̂(v).
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We will prove in a moment that that Im �̂(�) = H
�
q(�), q(�)

�
, where q : V ! WR

is the projection. As long as v stays in a compact subset, the exponent in the
exponential therefore looks like

�⇡H
�
q(�), q(�)

�
+ O

�
k�k

�
,

where k�k is any inner product on V . Because H is positive definite, and q embeds
�/�0 as a lattice into WR, the quadratic term is negative definite, and as in the case
of the Jacobi theta function, this ensures that the series converges. Our Fourier
series is therefore absolutely and uniformly convergent on compact subsets, and so
each of the m linearly independent choices of Fourier coe�cients gives rise to a
theta function for (H, ↵).

Step 6 . It remains to prove that

Im �̂(�) = H
�
q(�), q(�)

�
.

Recall that p : V ! WR and q : V ! WR are the two projections, so v = p(v)+Jq(v).
We showed earlier that

H(v, �)� B(v, �) = �2i�̂(v).

Plugging in v = � gives

Im �̂(�) = Re
H(�, �)� B(�, �)

2
.

Because H is hermitian and J(v) = iv, we have

H(�, �) = H
�
p(v), p(v)

�
+ H

�
q(v), q(v)

�
� iH

�
p(v), q(v)

�
+ iH

�
q(v), p(v)

�
.

At the same time, B is bilinear, and equal to H on WR ⇥ WR, and so

B(�, �) = B
�
p(v), p(v)

�
� B

�
q(v), q(v)

�
+ iB

�
p(v), q(v)

�
+ iB

�
q(v), p(v)

�

= H
�
p(v), p(v)

�
� H

�
q(v), q(v)

�
+ iH

�
p(v), q(v)

�
+ iH

�
q(v), p(v)

�
.

Taking the di↵erence, we obtain

H(�, �)� B(�, �)

2
= H

�
q(v), q(v)

�
� iH

�
p(v), q(v)

�
,

and the real part of the right-hand side is obviously H
�
q(v), q(v)

�
.

Riemann-Roch theorem. We can also express Theorem 4.6 in a more cohomo-
logical way, as follows. Let (H, ↵) be Appel-Humbert data, with H positive definite;
then the line bundle L = L(H, ↵) is ample. Since the canonical bundle of X is triv-
ial, the Kodaira vanishing theorem shows that Hi(X, L) = 0 for i > 0. Therefore
the Euler characteristic of L is equal to

�(X,L) =
nX

i=0

(�1)i dimHi(X, L) = dimH0(X, L).

Our computation for the dimension of the space of sections, together with Corol-
lary 5.3 below, gives

�(X, L) =
p
detE =

1

n!
c1(L)

n.

Because the tangent bundle TX is trivial, this is exactly the formula one gets from
Grothendieck’s Riemann-Roch theorem.
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Some matrix calculations. Let E : � ⇥ � ! Z be an alternating bilinear form,
such that the induced group homomorphism

E : � ! HomZ(�,Z), � 7! E(�,�),

is injective. For the sake of completeness, I am including proofs for the assertions
about E that we used in the previous two sections. The key technical point is the
following lemma.

Lemma 5.2. There is a basis e1, . . . , e2n 2 � such that the 2n ⇥ 2n-matrix with

entries E(ei, ej) has the form

â
0 m1

�m1 0
0 m2

�m2 0
. . .

ì

for positive integers m1 | m2 | · · · | mn. In particular,

detE = (m1 · · ·mn)
2

is always the square of an integer.

Proof. Choose two vectors e1, e2 2 � such that m1 = E(e1, e2) is the smallest
possible positive integer among the values of E. For any � 2 �, we have

E(� � ae1 � be2, e1) = E(�, e1) + bm1,

E(� � ae1 � be2, e2) = E(�, e2)� am2.

By minimality of m1, both integers E(�, e1) and E(�, e2) must be divisible by m1,
and so we can uniquely choose a, b 2 Z such that � � ae1 � be2 becomes orthogonal
to e1 and e2. This means that � = Ze1 � Ze2 � �0, where �0 is the subgroup

�0 =
�

� 2 �
�� E(�, e1) = E(�, e2) = 0

 
.

Again by minimality of m1, all values of E on �0 must be divisible by m1. The
result we want now follows by induction on the rank of �. ⇤

One consequence is that the image of the homomorphism E : � ! HomZ(�,Z)
has index equal to detE. The reason is that the image of

Å
0 m

�m 0

ã
: Z2 ! Z

2

is the subgroup mZ
2, which clearly has index m2. We used this fact during the

proof of Theorem 4.6. Another consequence is the following description of detE in
terms of intersection numbers.

Corollary 5.3. Set L = L(H, ↵), with H positive definite. Then

p
detE =

1

n!
c1(L)

n.

Proof. Choose a basis e1, . . . , e2n 2 � as in the lemma, and let e⇤
1
, · · · , e⇤

2n
2 �⇤ be

the dual basis. As elements of H2(X,Z) ⇠=
V

2 �⇤, we then have

c1(L) =
X

j<k

E(ej , ek) e⇤
j
^ e⇤

k
=

nX

i=1

mi e
⇤
2i�1

^ e⇤
2i

,

where L = L(H, ↵). Therefore

1

n!
c1(L)

n = m1 · · ·mn · e⇤
1
^ · · · ^ e⇤

2n
,
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and as elements of H2n(X,Z) ⇠=
V

2n �⇤, this gives

1

n!
c1(L)

n = m1 · · ·mn =
p
detE. ⇤

Some terminology. An abelian variety is by definition a compact complex torus
X = V/� that can be embedded into projective space. According to Theorem 4.4,
this is equivalent to the existence of a positive-definite hermitian form H : V ⇥V !
C such that E = ImH takes integer values on �⇥ �. If that is the case, then any
line bundle of the form L(H, ↵) is ample; for historical reasons, such a line bundle
is called a polarization. If we choose a basis for � as in Lemma 5.2, such that

E =

â
0 m1

�m1 0
0 m2

�m2 0
. . . ,

ì

then the n-tuple of integers (m1, m2, . . . , mn) with m1 | m2 | · · · | mn is called the
type of the polarization. A polarization is called principal if m1 = · · · = mn = 1;
this is equivalent to saying that the homomorphism

E : � ! �⇤, � 7! E(�,�),

is an isomorphism. (In that case, E is also said to be unimodular.)

Exercise 5.1. If m1 � 2, show that L(H, ↵) is the m1-th tensor power of some other
holomorphic line bundle.

Jacobians. Let C be a compact Riemann surface of genus g � 1. The most
important example of a principally polarized abelian variety is the Jacobian

J(C) = Pic0(C) ⇠= H1(C, OC)/H1(C,Z).

Let’s verify that this is the case. The starting point is the Hodge decomposition

H1(C,C) = H1,0(C)� H0,1(C) ⇠= H0(C,⌦1

C
)� H1(C, OC).

The mapping H1(C,R) ! H1(C, OC) is an isomorphism of R-vector spaces: if
↵ 2 H1(C,R), the in the Hodge decomposition ↵ = ↵1,0+↵0,1, one has ↵1,0 = ↵0,1,
and so ↵0,1 = 0 implies ↵ = 0. It follows that the composition

H1(C,Z) ! H1(C,R) ! H1(C, OC)

embeds � = H1(C,Z) as a lattice into V = H1(C, OC), and so the quotient is a
compact complex torus of dimension g.

To show that it is an abelian variety, we need to find a positive-definite hermitian
form H such that E = ImH is integral. Consider the alternating pairing

E : H1(C,Z)⇥ H1(C,Z) ! Z, E(�, �) = [C] \ (� [ �).

We have H1(C,Z) ⇠= HomZ
�
H1(C,Z),Z

�
, and by Poincaré duality, the mapping

H1(C,Z) ! H1(C,Z), � 7! [C] \ �,

is an isomorphism. Therefore E is unimodular.
Using the embedding H1(C,Z) ,! H1(C,C), we can view each element � as a

de Rham cohomology class. As such, we have

E(�, �) =

Z

C

� ^ � =

Z

C

�0,1 ^ �0,1 +

Z

C

�0,1 ^ �0,1 = 2Re

Z

C

�0,1 ^ �0,1

The Hodge-Riemann bilinear relations show that the hermitian form

H : H0,1(C)⇥ H0,1(C) ! C, H(�0,1, �0,1) = �2i

Z

C

�0,1 ^ �0,1
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is positive-definite. (There is again nothing deep here: locally, �0,1 looks like fdz̄
for some function f , and therefore

�i�0,1 ^ �0,1 = �i|f |2dz̄ ^ dz = 2|f |2 dx ^ dy � 0;

therefore the integral is nonnegative, and vanishes i↵ �0,1 = 0.)
The computation above tells us that

E(�, �) = � ImH(�0,1, �0,1),

and so we should redefine the pairing E as

E : H1(C,Z)⇥ H1(C,Z) ! Z, E(�, �) = �[C] \ (� [ �)

in order for it to be the first Chern class of an ample line bundle. Since E is
unimodular, the Jacobian J(C) is therefore a principally polarized abelian variety.

Morphisms. Let X1 = V1/�1 and X2 = V2/�2 be two compact complex tori. The
following simple lemma shows that, up to translation, every holomorphic mapping
from X1 to X2 is a group homomorphism.

Lemma 5.4. Let f : X1 ! X2 be a holomorphic mapping between two compact

complex tori. Then f is the composition of a group homomorphism and a transla-

tion.

Proof. If f(0) = y, we can compose f with the holomorphic mapping

X2 ! X2, x 7! x � y,

and arrange that f(0) = 0. So it su�ces to prove that if f(0) = 0, then f is a
group homomorphism. Because V1 ! X1 and V2 ! X2 are the universal covering
spaces, f lifts uniquely to a holomorphic mapping f̃ : V1 ! V2 with f̃(0) = 0, as in
the following diagram:

V1 V2

X1 X2

f̃

f

For every � 2 �1, we must have

f̃(v + �)� f̃(v) 2 �2,

and after di↵erentiating this formula, we see that all the first derivatives of f̃ are
holomorphic and doubly periodic, hence constant. As f̃(0) = 0, this implies that f̃
is a linear map; but then f is clearly a group homomorphism as well. ⇤


