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Lecture 4 (February 6)

The Appel-Humbert theorem. Last time, we described all holomorphic line
bundles on a compact complex torus X = V/�. There were two pieces of data:

(1) A hermitian form H : V ⇥ V ! C such that E = ImH takes integer values
on �⇥ �. Let HermZ(V,�) denote the set of all such.

(2) A mapping ↵ : � ! U(1) such that

↵(� + �) = ↵(�)↵(�)ei⇡E(�,�) for all �, � 2 �.

We call such a pair (H, ↵) an Appel-Humbert datum. Let AH(V,�) be the set of
Appel-Humbert data. To each (H, ↵) 2 AH(V,�), we associated a holomorphic line
bundle L(H, ↵) on X, defined as the quotient of V ⇥ C by the �-action

� · (v, z) =
�
v + �, e⇡H(v,�)+

⇡
2 H(�,�)↵(�) · z

�
.

We now get the following commutative diagram:

0 HomZ
�
�, U(1)

�
AH(V,�) HermZ(V,�) 0

0 Pic0(X) Pic(X) ker
�
H2(X,Z) ! H2(X, OX)

�
0

L

The first arrow in the first line sends a homomorphism ↵ to the pair (0, ↵), and
the second arrow sends an Appel-Humbert datum (H, ↵) to the hermitian form H.
The vertical arrow in the middle sends (H, ↵) to the associated line bundle L(H, ↵).
We could not quite state the main result last time, so here it is.

Theorem 4.1 (Appel-Humbert). The mapping L : AH(V,�) ! Pic(X) is an iso-

morphism of abelian groups.

Proof. The multiplication in AH(V,�) is given by the rule

(H1, ↵1) · (H2, ↵2) = (H1 + H2, ↵1↵2).

This is compatible with the group structures on HomZ(�, U(1)) and on HermZ(V,�).
Now if two line bundles are represented by cocycles, in the way we introduced last
time, then their tensor product is represented by the pointwise product of the two
cocycles. Together with the explicit formula for L(H, ↵), this shows that

L(H1, ↵1)⌦ L(H2, ↵2) ⇠= L(H1 + H2, ↵1↵2),

and so L is indeed a group homomorphism. We showed last time that the first and
third vertical arrow in the diagram are isomorphisms; by the five lemma, the arrow
in the middle is also an isomorphism. ⇤

Example 4.2. Let’s look at the case of elliptic curves. Here V = C, with coordinate
z, and � = Z + Z⌧ , where ⌧ 2 H is a point in the upper halfplane. The pairing
E = ImH is determined by the integer m = E(⌧, 1), which is the first Chern class
of the line bundle. As always, we extend E R-linearly; then

m = E(Re ⌧ + i Im ⌧, 1) = Re ⌧E(1, 1) + Im ⌧E(i, 1),

and therefore E(i, 1) = m/ Im ⌧ . The hermitian pairing H is then determined by

H(1, 1) = E(i, 1) + iE(1, 1) =
m

Im ⌧
.

So the quantity Im ⌧ shows up in the Appel-Humbert description of line bundles.
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Global sections. Next, we are going to compute the space of global sections
of L(H, ↵), and determine under what conditions L(H, ↵) is ample. Along the
way, we’ll prove the following interesting fact: If L is a holomorphic line bundle
on a compact complex torus X, and if H0(X,L) 6= 0, then there is a surjective
holomorphic group homomorphism q : X ! Y to another compact complex torus
Y , and an ample line bundle M on Y , such that L ⇠= q⇤M .

Consider a line bundle of the form L(H, ↵). From the description as V ⇥ C/�,
we see that a global section of L(H, ↵) is the same thing as a holomorphic function
✓ : V ! C with the property that

(4.3) ✓(v + �) = e⇡H(v,�)+
⇡
2 H(�,�)↵(�) · ✓(v)

for every � 2 �. Such functions are called theta functions for the pair (H, ↵). We
will see in a moment how these are related to the classical theta function.

It turns out that the existence or non-existence of sections depends very much
on the hermitian form H. There are three cases:

Case 1 . The hermitian form H is degenerate. Recall that E = ImH is integral on
�⇥ �. Consider the null space

V0 =
�

v 2 V
�� H(v, w) = 0 for all w 2 V

 

=
�

v 2 V
�� E(v, �) = 0 for all � 2 �

 
.

The first line shows that V0 is a complex subspace of V , and the second line shows
that �0 = V0 \ � is again a lattice in V0. Define V1 = V/V0 and �1 = �/�0; then
X1 = V1/�1 is again a compact complex torus. Because V0 is the nullspace, H
descends to a nondegenerate hermitian form H1 on V1.

For � 2 �0, the transformation rule in (4.3) gives

✓(v + �) = ↵(�)✓(v),

and since |↵(�)| = 1, this shows that ✓ is bounded on each coset v + V0. By
Liouville’s theorem, ✓ is constant, and so there is a holomorphic function

✓1 : V1 ! C

such that ✓(v) = ✓1(v + V0). It then follows that ↵(�) = 1 for � 2 �0, and so there
is a function ↵1 : �1 ! U(1) with the property that ↵(�) = ↵1(� + �0). If we let
q : X ! X1 denote the quotient mapping, this means that L(H, ↵) ⇠= q⇤L(H1, ↵1) is
the pullback of a holomorphic line bundle from the smaller torus X1. Without loss
of generality, we therefore need to consider only the case when H is nondegenerate.

Case 2 . There is a nonzero vector w 2 V such that H(w, w) < 0. We are going to
show that this forces ✓ = 0. In order to use the transformation rule in (4.3), we
pick a compact subset K ✓ V such that V = K + �. For every t 2 C, we can then
write tw = kt + �t, with kt 2 K and �t 2 �. Now fix a point v 2 V and consider
the restriction of ✓ to the complex line v + tw. We have

|✓(v + tw)| = |✓(v + kt + �t)| = |e⇡H(v+kt,�t)+
⇡
2 H(�t,�t)| · |✓(v + kt)|

If we rewrite the exponent in terms of w, we get

⇡H(v + kt, �t) +
⇡

2
H(�t, �t) = ⇡H(v + kt, tw � kt) +

⇡

2
H(tw � kt, tw � kt)

= ⇡H(w, w)|t|2 + O(|t|),
because v 2 V is fixed and kt 2 K lies in a compact subset. As H(w, w) < 0, this
expression goes to�1 when |t| ! 1. Because the function ✓(v+tw) is holomorphic
in t, it follows that ✓(v + tw) = 0; but then ✓(v) = 0, and so ✓ = 0. Under the
assumption that H is nondegenerate, L(H, ↵) can therefore have nontrivial sections
only when H is positive definite.
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Case 3 . The hermitian form H is positive definite. If we pick a basis v1, . . . , vn 2 V ,
and let z1, . . . , zn 2 V ⇤ denote the dual basis, then the first Chern class of L(H, ↵)
is represented by the closed (1, 1)-form

i

2

nX

j,k=1

H(vj , vk)dz j ^ dz̄k.

This is now a positive form, which means that the line bundle L(H, ↵) is positive
(in Kodaira’s sense). According to the Kodaira embedding theorem, a su�ciently
large power of L(H, ↵) will therefore embed X into projective space. (Borrowing a
piece of terminology from algebraic geometry, we may say that L(H, ↵) is an ample

line bundle.) So we have proved the following criterion for X to be projective.

Theorem 4.4. A compact complex torus X = V/� is projective i↵ there exists a

positive definite hermitian form H : V ⇥ V ! C such that E = ImH takes integer

values on �⇥ �.

The discussion in Case 1 also shows that if L = L(H, ↵) is a holomorphic line
bundle on X such that H0(X, L) 6= 0, then there is surjective holomorphic group
homomorphism q : X ! X1 to a (possibly smaller) compact complex torus X1, and
an ample line bundle L1 = L(H1, ↵1), such that L ⇠= q⇤L1. Unlike in other parts
of algebraic geometry, the existence of sections is therefore very closely related to
ampleness.

Now let us actually determine the space of global sections of L(H, ↵), under the
assumption that H is positive definite. This will also allow us to figure out exactly
what power of L(H, ↵) we need to get an embedding into projective space. The
proof is a bit tricky, so let’s think about the classical case first.

Example 4.5. Consider V = C and � = Z + Z⌧ , with ⌧ 2 H. For simplicity, let’s
take E(⌧, 1) = 1, and ↵(1) = ↵(⌧) = 1; these two values determine ↵ uniquely. We
already computed that

H(1, 1) =
1

Im ⌧
,

and so H is positive definite. A theta function for (H, ↵) is an entire function
✓ : C ! C that satisfies the two functional equations

✓(z + 1) = e⇡H(z,1)+
⇡
2 H(1,1) · ✓(z) = e

⇡
2 (2z+1)/ Im ⌧ · ✓(z)

✓(z + ⌧) = e⇡H(z,⌧)+
⇡
2 H(⌧,⌧ · ✓(z) = e

⇡
2 (2z⌧̄+|⌧ |2)/ Im ⌧ · ✓(z).

Now the (very classical) idea is to make ✓ periodic, meaning invariant under the
substitution z 7! z + 1, and then to use Fourier series. We can achieve this by
completing the square: consider the new entire function

#(z) = e�
⇡
2 z

2
/ Im ⌧ · ✓(z).

The first functional equation then gives #(z+1) = #(z), and so we can expand #(z)
into a Fourier series of the form

#(z) =
X

n2Z
cne2⇡inz,

with coe�cients cn 2 C. (This is actually quite elementary: using the holomorphic
mapping C ! C

⇥, z 7! e2⇡iz, descend # to a holomorphic function on C
⇤; the

Fourier series is then just the Laurent series of this holomorphic function.)
After simplifying, the second functional equation reads

#(z + ⌧) = e�i⇡⌧�2⇡iz#(z).
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If we substitute the Fourier series into this equation, we get
X

n2Z
cne2⇡in⌧e2⇡inz = e�i⇡⌧

X

n2Z
cne2⇡i(n�1)z,

and after comparing coe�cients, we arrive at the identity

cn+1 = cnei⇡(2n+1)⌧ .

This shows that all the Fourier coe�cients cn are uniquely determined by c0. If we
set c0 = 1, we get cn = ei⇡n

2
⌧ , and so

#(z) =
X

n2Z
ei⇡n

2
⌧+2⇡inz

is exactly the classical Jacobi theta function. The series converges absolutely and
uniformly on compact subsets; in fact,

|#(z)| 
X

n2Z
|ei⇡n

2
⌧+2⇡inz| =

X

n2Z
e�⇡n

2
Im ⌧e2⇡nRe z

converges very rapidly on any strip of the form |Re z|  C. The conclusion is that
the line bundle L(H, ↵) has a unique holomorphic section, which looks like

✓(z) = e
⇡
2 z

2
/ Im ⌧ · #(z),

where # is Jacobi’s theta function.

Now we carry out the same kind of computation in general. Let us fix a positive
definite hermitian form H : V ⇥V ! C such that E = ImH takes integer values on
�⇥ �. After choosing a basis for � ⇠= Z

2n, we can represent E as a 2n⇥ 2n-matrix
with integer entries; let’s denote the determinant of this matrix by detE.

Theorem 4.6. We have dimH0
�
X, L(H, ↵)

�
=
p
|detE|.

We divide the proof into six steps. The general idea is the same as in the example.
We find a subgroup �0 ✓ � of rank n, and complete the square in order to make
✓ invariant under translation by this sublattice. We then study the coe�cients in
the Fourier series in order to determine all possible theta functions for (H, ↵).

Step 1 . We find a subgroup �0 ✓ � of rank n on which E is trivial. We can turn
the pairing E into a group homomorphism

E : � ! �⇤ = HomZ(�,Z), � 7! E(�,�).

This is injective (because E is nondegenerate over R and � is torsion-free), and the
image has index equal to |detE|. Now suppose that �0 is any subgroup of � such
that E|�0⇥�0 = 0. We get a commutative diagram

0 �0 � �/�0 0

0 (�/�0)⇤ �⇤ (�0)⇤

E

with exact rows; the last arrow on the bottom can fail to be surjective (because
�/�0 can have torsion). If � 2 � is in the kernel of �/�0 ! (�0)⇤, then E(�, �) = 0
for every � 2 �0, and so �0+Z� is a bigger subgroup on which E is identically zero.
So if we take �0 to be maximal with this property, then

�/�0 ! (�0)⇤
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must be injective; consequently, �/�0 is torsion-free, and rk� = 2 rk�0, which gives
rk�0 = n. Let m be the index of �/�0 in (�0)⇤. Because the first vertical arrow in
the diagram is the dual of the third one, it follows that

|detE| =
�
�⇤ : �

�
=
�
(�0)⇤ : �/�0�2 = m2,

or equivalently, m =
p
|detE|. So we can restate the theorem as

dimH0
�
X, L(H, ↵)

�
= m.

Anyway, the subgroup �0 will play the role that Z ✓ Z+Z⌧ played in the example.

Step 2 . Now suppose that ✓ : V ! C is a theta function for (H, ↵), with

✓(v + �) = e⇡H(v,�)+
⇡
2 H(�,�)↵(�) · ✓(v)

We want to make ✓ invariant under translation by �0, but in order to “complete
the square”, we need to turn our hermitian form H into a quadratic form. Let

WR = R⌦Z �0 ✓ VR

be the R-vector space spanned by �0. We have dimR WR = n, and because �/�0

is torsion free, we also have WR \ � = �0. Recall that J 2 End(VR) is the en-
domorphism J(v) = iv. The hermitian form H is related to E by the formula
H(v, w) = E(Jv, w) + iE(v, w), and so H is identically zero on WR \ J(WR). Be-
cause H is positive definite, we get WR \ J(WR) = 0, and therefore

V = WR � J(WR)

for dimension reasons. This shows that V = C⌦R WR = C⌦Z �0. Let p : V ! WR
and q : V ! WR be the two projections; then

v = p(v) + Jq(v) for any v 2 V .

Now consider the restriction H|WR⇥WR . Because E = ImH, this is an R-valued
symmetric bilinear form; let B : V ⇥ V ! C be the unique C-valued symmetric
bilinear form such that B|WR⇥WR = H|WR⇥WR . This will play the role that the
quadratic function z2/ Im ⌧ played in the example.

We also need to deal with the factor ↵(�) that was not there in the example.
For �, � 2 �0, we have E(�, �) = 0, and therefore ↵(�+ �) = ↵(�)↵(�). By choosing
a basis for �0 ⇠= Z

n, we can find a homomorphism

� : �0 ! R

with the property that ↵(�) = e2⇡i�(�) for � 2 �0. Since V = C⌦Z �0, this extends
uniquely to a C-linear mapping � : V ! C.

Step 3 . As in the example, we now consider the new holomorphic function

# : V ! C, #(v) = e�
⇡
2 B(v,v)e�2⇡i�(v) · ✓(v).

A brief computation shows that this satisfies the functional equation

#(v + �) = e�2⇡i�(�)↵(�) · e⇡
�
H(v,�)�B(v,�)

�
+

⇡
2

�
H(�,�)�B(�,�)

�
· #(v).

When � 2 �0, both factors are trivial, and so # is invariant under translation by
�0. We can therefore expand it into a Fourier series

#(v) =
X

�2HomZ(�0,Z)

c�e2⇡i�(v).

The Fourier coe�cients c� 2 C are indexed by homomorphisms � : �0 ! Z. Note
that each � extends uniquely to a C-linear mapping � : V ! C, which is how we
define the �(v) in the exponent.


