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Lecture 28 (May 8)

The Hodge conjecture for abelian varieties. In the final lecture, I surveyed
what is known about the Hodge conjecture for abelian varieties. An important role
is played by abelian varieties of “Weil type”, but the definition is slightly broader
than the one we used during the previous lectures. Let’s briefly look at this, in case
you want to read some of the papers later on. Let A be an abelian variety of even
dimension 2n. Then A is said to be of Weil type if there is an embedding

⌘ : Q(
p

�d) ,! End(A)⌦Z Q

of an imaginary quadratic field (with d � 2 a square-free integer) into the rational
endomorphism ring of A, such that both eigenspaces for the action of ⌘(

p
�d) on

H1,0(A) have dimension n. Note that ⌘(
p
�d)2 = ⌘(�d) acts on H1(A,Q) as

multiplication by �d, and so the two possible eigenvalues of ⌘(
p
�d) are exactly

±
p
�d. If we set V = H1(A,Q), this is exactly the condition that dimV 1,0

s
=

dimV 0,1

s
= n for each of the two complex embeddings of Q(

p
�d). Note that

Q(
p
�d) is a CM-field of degree 2.

A polarization on an abelian variety of Weil type is by definition an ample divisor
class h 2 H2(A,Z) such that ⌘(

p
�d)⇤h = d · h. This may look di↵erent, but it

is actually the same as our condition that the Rosati involution needs to act as
complex conjugation on the CM-field. Let’s do the computation. The ample class
h defines a polarization on V = H1(A,Q) by the formula

 (v, w) = [A] \
�
v [ w [ h2n�1

�
.

Here [A] is the fundamental class of A; over the real or complex numbers, this is
basically the integral over A. We would like to show that

 
⇣
⌘(
p

�d)⇤v, w
⌘
=  

⇣
v, ⌘(�

p

�d)⇤w
⌘
.

We first observe that ⌘(
p
�d) acts on H4n(A,Q) as multiplication by d2n. Indeed,

⌘(
p
�d) must be multiplication by some positive integer N , and because ⌘(

p
�d)2 =

⌘(�d) acts as multiplication by d4n, we get N = d2n. This gives

[A] \
⇣
⌘(
p

�d)⇤v [ ⌘(
p

�d)⇤w [ ⌘(
p

�d)⇤h2n�1

⌘
= d2n

· [A] \
�
v [ w [ h2n�1

�
.

If we now replace w by ⌘(�
p
�d)⇤w, and remember that ⌘(

p
�d)⇤h = dh and

⌘(d)⇤w = dw, we obtain

d2n
· [A] \

⇣
⌘(
p

�d)⇤v [ w [ h2n�1

⌘
= d2n

· [A] \
⇣
v [ ⌘(�

p

�d)⇤w [ h2n�1

⌘
.

This shows that the Rosati involution for  is complex conjugation on Q(
p
�d).

As in the previous lectures, the polarization  can be written as

 = TrQ(
p
�d)/Q

�p
�d�

�

for a unique hermitian form � : V ⌦Q V ! Q(
p
�d). The discrete invariants of

the polarized abelian variety (A, h) of Weil type are therefore the integer d, as well
as the discriminant disc�, which is an element in Q

⇥ modulo rational numbers of
the norm a2 + db2 with a, b 2 Q. (In the “split” case, which is the one we were
considering earlier, the discriminant is always (�1)n.)

One can show (by a dimension count) that the space of polarized abelian varieties
of Weil type has dimension n2. The 3-dimensional subspace

≠
hn,

^2n

Q(
p
�d)

H1(A,Q)

∑
✓ H2n(A,Q)
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consists of Hodge classes; these are again called Hodge classes of Weil type. For
a general (A, h), one can show moreover (by computing the Mumford-Tate group)
that these are all the Hodge classes in H2n(A,Q).

Remark. All Hodge classes in H2(A,Q) are algebraic (by the Lefschetz (1, 1)-
theorem). Since the intersection of algebraic classes is algebraic, every Hodge class
in the image of Sym2 H2(A,Q) ! H4(A,Q) is also algebraic. Mumford constructed
the first example of an abelian fourfold that has extra Hodge classes in H4(A,Q).
Weil realized the importance of CM-fields in Mumford’s construction, which is why
these classes are now called Hodge classes of Weil type.

Here are some known results about the Hodge conjecture for abelian varieties.
Let’s write Hk,k(A,Q) = H2k(A,Q) \ Hk,k(A) for the space of Hodge classes in
H2k(A,Q). In order to know all the Hodge classes on A, it is enough to know the
Mumford-Tate group MT(A) = MT

�
H1(A,Q)

�
. The reason is that

H2k(A,Q) =
2k^

H1(A,Q),

and so the Hodge classes are exactly the classes in H2k(A,Q) that are invariant un-
der the action by MT(A). Unfortunately, a lot of proofs in this subject work by first
classifying all possible Mumford-Tate groups (and their possible representations),
and then doing a case-by-case analysis.

(1) Tate proved that the Hodge conjecture is true if A is isogeneous to a product
of elliptic curves.

(2) Mari Rámon proved that the Hodge conjecture is true if A is isogeneous to
a product of abelian surfaces.

(3) Tankeev proved that the Hodge conjecture holds on simple abelian varieties
such that dimA is a prime number.

(4) Moonen and Zarhin showed that if A is a simple abelian 4-fold such that
Sym2 H1,1(A,Q) ! H2,2(A,Q) is not surjective, then A is of Weil type,
and H2,2(A,Q) is spanned by the image of Sym2 H1,1(A,Q) together with
the Hodge classes of Weil type. (Note that A can be of Weil type for several
di↵erent values of d, and we are supposed to take the Hodge classes of Weil
type for all such values.)

(5) Moonen and Zarhin also showed that this holds when A is isogeneous to
the product of an elliptic curve with a simple abelian threefold.

Altogether, these results reduce the Hodge conjecture on abelian fourfolds to
the case of abelian fourfolds of Weil type, and to proving that all Hodge classes
of Weil type are algebraic. This result was recently announced by Markman, after
many earlier results (especially by Schoen). Markman proves this for all imaginary
quadratic fields and all values of the discriminant, by reducing the problem to
abelian sixfolds of Weil type with discriminant �1. A lot of the earlier work was
for specific fields and/or specific values of the discriminant. The simplest example
is the following result by van der Geemen.

Example 28.1. Van der Geemen gave a nice geometric proof for the following result:
On a general principally polarized abelian fourfold of Weil type, with E = Q(i), all
Hodge classes of Weil type are algebraic. In outline, the argument goes like this.
The principal polarization can be represented by a symmetric theta divisor ⇥, with
h0

�
A, OA(⇥)

�
= 1. The line bundle L = OA(2⇥) is then base-point free and has

h0(A, L) = 24 = 16. The endomorphism ⌘(i) acts on H0(A, L) as an involution,
and in the eigenspace decomposition

H0(A, L) = H0(A, L)+ � H0(A, L)�,
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the first summand has dimension 10, the second dimension 6. Consider now the
rational mapping

A ! P
15

! P
5

given by the linear system |2⇥| followed by projection to the second summand.
One can show that the closure of the image is a smooth 4-dimensional quadric.
The pullback of one of the two rulings then gives a subvariety of codimension 2 in
A, whose class is not a multiple of h2 = ⇥2. For general A, the space H2,2(A,Q)
is generated by h2 and Weil classes, so at least one Weil class is algebraic; one can
then use the monodromy action to conclude that all Weil classes must be algebraic
for general A.

Remark. Somebody asked whether the Hodge conjecture is known for Jacobians
of curves. I said yes, but that was wrong: the Hodge conjecture for Jacobians is
equivalent to the Hodge conjecture for symmetric products of curves, but that’s
only known in certain special cases.


