
1

Lecture 27 (May6)

Split Weil classes are absolute. The third step in the proof of Deligne’s theorem
is to show that split Weil classes are absolute. We begin by describing a special
class of abelian varieties of split Weil type where this can be proved directly.

Let V0 be a rational Hodge structure of even rank d and type {(1, 0), (0, 1)}.
Let  0 be a Riemann form that polarizes V0, and W0 an isotropic subspace of
dimension d/2. (For example, V 1,0

0
is an isotropic subspace of dimension d/2 over

C, and because  0 is defined over Q, it will also have isotropic subspaces of the
same dimenension over Q.) We also fix an element ⇣ 2 E⇥ with ⇣̄ = �⇣.

Now set V = V0 ⌦Q E, with Hodge structure induced by the isomorphism

V ⌦Q C ' V0 ⌦Q
�
E ⌦Q C

�
'

M

s2S

V0 ⌦Q C.

Define a Q-bilinear form  : V ⇥ V ! Q by the formula

 (v0 ⌦ e, v0
0
⌦ e0) = TrE/Q

�
ee0

�
·  0(v0, v

0
0
).

This is a Riemann form on V , for which W = W0 ⌦Q E is an isotropic subspace of
dimension d/2. By Lemma 26.6, there is a unique E-hermitian form � : V ⇥V ! E
such that  = TrE/Q(⇣�); clearly W is a totally isotropic subspace of dimension d/2
for �. By Corollary 26.4, (V,�) is split, and V is therefore of split Weil type. Let
A0 be an abelian variety with H1(A0,Q) = V0. The integral lattice of V0 induces an
integral lattice in V = V0 ⌦Q E. We denote by A0 ⌦Q E the corresponding abelian
variety. It is of split Weil type since V is.

The next result is the key to proving that split Weil classes are absolute.

Proposition 27.1. Let A0 be an abelian variety with H1(A0,Q) = V0 as above,

and define A = A0 ⌦Q E. Then the subspace
V

d

E
H1(A,Q) of Hd(A,Q) consists

entirely of absolute Hodge classes.

Proof. We have Hd(A,Q) '
V

d

Q H1(A,Q), and the subspace

^d

E

H1(A,Q) '
^d

E

V0 ⌦Q E '

Å^d

Q
V0

ã
⌦Q E ' Hd(A0,Q)⌦Q E

consists entirely of Hodge classes by Proposition 26.9. But since dimA0 = d/2, the
space Hd(A0,Q) is generated by the fundamental class of a point, which is clearly

absolute. This implies that every class in
V

d

E
H1(A,Q) is absolute. ⇤

The following theorem, together with Principle B (from Theorem 23.1), com-
pletes the proof of Deligne’s theorem.

Theorem 27.2. Let E be a CM-field, and let A be an abelian variety of split Weil
type (relative to E). Then there exists a family ⇡ : A ! B of abelian varieties, with
B irreducible and quasi-projective, such that the following three things are true:

(a) A0 = A for some point 0 2 B.
(b) For every t 2 B, the abelian variety At = ⇡�1(t) is of split Weil type

(relative to E).
(c) The family contains an abelian variety of the form A0 ⌦Q E.

In the remainder of the lecture, we are going to prove Theorem 27.2. Through-
out, we let V = H1(A,Q), which is an E-vector space of some even dimension d.
The polarization on A corresponds to a Riemann form  : V ⇥ V ! Q, with the
property that the Rosati involution acts as complex conjugation on E. Fix a totally
imaginary element ⇣ 2 E⇥; then  = TrE/Q(⇣�) for a unique E-hermitian form �
by Lemma 26.6. Since A is of split Weil type, the pair (V,�) is split.
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As before, let D be the period domain, whose points parametrize Hodge struc-
tures of type {(1, 0), (0, 1)} on V that are polarized by the form  . Let Dsp

✓ D
be the subset of those Hodge structures that are of split Weil type (relative to E,
and with polarization given by  ). Our first task is to show that Dsp is a complex
manifold (and, in fact, a hermitian symmetric domain).

We begin by observing that there are essentially 2[E : Q]/2 many di↵erent choices
for the totally imaginary element ⇣, up to multiplication by totally positive elements
in F⇥. Indeed, if we fix a choice of i =

p
�1, and define '⇣ : S ! {0, 1} by the rule

(27.3) '⇣(s) =

®
1 if s(⇣)/i > 0,

0 if s(⇣)/i < 0,

then '⇣(s) + '⇣(s̄) = 1 because s̄(⇣) = �s(⇣), and so '⇣ is a CM-type for E. If we
change ⇣ by a totally positive element f 2 F⇥, then '⇣ does not change (because
s(f) > 0 for every s 2 S). Conversely, one can show that any CM-type of the
CM-field E is obtained in this way. Indeed, for a given CM-type ' : S ! {0, 1}, we
are looking for an element f 2 F⇥ with the property that s(f) > 0 if '(s) = '⇣(s),
and s(f) < 0 if '(s) 6= '⇣(s), because then ' = 'f⇣ . The existence of such an
element f 2 F⇥ is an exercise in field theory.

Exercise 27.1. Let F be a totally real number field, and let S = Hom(F,R) be the
set of all embeddings of F . Then for any function ' : S ! {�1,+1}, there is an
element f 2 F⇥ such that '(s) = sgn s(f).

Lemma 27.4. The subset Dsp of the period domain D is a hermitian symmetric
domain; in fact, it is isomorphic to the product of |S| = [E : Q] many copies of
Siegel upper halfspace.

Proof. Recall that V is an E-vector space of even dimension d, and that the Rie-
mann form is equal to  = TrE/Q(⇣�) for a split E-hermitian form � : V ⇥ V ! E
and a totally imaginary ⇣ 2 E⇥. The Rosati involution corresponding to  induces
complex conjugation on E; this means that  (ev, w) =  (v, ēw) for every e 2 E.

By definition, Dsp parametrizes all Hodge structures of type {(1, 0), (0, 1)} on V
that admit  as a Riemann form and are of split Weil type relative to the given
CM-field E. Such a Hodge structure amounts to a decomposition

V ⌦Q C = V 1,0
� V 0,1

with V 0,1 = V 1,0, with the following two properties:

(a) The action by E preserves V 1,0 and V 0,1.
(b) The form i (x, ȳ) =  

�
h(i)x, ȳ

�
is positive definite on V 1,0.

Let S = Hom(E,C), and consider the isomorphism

V ⌦Q C
⇠
�!

M

s2S

Vs,

where Vs = V ⌦E,s C. Since Vs is exactly the subspace on which e 2 E acts as
multiplication by s(e) 2 C, the condition in (a) is equivalent to demanding that
each complex vector space Vs decomposes as Vs = V 1,0

s
� V 0,1

s
.

On the other hand, � induces a hermitian form �s on each Vs, and we have

 (v, w) = TrE/Q
�
⇣�(v, w)

�
=
X

s2S

s(⇣)�s(v ⌦ 1, w ⌦ 1).

Therefore  polarizes the Hodge structure V 1,0
� V 0,1 if and only if i (x, x̄) > 0

for every nonzero x 2 V 1,0

s
. Writing

x =
X

j

vj ⌦ zj 2 V ⌦Q C,
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we computed last time that

i (x, x̄) = is(⇣)�s(x, x).

Remembering the definition of '⇣ in (27.3), we see that this will be positive definite
exactly when the hermitian form (�1)'⇣(s)�s is positive definite on V 1,0

s
.

In summary, Hodge structures of split Weil type on V for which  is a Riemann
form are parametrized by a choice of d/2-dimensional subspace V 1,0

s
✓ Vs, one for

each s 2 S, with the property that the hermitian form x 7! (�1)'⇣(s)�s(x, x) is
positive definite on V 1,0

s
. This information determines the subspace V 0,1

s
as the

orthogonal complement of V 1,0

s
with respect to �s. Since we have as = bs = d/2

for every s 2 S (by Corollary 26.4), the hermitian form �s has signature (d/2, d/2);
this implies that the space

Ds =
�

W 2 Grassd/2(Vs)
�� (�1)'⇣(s)�s(x, x) > 0 for 0 6= x 2 W

 

is isomorphic to the usual Siegel upper halfspace. The parameter space Dsp for our
Hodge structures is therefore the hermitian symmetric domain

Dsp
'

Y

s2S

Ds.

In particular, it is a connected complex manifold. ⇤

To be able to satisfy the final condition in Theorem 27.2, we need to know that
Dsp contains Hodge structures of the form V0 ⌦Q E. This is the content of the
following lemma.

Lemma 27.5. With notation as above, there is a rational Hodge structure V0 of
weight one, such that V0 ⌦Q E belongs to Dsp.

Proof. Since the pair (V,�) is split, there is a totally isotropic subspace W ✓ V
of dimension dimE W = d/2. Arguing as in the proof of Corollary 26.4, we can
therefore find a basis v1, . . . , vd for the E-vector space V , with the property that

�(vi, vi+d/2) = ⇣�1 for 1  i  d/2,

�(vi, vj) = 0 for |i � j| 6= d/2.

Let V0 be the Q-linear span of v1, . . . , vd; then we have V = V0 ⌦Q E. Now
define V 1,0

0
✓ V0 ⌦Q C as the C-linear span of the vectors hk = vk + ivk+d/2 for

k = 1, . . . , d/2. Evidently, this gives a Hodge structure of weight one on V0, hence
a Hodge structure on V = V0⌦Q E. It remains to show that  polarizes this Hodge
structure. But we compute that

i 

Ñ
d/2X

j=1

ajhj ,

d/2X

k=1

akhk

é
=

d/2X

k=1

|ak|
2 
�
ivk � vk+d/2, vk � ivk+d/2

�

= 2

d/2X

k=1

|ak|
2 (vk, vk+d/2)

= 2

d/2X

k=1

|ak|
2 TrE/Q

�
⇣�(vk, vk+d/2)

�
= 2[E : Q]

d/2X

k=1

|ak|
2,

which proves that x 7! i (x, x̄) is positive definite on the subspace V 1,0

0
. The Hodge

structure V0 ⌦Q E therefore belongs to Dsp as desired. ⇤
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Finishing the proof of Deligne’s theorem.

Proof of Theorem 27.2. As in Lecture 25, let M be the moduli space of abelian
varieties of dimension d/2 · [E : Q], with polarization of the same type as  , and
level 3-structure. Then M is a quasi-projective complex manifold, and the period
domain D is its universal covering space (with the Hodge structure on H1(A,Q)
mapping to the point A). Let B ✓ M be the locus of those abelian varieties
whose endomorphism algebra contains E. Note that the original abelian variety A
is contained in B. Since every element e 2 E is a Hodge class in End(A)⌦Q, it is
clear that B is a Hodge locus; in particular, B is a quasi-projective variety by the
theorem of Cattani-Deligne-Kaplan. As before, we let ⇡ : A ! B be the restriction
of the universal family of abelian varieties to B.

Now we claim that the preimage of B in D is precisely the set Dsp of Hodge
structures of split Weil type. Indeed, the endomorphism ring of any Hodge structure
in the preimage of B contains E by construction; since it is also polarized by the
form  , all the conditions in Definition 26.8 are satisfied, and so the Hodge structure
in question belongs to Dsp. Because D is the universal covering space of M, this
implies in particular that B is connected and smooth, hence a quasi-projective
complex manifold.

The first two assertions are obvious from the construction, whereas the third
follows from Lemma 27.5. This concludes the proof. ⇤

To complete the proof of Deligne’s theorem, we have to show that every split
Weil class is an absolute Hodge class. For this, we argue as follows. Consider the
family of abelian varieties ⇡ : A ! B from Theorem 27.2. By Proposition 26.9, the
space of split Weil classes

V
d

E
H1(At,Q) consists of Hodge classes for every t 2 B.

The family also contains an abelian variety of the form A0 ⌦Q E, and according to
Proposition 27.1, all split Weil classes on this particular abelian variety are absolute.
But now B is irreducible, and so Principle B applies and shows that for every t 2 B,
all split Weil classes on At are absolute. This finishes the third step of the proof,
and finally establishes Deligne’s theorem.


