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Lecture 26 (May 1)

Let me quickly remind you of the construction of Weil classes from last time.
Let E be a CM-field, and S = Hom(E,C) the set of its complex embeddings. We
write e 7! ē for the involution on E; for any s 2 S, we then have s(e) = s(ē).

Let V be a rational Hodge structure of type {(1, 0), (0, 1)} whose endomorphism
algebra contains E. We shall assume that dimE V = d is an even number; then
dimQ V = d · [E : Q]. For every s 2 S, we define Vs = V ⌦E,s C, which is a
complex vector space of dimension d. The tensor product gives us the relation
ev ⌦ z = v ⌦ s(e)z. Corresponding to the decomposition

E ⌦Q C
⇠
�!

M

s2S

C, e ⌦ z 7!

X

s2S

s(e)z,

we get a decomposition

V ⌦Q C '

M

s2S

Vs.

Complex conjugation, which acts on the left-hand side as v ⌦ z 7! v ⌦ z̄, exchanges
the summand Vs with the summand Vs̄; this can be seen by conjugating the identity
ev ⌦ z = v ⌦ s(e)z in Vs. By assumption, E respects the Hodge decomposition on
V , and so we get an induced decomposition

Vs = V 1,0

s
� V 0,1

s
.

Note that dimC V 1,0

s
+ dimC V 0,1

s
= d.

Lemma 26.1. The rational subspace
V

d

E
V ✓

V
d

Q V is purely of type (d/2, d/2) if

and only if dimC V 1,0

s
= dimC V 0,1

s
= d/2 for every s 2 S.

When the condition in the lemma is satisfied, the subspace
V

d

E
V consists entirely

of Hodge classes. These Hodge classes are called Weil classes. We are now going
to give a linear algebra condition for this to be the case, using hermitian forms and
polarizations.

Hermitian forms. This requires a little bit of background on hermitian forms.
Throughout, E is a CM-field, with totally real subfield F and complex conjugation
e 7! ē, and S = Hom(E,C) is the set of complex embeddings of E. An element ⇣ 2

E⇥ is called totally imaginary if ⇣̄ = �⇣; concretely, this means that s̄(⇣) = �s(⇣)
for every complex embedding s.

Definition 26.2. Let V be an E-vector space. A Q-bilinear form � : V ⇥ V ! E
is said to be E-hermitian if �(e · v, w) = e · �(v, w) and �(v, w) = �(w, v) for every
v, w 2 V and every e 2 E. It follows that �(v, e · w) = ē · �(v, w).

Now suppose that V is an E-vector space of dimension d = dimE V , and that �
is an E-hermitian form on V . We begin by describing the numerical invariants of
the pair (V,�). For any embedding s : E ,! C, we obtain a hermitian form �s in
the usual sense on the complex vector space Vs = V ⌦E,s C. Concretely, we have

�s

Ñ
X

j

vj ⌦ zj ,
X

k

v0
k
⌦ z0

k

é
=
X

j,k

zj z̄
0
k
s
�
�(vj , v

0
k
)
�
.

We let as and bs be the dimensions of the maximal subspaces where �s is, respec-
tively, positive and negative definite. Because dimC Vs = d, the signature of the
hermitian form �s is then (as, bs, d � as � bs).

A second invariant of � is its discriminant. To define it, note that � induces an E-
hermitian form on the one-dimensional E-vector space

V
d

E
V , which up to a choice

of basis vector, is of the form (x, y) 7! fxȳ. The element f belongs to the totally
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real subfield F , and a di↵erent choice of basis vector only changes f by elements
of the form NmE/F (e) = e · ē. Consequently, the class of f in F⇥/NmE/F (E

⇥) is
well-defined, and is called the discriminant of (V,�). We denote it by the symbol
disc�. Equivalently, we can choose a basis for V and represent � by a d⇥ d-matrix
with entries in E; then disc� is the determinant of this matrix.

Now suppose that � is nondegenerate. Let v1, . . . , vd 2 V be an orthogonal basis
for �, and set ci = �(vi, vi). Then we have ci 2 F⇥, and

as = #
�

i
�� s(ci) > 0

 
and bs = #

�
i
�� s(ci) < 0

 

satisfy as + bs = d. Moreover, we have

f =
dY

i=1

ci mod NmE/F (E
⇥);

this implies that sgn
�
s(f)

�
= (�1)bs for every s 2 S. The following theorem by

Landherr says that the discriminant and the integers as and bs are a complete set
of invariants for E-hermitian forms.

Theorem 26.3 (Landherr). Let as, bs � 0 be a collection of integers, indexed by
the set S, and let f 2 F⇥/NmE/F (E

⇥) be an arbitrary element. Suppose that they
satisfy as + bs = d and sgn

�
s(f)

�
= (�1)bs for every s 2 S. Then there exists a

nondegenerate E-hermitian form � on an E-vector space V of dimension d with
these invariants; moreover, (V,�) is unique up to isomorphism.

This classical result has the following useful consequence.

Corollary 26.4. If (V,�) is nondegenerate, then the following two conditions are
equivalent:

(a) as = bs = d/2 for every s 2 S, and disc� = (�1)d/2.
(b) There is a totally isotropic subspace of V of dimension d/2.

Proof. If W ✓ V is a totally isotropic subspace of dimension d/2, then v 7! �(�, v)
induces an antilinear isomorphism V/W

⇠
�! W_. Thus we can extend a basis

v1, . . . , vd/2 of W to a basis v1, . . . , vd of V , with the property that

�(vi, vi+d/2) = 1 for 1  i  d/2,

�(vi, vj) = 0 for |i � j| 6= d/2.

We can use this basis to check that (a) is satisfied. For the converse, consider the
hermitian space (E�d,�), where

�(x, y) =
X

1id/2

�
xiȳi+d/2 + xi+d/2ȳi

�

for every x, y 2 E�d. By Landherr’s theorem, this space is (up to isomorphism)
the unique hermitian space satisfying (a), and it is easy to see that it satisfies (b),
too. ⇤
Definition 26.5. An E-hermitian form � that satisfies the two equivalent condi-
tions in Corollary 26.4 is said to be split.

We shall see below that E-hermitian forms are related to polarizations on Hodge
structures of CM-type. We now describe one additional technical result that is
going tobe useful in that context. Suppose that V is a Hodge structure of type
{(1, 0), (0, 1)} that is of CM-type and whose endomorphism ring contains E; let
h : U(1) ! E⇥ be the corresponding homomorphism. Recall that a Riemann form
for V is a Q-bilinear antisymmetric form  : V ⌦ V ! Q, with the property that

(x, y) 7!  
�
h(i) · x, ȳ

�
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is hermitian and positive definite on V ⌦Q C. We only consider Riemann forms
whose Rosati involution induces complex conjugation on E, meaning that

 (ev, w) =  (v, ēw).

The next result says that polarizations with that property are closely related to
E-hermitian forms.

Lemma 26.6. Let ⇣ 2 E⇥ be a totally imaginary element (⇣̄ = �⇣), and let  be
a Riemann form for V as above. Then there exists a unique E-hermitian form �
with the property that  = TrE/Q(⇣�).

Because the trace can be computed by summing over all complex embeddings,
the formula  = TrE/Q(⇣�) means concretely that

 (v, w) =
X

s2S

s(⇣)s
�
�(v, w)

�
.

I did not give the proof in class, but I will include it here. We first prove a simpler
statement about bilinear forms.

Lemma 26.7. Let V and W be finite-dimensional vector spaces over E, and let
 : V ⇥W ! Q be a Q-bilinear form such that  (ev, w) =  (v, ew) for every e 2 E.
Then there exists a unique E-bilinear form � such that  (v, w) = TrE/Q �(v, w).

Proof. The trace pairing E ⇥ E ! Q, (x, y) 7! TrE/Q(xy), is nondegenerate. Con-
sequently, composition with TrE/Q induces an injective homomorphism

HomE

�
V ⌦E W, E

�
! HomQ

�
V ⌦E W,Q

�
,

which has to be an isomorphism because both vector spaces have the same dimen-
sion over Q. By assumption,  defines a Q-linear map V ⌦E W ! Q, and we
let � be the element of HomE

�
V ⌦E W, E

�
corresponding to  under the above

isomorphism. ⇤

Proof of Lemma 26.6. We apply the preceding lemma with W = V , but with E
acting on W through complex conjugation. This gives a sesquilinear form �1 such
that  (x, y) = TrE/Q �1(x, y). Now define � = ⇣�1�1, so that we have  (x, y) =
TrE/Q

�
⇣�(x, y)

�
. The uniqueness of � is obvious from the preceding lemma.

It remains to show that we have �(y, x) = �(x, y). Because  is antisymmetric,
 (y, x) = � (x, y), which implies that

TrE/Q
�
⇣�(y, x)

�
= �TrE/Q

�
⇣�(x, y)

�
= TrE/Q

�
⇣̄�(x, y)

�
.

On replacing y by ey, for arbitrary e 2 E, we obtain

TrE/Q
�
⇣e · �(y, x)

�
= TrE/Q

�
⇣e · �(x, y)

�
.

On the other hand, we have

TrE/Q
�
⇣e · �(y, x)

�
= TrE/Q

�
⇣e · �(y, x)

�
= TrE/Q

�
⇣e · �(y, x)

�
.

Since ⇣e can be an arbitrary element of E, the nondegeneracy of the trace pairing
implies that �(x, y) = �(y, x). ⇤

Hodge classes of split Weil type. We will now describe a condition on V that
guarantees that the space

V
d

E
V consists entirely of Hodge cycles.

Definition 26.8. Let V be a rational Hodge structure of type {(1, 0), (0, 1)} with
E ,! EndQ-HS(V ) and dimE V = d even. We say that V is of split Weil type relative
to E if there exists a split E-hermitian form � on V such that  = TrE/Q(⇣�) defines
a polarization on V for some totally imaginary element ⇣ 2 E⇥.
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According to Corollary 26.4, the condition on the E-hermitian form � is that
there should exist a totally isotropic subspace W ✓ V with dimE W = d/2.

Proposition 26.9. If V is of split Weil type relative to E, then the space
^d

E

V ✓

^d

Q
V

consists of Hodge classes of type (d/2, d/2).

Proof. For any s 2 S, let �S be the induced hermitian form on Vs = V ⌦E,sC. The
isomorphism

↵ : V ⌦Q C
⇠
�!

M

s2S

Vs

respects the Hodge decomposition. According to Lemma 25.5, it su�ces to prove
that dimV 1,0

s
= dimV 0,1

s
= d/2. We are going to do this by showing that �s is

positive/negative definite on these two subspaces. Since  = TrE/Q(⇣�) defines
a polarization, � is nondegenerate; recall from above that the signature of �s is
(as, bs). Because � is split, Corollary 26.4 shows that we have as = bs = d/2 for
every embedding s 2 S. So the signature of �s is actually (d/2, d/2).

Now let x 2 V 1,0

s
be any nonzero element. Writing x =

P
j
vj ⌦ zj , we have

�s(x, x) =
X

j,k

zj z̄ks
�
�(vj , vk)

�
.

At the same time, the fact that  = TrE/Q(⇣�) is a polarization tells us that

kxk2 = i (x, x̄) = i
X

j,k

zj z̄k (vj , vk) = i
X

j,k

zj z̄k TrE/Q
�
⇣�(vj , vk)

�

= i
X

j,k

X

s02S

zj z̄ks
0(⇣)s0

�
�(vj , vk)

�
= i

X

s02S

s0(⇣)�s0(x, x)

is positive. Because x 2 Vs, the sum is equal to is(⇣)�s(x, x), and so �s is either
positive or negative definite on V 1,0

s
, depending on the sign of is(⇣). Because we

know the signature of �s, we get dimV 1,0

s
 d/2. For the same reason, we have

dimV 0,1

s
 d/2; but because both dimensions must add up to d, we can then

conclude that dimV 1,0

s
= dimV 0,1

s
= d/2. ⇤

These special Hodge classes are called split Weil classes or more precisely Hodge
classes of split Weil type. They are the most important examples of Hodge classes
on abelian varieties of CM-type; as I said before, the Hodge conjecture is not known
for these classes except in dimension  4.

Are there any examples of Hodge structures of split Weil type? Fortunately,
there is a simple numerical criterion that can be used to check this. Recall that a
CM-type of E is a function ' : S ! {0, 1} with the property that '(s) + '(s̄) = 1.
It determines a Hodge structure E' of CM-type on the Q-vector space E, with
Hodge decomposition

E� ⌦Q C =
M

s2S

C
'(s),'(s̄).

This is the Hodge structure on H1(A,Q), where A is a simple abelian variety of
CM-type.

Now let '1, . . . ,'d be CM-types attached to E. Let Vi = E'i
be the Hodge

structure of CM-type corresponding to 'i, and define

V =
dM

i=1

Vi.

Then V is a Hodge structure of CM-type with dimE V = d.
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Proposition 26.10. If
P
'i is constant on S, then V is of split Weil type.

Proof. To begin with, it is necessarily the case that
P
'i = d/2; indeed,

dX

i=1

'i(s) +
dX

i=1

'(s̄) =
dX

i=1

�
'i(s) + 'i(s̄)

�
= d,

and the two sums are equal by assumption. By construction, we have

V ⌦Q C '

dM

i=1

�
E'i

⌦Q C
�
'

dM

i=1

M

s2S

C
'i(s),'i(s̄).

This shows that

Vs = V ⌦E,s C '

dM

i=1

C
'i(s),'i(s̄).

Therefore dimC V 1,0

s
=
P
'i(s) = d/2, and likewise dimC V 0,1

s
=
P
'i(s̄) = d/2.

Of course, this already implies that all classes in
V

d

E
V are Hodge classes.

Next, we construct the required E-hermitian form on V . For each i, choose a
Riemann form  i on Vi, whose Rosati involution acts as complex conjugation on
E. Since Vi = E'i

, there exist totally imaginary elements ⇣i 2 E⇥, such that

 i(x, y) = TrE/Q
�
⇣ixȳ

�

for every x, y 2 E. Set ⇣ = ⇣d, and define �i(x, y) = ⇣i⇣�1xȳ, which is an E-
hermitian form on Vi with the property that  i = TrE/Q(⇣�i).

For any collection of totally positive elements fi 2 F ,

 =
dX

i=1

fi i

is a Riemann form for V . As E-vector spaces, we have V = E
L

d, and so we can
define a nondegenerate E-hermitian form on V by the rule

�(v, w) =
dX

i=1

fi�i(vi, wi).

We then have  = TrE/Q(⇣�). By the same argument as before, as = bs = d/2,
since dimC V 1,0

s
= dimC V 0,1

s
= d/2. By construction, the form � is diagonalized,

and so its discriminant is easily found to be

disc� = ⇣�d

dY

i=1

fi⇣i mod NmE/F (E
⇥).

On the other hand, we know from general principles that, for any s 2 S,

sgn
�
s(disc�)

�
= (�1)bs = (�1)d/2.

This means that disc� = (�1)d/2f for some totally positive element f 2 F⇥. Upon
replacing fd by fdf�1, we get disc� = (�1)d/2, which proves that (V,�) is split. ⇤

26.1. André’s theorem and reduction to split Weil classes. The second step
in the proof of Deligne’s theorem is to reduce the problem from arbitrary Hodge
classes on abelian varieties of CM-type to Hodge classes of split Weil type. This is
accomplished by the following pretty theorem due to Yves André.



6

Theorem 26.1 (André). Let V be a rational Hodge structure of type {(1, 0), (0, 1)},
which is of CM-type. Then there exists a CM-field E, rational Hodge structures V↵

of split Weil type relative to E, and morphisms of Hodge structure V↵ ! V , such
that every Hodge class ⇠ 2

V
2p

Q V is a sum of images of Hodge classes ⇠↵ 2
V

2p

Q V↵

of split Weil type.

Proof. Let V = V1 � · · · � Vr, with Vi irreducible; then each Ei = EndQ-HS(Vi)
is a CM-field. Define E to be the Galois closure of the compositum of the fields
E1, . . . , Er. Since V is of CM-type, E is a CM-field which is Galois over Q. Let G
be its Galois group over Q. After replacing V by V ⌦Q E (of which V is a direct
factor), we may assume without loss of generality that Ei = E for all i.

As before, let S = Hom(E,C) be the set of complex embeddings of E; we then
have a decomposition

V '

M

i2I

E'i

for some collection of CM-types 'i. Applying Lemma 24.11, we get

V ⌦Q E '

M

i2I

M

g2G

Eg'i
.

Since each Eg'i
is one-dimensional over E, we get

⇣^2p

Q
V
⌘
⌦Q E '

^2p

E

(V ⌦Q E) '
^2p

E

M

(i,g)2I⇥G

Eg'i
'

M

↵✓I⇥G

|↵|=2p

O

(i,g)2↵

Eg'i

where the tensor product is over E. If we now define Hodge structures of CM-type

V↵ =
M

(i,g)2↵

Eg'i

for any subset ↵ ✓ I ⇥ G of size 2p, then V↵ has dimension 2p over E. The above
calculation shows that

⇣^2p

Q
V
⌘
⌦Q E '

M

↵

^2p

E

V↵,

which is an isomorphism both as Hodge structures and as E-vector spaces. More-
over, as V↵ is a sub-Hodge structure of V ⌦QE, we clearly have morphisms V↵ ! V ,
and any Hodge class ⇠ 2

V
2p

Q V is a sum of Hodge class ⇠↵ 2
V

2p

E
V↵.

It remains to see that V↵ is of split Weil type whenever ⇠↵ is nonzero. Fix a
subset ↵ ✓ I ⇥ G of size 2p, with the property that ⇠↵ 6= 0. Note that we have

^2p

E

V↵ '

O

(i,g)2↵

Eg'i
' E',

where ' : S ! Z is the function

' =
X

(i,g)2↵

g'i

The Hodge decomposition of E' is given by

E' ⌦Q C '

M

s2S

C
'(s),'(s̄).

The image of the Hodge cycle ⇠↵ in E' must be purely of type (p, p) with respect
to this decomposition. But

⇠↵ ⌦ 1 7!

X

s2S

s(⇠↵),
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and since each s(⇠↵) is nonzero (because ⇠↵ 6= 0 and s is an embedding), we conclude
that '(s) = p for every s 2 S. This means that the sum of the 2p CM-types
g'i, indexed by (i, g) 2 ↵, is constant on S. We conclude by the criterion in
Proposition 26.10 that V↵ is of split Weil type. ⇤

In geometric terms, this is saying that if A is an abelian variety of CM-type,
and if ⇠ 2 H2p(A,Q) is a Hodge class, then there are abelian varieties A↵ of
split Weil type, and morphisms q↵ : A ! A↵, such that ⇠ =

P
↵

q⇤
↵
(⇠↵), where

⇠↵ 2 H2p(A↵,Q) are Hodge classes of split Weil type. So if we can show that all
Hodge classes of split Weil type are absolute (or algebraic), then all Hodge classes
on abelian varieties of CM-type will also be absolute (or algebraic).


