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Lecture 23 (April 22)

Deligne’s Principle B. The goal of today’s lecture is to show that absolute Hodge
classes behave well in families. Suppose that f : X ! B is a smooth projective
morphism (over C); for each b 2 B, we denote the fiber by Xb = f�1(b), which is
a smooth projective variety. For simplicity, let’s assume that the parameter space
B is connected and quasi-projective; then X itself is also quasi-projective. The
2p-th cohomology groups H2p(Xb,Q) of the fibers fit together into a local system
R2pf⇤QX on B. If we have a global section ↵ 2 H0(B, R2pf⇤QX), we denote its
value at a point b 2 B by ↵b 2 H2p(Xb,Q). We think of ↵ as being a family of
cohomology classes on the fibers.

The following important result is known as “Deligne’s Principle B”. Informally,
it says that if we have a family of cohomology classes (in the above sense), and
if one of them is an absolute Hodge class, then all of them are absolute Hodge
classes. (The analogue problem for algebraic classes is the so-called “variational
Hodge conjecture”; this is wide open.)

Theorem 23.1 (Principle B). Let f : X ! B be a smooth projective morphism,
with B connected and quasi-projective, and let ↵ 2 H0(B, R2pf⇤QX). If there
is a point 0 2 B such that ↵0 2 H2p(X0,Q) is an absolute Hodge class, then
↵b 2 H2p(Xb,Q) is an absolute Hodge class for every b 2 B.

In practice, this means that if ↵0 is the class of an algebraic cycle (and therefore
an absolute Hodge classe), then all the ↵b are absolute Hodge classes. So Principle B
allows us to bypass the Hodge conjecture in certain cases.

Properties of absolute Hodge classes. We are going to prove the theorem by
studying the behavior of absolute Hodge classes under various operations.

Pullbacks. The most basic operation is pulling back along a morphism f : X ! Y
between two smooth projective varieties (over C). Here the pullback morphism

f⇤ : Hk(Y,Q) ! Hk(X,Q)

takes absolute Hodge classes on Y to absolute Hodge classes on X. This can be seen
as follows. First, we have a pullback morphism in algebraic de Rham cohomology:
the morphism of sheaves f⇤⌦1

Y/C ! ⌦1

X/C induces a morphism of complexes

f⇤⌦•
Y/C ! ⌦•

X/C

between the algebraic de Rham complexes of X and Y ; passing to cohomology gives

Hk

dR(Y/C) = Hk(Y,⌦•
Y/C) ! Hk(X, f⇤⌦•

Y/C) ! Hk(X,⌦•
X/C) = Hk

dR(X/C).

It is easy to see that this morphism is compatible with f⇤ : Hk(Y,C) ! Hk(X,C)
under the comparison isomorphism with algebraic de Rham cohomology. Now
if � 2 Aut(C/Q), then we get a conjugate morphism f� : X�

! Y �, and the
compatibility with algebraic de Rham cohomology implies that

f⇤(↵�) = (f⇤↵)�

So if ↵ 2 Hk(Y,Q) is an absolute Hodge class (and k is even), then ↵�
2 Hk(Y �,Q),

and so its pullback lies in Hk(X�,Q), which shows that f⇤↵ is again an absolute
Hodge class.
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Cup product . Similarly, the cup product morphism

Hi(X,Q)⌦ Hj(X,Q) ! Hi+j(X,Q), ↵⌦ � 7! ↵ [ �,

takes pairs of absolute Hodge classes to absolute Hodge classes. To see this, we
rewrite the cup product as

Hi(X,Q)⌦ Hj(X,Q) Hi+j(X ⇥ X,Q) Hi+j(X,Q),�
⇤

where the first morphism comes from the Künneth isomorphism, and the second is
pullback along the diagonal � : X ! X ⇥X. The Künneth isomorphism also holds
in algebraic de Rham cohomology, in a way that is compatible with the comparison
isomorphism; this is a consequence of the fact that

⌦1

X⇥X/C ⇠= p⇤
1
⌦1

X/C ⌦ p⇤
2
⌦1

X/C.

For that reason, the inclusion Hi(X,Q) ⌦ Hj(X,Q) ,! Hi+j(X ⇥ X,Q) takes a
pair of absolute Hodge classes to an absolute Hodge class; and because �⇤ preserves
absolute Hodge classes, we get the result.

Poincaré duality . On a smooth projective variety X of dimension n, the pairing

Hk(X,Q)⌦ H2n�k(X,Q) ! H2n(X,Q), ↵⌦ � 7! ↵ [ �,

is nondegenerate, which means that

Hk(X,Q) ! Hom
�
H2n�k(X,Q), H2n(X,Q)

�

is an isomorphism. As Hodge structures of weight 2n, we have H2n(X,Q) ⇠= Q(�n);
an explicit isomorphism is given by

H2n(X,Q) ! Q(�n), ↵ 7!
1

(2⇡i)n

Z

X

↵.

Its inverse is represented by the fundamental class [x] 2 H2n(X,Q(n)) of any point
x 2 X. Because cup product preserves absolute Hodge classes, and because the
fundamental class of a point is of course an absolute Hodge class, it follows that
the Poincaré duality isomorphism

Hk(X,Q) ! Hom
�
H2n�k(X,Q),Q(�n)

�

takes absolute Hodge classes to absolute Hodge classes. (The notion of absolute
Hodge classes also makes sense for classes in the dual vector space.)

Example 23.2. Let f : X ! Y be a morphism between smooth projective varieties,
and set r = dimY � dimX. Then the Gysin homomorphism f⇤ : Hk(X,Q) !

Hk+2r(Y,Q(r)) takes absolute Hodge classes to absolute Hodge classes. The reason
is that f⇤ is the composition of Poincaré duality on X and Y and the homomorphism
dual to f⇤ : Hk(Y,Q) ! Hk(X,Q).

Absolute homomorphisms. More generally, suppose that we have a homomorphism
� : Hk(X,Q) ! Hk+2r(Y,Q(r)) between cohomology groups of two smooth projec-
tive varieties X and Y . The Tate twist changes the weight of the second cohomology
group to k+2r�2r = k. Using Poincaré duality and the Künneth formula, we can
associate to � a cohomology class cl(�) in

Hk(X,Q)_ ⌦ Hk+2r(Y,Q(r)) ⇠= H2n�k(X,Q(n))⌦ Hk+2r(Y,Q(r))

✓ H2n+2r(X ⇥ Y,Q(n + r)),

where n = dimX. It is not hard to see that � is a morphism of Hodge structures
of weight k if and only if cl(�) is a Hodge class on X ⇥ Y .

Definition 23.3. We will say that a morphism � : Hk(X,Q) ! Hk+2r(Y,Q(r)) is
absolute if cl(�) 2 H2n+2r(X ⇥ Y,Q(n + r)) is an absolute Hodge class.



3

Example 23.4. The Gysin homomorphism is absolute.

One can recover the action of � by a formula similar to an integral transform:

�(↵) = (p2)⇤
�
p⇤
1
(↵) [ cl(�)

�
,

with p1 : X ⇥ Y ! X and p2 : X ⇥ Y ! Y the two projections. This shows that if
� is absolute, then it takes absolute Hodge classes in Hk(X,Q) to absolute Hodge
classes in Hk+2r(Y,Q(r)) (when k is even). Indeed, all three operations on the
right-hand side of the formula preserve absolute Hodge classes.

Composition and inverses . The composition of absolute morphisms is absolute. For
simplicity, let’s take the case where � : Hk(X,Q) ! Hk(Y,Q) and  : Hk(Y,Q) !
Hk(Z,Q) are homomorphisms between cohomology groups of the same degree. The
associated cohomology classes are cl(�) 2 H2n(X ⇥Y,Q(n)) and cl( ) 2 H2m(Y ⇥

Z,Q(m)), where n = dimX and m = dimY . Just as with integral transforms, the
cohomology class of the composition  � � is computed by a convolution:

cl( � �) = (p13)⇤
�
p⇤
12

cl(�) [ p⇤
23

cl( )
�
2 H2n(X ⇥ Z,Q(n)).

If cl(�) and cl( ) are absolute Hodge classes, then so is their convolution; therefore
 � � is again absolute. Similarly, one shows that if

� : Hk(X,Q) ! Hk+2r(Y,Q(r))

is both absolute and an isomorphism, then the inverse homomorphism ��1 is again
absolute.

Images of absolute morphisms. We’ll now use the facts from the previous sec-
tion to prove the following result.

Proposition 23.5. Let X and Y be smooth projective varieties. Suppose that
� : H2p(X,Q) ! H2p(Y,Q) is an absolute morphism of Hodge structures. If ↵ 2

H2p(Y,Q) is an absolute Hodge class in the image of �, then there is an absolute
Hodge class � 2 H2p(X,Q) such that �(�) = ↵.

In other words, any absolute Hodge class in the image of an absolute morphism is
actually the image of an absolute Hodge class. The proof relies on the fact that the
two Hodge structures can be polarized, in a way that is compatible with absolute
Hodge classes.

Let’s start with a few general remarks. Let H be a Hodge structure of weight k,
with Hodge decomposition

HC = H ⌦Q C =
M

p+q=k

Hp,q.

Define the Weil operator C 2 End(HR) by the formula Cv = ip�qv for v 2 Hp,q. By
Hodge symmetry, we have C(v̄) = Cv, and so C is a real operator with C2 = (�1)k.
Now recall that a polarization is a (�1)k-symmetric pairing

S : H ⌦Q H ! Q(�k)

such that hv, wi = S(Cv, w̄) is a hermitian inner product on HC that makes the
Hodge decomposition into an orthogonal decomposition. This implies in particular
that the polarization S is non-degenerate: if S(v, w) = 0 for all w 2 HC, then
kvk2 = S(Cv, v̄) = 0, and so v = 0. If we consider S as a homomorphism

S : H ! HomQ
�
H,Q(�k)

�
,

it is therefore an isomorphism of Hodge structures (of weight k).
If V ✓ H is a sub-Hodge structure, meaning a rational subspace such that

V p,q = Hp,q
\ VC, then the orthogonal complement

V ? =
�

h 2 H
�� S(h, v) = 0 for all v 2 V
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is again a sub-Hodge structure, and H = V � V ?. This follows from the fact that

V ?
⌦Q C =

�
h 2 HC

�� hh, vi = 0 for all v 2 VC
 
,

which holds because hv, wi = S(Cv, w̄) and because the Hodge decomposition is
orthogonal with respect to the inner product.

In the geometric case, the polarization is itself absolute, in the sense we talked
about earlier. Let’s recall the construction; to keep down the notation, I am going
to leave out the Tate twists in the formulas below. Let X be a smooth projective
variety of dimension n, choose an ample line bundle L 2 Pic(X), and let ! =
c1(L) 2 H2(X,Z(1)) be its first Chern class. The pairing

Sk(↵,�) =
(�1)k(k�1)/2

(2⇡i)n

Z

X

↵ [ � [ !n�k,

takes values in Q(�k), and is a polarization of the Hodge structure on the primitive
cohomology

Hk

0
(X,Q) = ker

�
!n�k+1 : Hk(X,Q) ! H2n�k+2(X,Q))

�
.

The formula for Sk only involves absolute operations: ! = c1(L) is an absolute
Hodge class, and the isomorphism

H2n(X,Q) ! Q(�n), ↵ 7!
1

(2⇡i)n

Z

X

↵,

is the inverse of the fundamental class of a point.
To get a polarization on all of Hk(X,Q), we use the Lefschetz decomposition

Hk(X,Q) = Hk

0
(X,Q)� !Hk�2

0
(X,Q)� !2Hk�4

0
(X,Q)� · · ·

Define an involution s 2 EndHk(X,Q) by acting as (�1)` on the subspace !`Hk�2`

0
(X,Q)

in the Lefschetz decomposition. Then

S(↵,�) = Sk

�
↵, s(�)

�

polarizes the Hodge structure on Hk(X,Q). As we said above, we can view S as
an isomorphism

(23.6) S : Hk(X,Q) ! Hom
�
Hk(X,Q),Q(�k)

�
,

and this isomorphism is absolute; we’ll abbreviate this by saying that the polariza-
tion is absolute.

Proposition 23.7. The isomorphism in (23.6) is absolute.

Proof. Because the formula for Sk only involves absolute operations, it su�ces to
prove that the involution s is absolute. Let p` : Hk(X,Q) ! Hk(X,Q) be the
projection to the subspace !`Hk�2`

0
(X,Q) in the Lefschetz decomposition. Then

s =
X

`2N
(�1)`p`,

and so it is enough to prove that each p` is absolute. Take any ↵ 2 Hk(X,Q), and
write its Lefschetz decomposition as

↵ = ↵0 + ! [ ↵1 + !2
[ ↵2 + · · · .

Here each ↵` 2 Hk�2`

0
(X,Q) is primitive, which means that !n�k+2`

[ ↵` 6= 0 and
!n�k+2`+1

[ ↵` = 0. For r � 1, we therefore have

!n�k+r
[ ↵ =

X

`�r

!n�k+r+`
[ ↵` 2 H2n�k+2r(X,Q).

By the Hard Lefschetz theorem,

!n�k+2r : Hk�2r(X,Q) ! H2n�k+2r(X,Q)
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is an isomorphism, and we clearly have

(!n�k+2r)�1
�
!n�k+r

[ ↵
�
=
X

`�r

!`�r↵`.

By comparing this with the original Lefschetz decomposition for ↵, we find that

(p0 + · · ·+ pr�1)(↵) = ↵�

X

`�r

!`
[ ↵` = ↵� !r

[ (!n�k+2r)�1
�
!n�k+r

[ ↵
�
.

This is clearly an absolute morphism, because it only involves cup product with
the absolute Hodge class ! and the inverse of the absolute isomorphism !n�k+2r.
By subtracting the formulas for r and r + 1, we conclude that each projector pr is
absolute. ⇤

We can now show that if an absolute Hodge class lies in the image of an absolute
morphism, then it must be the image of an absolute Hodge class.

Proof of Proposition 23.5. Let’s denote by SX and SY the polarizations on H2p(X,Q)
and H2p(Y,Q). The absolute morphism � : H2p(X,Q) ! H2p(Y,Q) has an adjoint
�† : H2p(Y,Q) ! H2p(X,Q) with respect to the polarizations, which satisfies

SY

�
↵,�(�)

�
= SX

�
�†(↵),�)

�
.

The adjoint fits into a commutative diagram

H2p(Y,Q) H2p(X,Q)

Hom
�
H2p(Y,Q),Q(�p)

�
Hom

�
H2p(X,Q),Q(�p)

�
,

SY

�
†

SX

�
⇤

where �⇤ is the morphism induced by �. Because � is absolute, the dual morphism
�⇤ is also absolute; and because SX is absolute, its inverse S�1

X
is also absolute.

Therefore �† is absolute as well. Note that �† is also the adjoint of � with respect
to the inner products on H2p(X,Q) and H2p(Y,Q).

Because � is a morphism of Hodge structures, the polarization SY gives us an
orthogonal decomposition

H2p(Y,Q) = im�� (im�)?.

Just as in linear algebra, the adjoint has the property that (im�)? = ker�†. We
can therefore rewrite the decomposition as

H2p(Y,Q) = im�� ker�†.

Now consider the morphism � � �† : H2p(Y,Q) ! H2p(Y,Q). It is self-adjoint, and
its kernel is exactly ker�†, because of the identity

⌦
↵, (� � �†)(↵)

↵
Y
=
⌦
�†(↵),�†(↵)

↵
X

.

Let ⇡ : H2p(Y,Q) ! H2p(Y,Q) denote the orthogonal projection to the subspace
im�. By the spectral theorem (for self-adjoint linear operators), ⇡ can be written
as a polynomial in � � �† without constant term, say

⇡ =
X

n�1

cn(� � �†)n.

Now if ↵ 2 H2p(Y,Q) is an absolute Hodge class in the image of �, then

↵ = ⇡(↵) =
X

n�1

cn(� � �†)n↵,
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which is equal to the image under � of the absolute Hodge class

� =
X

n�1

cn(�
†
� �)n�1�†(↵) 2 H2p(X,Q).

This proves the proposition. ⇤
Proof of Principle B. After all this work, it is now an easy matter to prove
Deligne’s Principle B. Let f : X ! B be a smooth projective morphism, with B
connected and quasi-projective. Let ↵ 2 H0(B, R2pf⇤Q) be a section of the local
system, and denote by ↵b 2 H2p(Xb,Q) its value at a point b 2 B. Suppose
that ↵0 2 H2p(X0,Q) is an absolute Hodge class for some 0 2 B. The local
system contains the same information as the monodromy action of ⇡1(B, 0) on the
cohomology group H2p(X0,Q), and a global section is the same as a cohomology
class that is invariant under monodromy:

H0(B, R2pf⇤Q) ⇠= H2p(X0,Q)⇡1(B,0)

From the Leray spectral sequence (which degenerates at E2 because f is smooth
and projective), we get a surjection

H2p(X,Q) ! H0(B, R2pf⇤Q) ⇠= H2p(X0,Q)⇡1(B,0).

Denoting by ib : Xb ,! X the inclusion of the fiber, the composition is just i⇤
0
.

Now let X̄ be a smooth projective variety containing X as a Zariski-open subset,
and let j : X ,! X̄ be the open embedding. According to the global invariant cycle
theorem, the composition

H2p(X̄,Q) H2p(X,Q) H2p(X0,Q)⇡1(B,0)
j
⇤ i

⇤
0

is surjective. (This theorem is also due to Deligne; it uses the fact that H2p(X,Q)
has a mixed Hodge structure with weights � 2p, and that the part of weight 2p is
exactly the image of j⇤.) Our absolute Hodge class ↵0 2 H2p(X0,Q) is invariant
under monodromy (because it comes from a global section ↵), and so it belongs
to the image; by Proposition 23.5, it is the image of an absolute Hodge class � 2

H2p(X̄,Q). But then we have
↵b = i⇤

b
j⇤�

for every b 2 B, due to the fact that B is connected; and this shows that each ↵b

is an absolute Hodge class.


