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Lecture 21 (April 15)

Derived equivalences and cohomology. Today, we go back to abelian varieties
over the complex numbers. Let X and Y be two abelian varieties (of the same
dimension g), and suppose that we have an integral transform

R�E : Db(X) ! Db(Y ).

We can use the kernel E on X ⇥ Y to construct an induced transformation

�H

E
: H⇤(X,Q) ! H⇤(Y,Q)

in cohomology. Let ch(E) 2 H⇤(X ⇥ Y,Q) be the Chern character of the complex
E 2 Db(X⇥Y ), and let p1 : X⇥Y ! X and p2 : X⇥Y ! Y be the two projections.
Then define

�H

E
: H⇤(X,Q) ! H⇤(Y,Q), �H

E
(↵) = (p2)⇤

�
p⇤
1
(↵) [ ch(E)

�
,

where (p2)⇤ is the Gysin map in cohomology. Note that �H

E
does not respects

degrees in general, because ch(E) can have components in many di↵erent degrees.

Example 21.1. When L is a line bundle on X, one has

ch(L) = exp c1(L) = 1 + c1(L) +
1

2!
c1(L)

2 + · · ·

For a vector bundle E, the Chern character is a certain polynomial (with rational
coe�cients) in the Chern classes: using the splitting principle, if L1, . . . , Lr are the
Chern roots of E, then

ch(E) =
rX

j=1

ch(Lj).

For an arbitrary complex E, we can define the Chern character by choosing a
bounded complex E

• of locally free sheaves that is quasi-isomorphic to E, and then
setting

ch(E) =
X

j2Z
(�1)j ch(E j).

It can be shown that the alternating sum on the right-hand side is the same for
every locally free resolution.

The construction is compatible with composition, in the sense that if

Db(X) Db(Y ) Db(Z)
R�E

R�E⇤F

R�F

are two integral transforms (so that their composition is an integral transform with
kernel E ⇤ F ), then the induced diagram

H⇤(X,Q) H⇤(Y,Q) H⇤(Z,Q)
�

H

E

�
H

E⇤F

�
H

F

is also commutative. This is a consequence of the Grothendieck-Riemann-Roch
theorem for Chern characters. Recall that the convolution is defined as

E ⇤ F = R(p13)⇤
�
p⇤
12

E ⌦ p⇤
23

F
�
.

As easy computation reduces the problem to showing that

ch(E ⇤ F ) = (p13)⇤
�
p⇤
12

ch(E) [ p⇤
23

ch(F )
�
.

The Chern character always commutes with pulling back; and on abelian varieties,
it also commutes with pushing forward. Indeed, if f : X ! Y is a morphism
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between abelian varieties, and E 2 Db(X) a bounded complex of coherent sheaves,
then the Grothendieck-Riemann-Roch theorem gives

ch
�
Rf⇤E

�
= td(TY ) [ ch

�
Rf⇤E

�
= f⇤

�
td(TX) [ ch(E)

�
= f⇤ ch(E).

This works because the Todd class of the tangent bundle td(TX) is trivial on an
abelian variety, due to the tangent bundle itself being trivial.

In particular, if R�E : Db(X) ! Db(Y ) is an equivalence, then the induced
homomorphism �H

E
: H⇤(X,Q) ! H⇤(Y,Q) is an isomorphism. Let me point out

again that it is usually not compatible with the grading.

Example 21.2. Let’s consider the Fourier transform R�P : Db(X) ! Db(X̂). To
compute the induced homomorphism on cohomology, we first need to know the first
Chern class c1(P ) of the Poincaré bundle. From the Künneth formula, we get

H2(X ⇥ X̂,Z) ⇠= H2(X,Z)� H1(X,Z)⌦ H1(X̂,Z)� H2(X̂,Z),

Now c1(P ) belongs to the subspace H1(X,Z) ⌦ H1(X̂,Z), because the restriction
of P to each slice X ⇥ {↵} and {x} ⇥ X̂ has trivial first Chern class (in coho-
mology). We can rewrite this subspace if we remember that X̂ ⇠= Pic0(X) ⇠=
H1(X, OX)/H1(X,Z). This gives H1(X̂,Z) ⇠= H1(X,Z), and therefore

H1(X̂,Z) ⇠= H1(X,Z)⇤.

Under this isomorphism, the first Chern class

c1(P ) 2 H1(X,Z)⌦ H1(X,Z)⇤

is the identity: if e1, . . . , e2g 2 H1(X,Z) is a basis, and e⇤
1
, . . . , e⇤

2g
2 H1(X,Z)⇤ the

dual basis, then one can show that

c1(P ) =
2gX

j=1

ej ⌦ e⇤
j
.

From this, it is easy to see that

1

n!
c1(P )n 2 Hn(X,Z)⌦ Hn(X,Z)⇤

has integer coe�cients, and hence that the Chern character ch(P ) 2 H⇤(X ⇥ X̂,Z)
is also integral. It follows that

�H

P
: H⇤(X,Z) ! H⇤(X̂,Z)

makes sense (and is an isomorphism) over the integers. Considering degrees, we get

�H

P
: Hn(X,Z) ! H2g�n(X̂,Z).

One can prove (using the formula for the first Chern class of P ) that this isomor-
phism is basically Poincaré duality: the product (�1)n(n+1)/2+g

·�H

P
is the Poincaré

duality isomorphism

Hn(X,Z) ⇠= Hn(X,Z)⇤ ⇠= H2g�n(X,Z)⇤ ⇠= H2g�n(X̂,Z).

In fact, something similar happens for an arbitrary derived equivalence between
two abelian varieties, as our the next proposition shows.

Proposition 21.3. Let R�E : Db(X) ! Db(Y ) be an equivalence. Then

�H

E
: H⇤(X,Z) ! H⇤(Y,Z)

is an isomorphism over the integers.
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Proof. From R�E , we constructed an induced equivalence

FE : Db(X ⇥ X̂) ! Db(Y ⇥ Ŷ ),

with the help of the diagram in (19.3). We also showed that FE is tensor product
with a certain line bundle NE 2 Pic(X ⇥ X̂), followed by pushforward along the
isomorphism 'E : X ⇥ X̂ ! Y ⇥ Ŷ . Just as for the Poincaré bundle, the Chern
character ch(NE) is a class in the cohomology of X ⇥ X̂ with integer coe�cients.
Therefore the homomorphism in cohomology associated to FE is an isomorphism
H⇤(X ⇥ X̂,Z) ⇠= H⇤(Y ⇥ Ŷ ,Z). The two vertical arrows in (19.3) also induce
isomorphisms on integral cohomology (because they involve only isomorphisms and
the Poincaré bundle); therefore the homomorphism associated to the equivalence
R�E ⇥R��1

E
: Db(X ⇥ X) ! Db(Y ⇥ Y ) is an isomorphism

H⇤(X ⇥ X,Z) ⇠= H⇤(Y ⇥ Y,Z).

A short computation shows that it acts as conjugation by �H

E
, and together with

the Künneth decomposition, this is enough to conclude that

�H

E
: H⇤(X,Z) ! H⇤(Y,Z)

must be an isomorphism. ⇤
Exercise 21.1. Let L be a line bundle on abelian variety X. Show that

1

n!
c1(L)

n
2 H2n(X,Z),

and conclude that the Chern character ch(L) is an element of H⇤(X,Z).

Finally, we can give a cohomological criterion for when two abelian varieties X
and Y are derived equivalent. The main point is that a complex abelian variety
X can be reconstructed from the Hodge structure on H1(X,Z), meaning from the
Hodge decomposition on

H1(X,Z)⌦Z C ⇠= H1(X,C) = H1,0(X)� H0,1(X).

Indeed, X is isomorphic to its own Albanese variety

Alb(X) = H0(X,⌦1

X
)⇤/H1(X,Z),

and we have H1(X,Z) ⇠= H1(X,Z)⇤ and H0(X,⌦1

X
) ⇠= H1,0(X). So if X and Y are

abelian varieties, and if H1(X,Z) and H1(Y,Z) are isomorphic as Hodge structures,
then X ⇠= Y . (This is an isomorphism of compact complex manifolds, but since X
and Y are projective, the isomorphism is automatically algebraic as well, due to
Chow’s theorem.)

Now let’s go back to the criterion in Corollary 20.4, which says that Db(X) ⇠=
Db(Y ) i↵ U(X ⇥ X̂, Y ⇥ Ŷ ) 6= ;. This set of “unitary” isomorphisms was defined
as follows. Write a given homomorphism ' : X ⇥ X̂ ! Y ⇥ Ŷ in the form

' =

Å
↵ �
� �

ã
,

with ↵ : X ! Y , � : X̂ ! Y , � : X ! Ŷ , and � : X̂ ! Ŷ ; then take the dual
homomorphisms ↵̂ : Ŷ ! X̂, �̂ : Ŷ ! X, �̂ : Y ! X̂, and �̂ : Y ! X, and assemble
them into a second matrixp

'⇤ =

Å
�̂ ��̂
��̂ ↵̂

ã

that represents a homomorphism '⇤ : Y ⇥ Ŷ ! X ⇥ X̂. Then if '⇤
�' = id, we say

that ' 2 U(X ⇥ X̂, Y ⇥ Ŷ ).
According to the discussion above, an isomorphism ' : X ⇥ X̂ ! Y ⇥ Ŷ is the

same thing as an isomorphism f : H1(X ⇥ X̂,Z) ! H1(Y ⇥ Ŷ ,Z) that respects
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the Hodge structures. The extra condition of being “unitary” can also be seen on
cohomology. Writing

H1(X ⇥ X̂,Z) ⇠= H1(X,Z)� H1(X̂,Z) ⇠= H1(X,Z)� H1(X,Z)⇤,

we have a natural bilinear pairing qX , defined by the rule

qX
�
(↵1, �1), (↵2, �2)

�
= �1(↵2) + �2(↵1).

We can then restate the criterion from Corollary 20.4 as follows.

Corollary 21.4. Let X and Y be abelian varieties. We have Db(X) ⇠= Db(Y ) if
and only if there is an isomorphism of Hodge structures

f : H1(X ⇥ X̂,Z) ! H1(Y ⇥ Ŷ ,Z)

that is an isometry with respect to the bilinear pairings qX and qY .

Proof. Choose a basis in H1(X,Z), and the dual basis in H1(X̂,Z) ⇠= H1(X,Z)⇤;
then the pairing qX is represented by the matrix

Å
0 id
id 0

ã

We can represent the isomorphism f : H1(X ⇥ X̂,Z) ! H1(Y ⇥ Ŷ ,Z) as a matrix

f =

Å
a b
c d

ã
,

where a : H1(X,Z) ! H1(Y,Z), b : H1(X,Z)⇤ ! H1(Y,Z), and so on. The condi-
tion to be an isometry is then

Å
c⇤ a⇤

d⇤ d⇤

ãÅ
a b
c d

ã
=

Å
a⇤ c⇤

b⇤ b⇤

ãÅ
0 id
id 0

ãÅ
a b
c d

ã
=

Å
0 id
id 0

ã
.

Here a⇤ : H1(Y,Z)⇤ ! H1(X,Z)⇤ is the homomorphism dual to a, and so on.
Now a : H1(X,Z) ! H1(Y,Z) is, by assumption, a morphism of Hodge structures,
and so it corresponds to a morphism of abelian varieties ↵ : X ! Y . Under the
isomorphisms H1(X̂,Z) ⇠= H1(X,Z)⇤ and H1(Ŷ ,Z) ⇠= H1(Y,Z)⇤, the dual homo-
morphism a⇤ then corresponds exactly to the dual morphism ↵̂ : Ŷ ! X̂. Likewise,
b : H1(X,Z)⇤ ! H1(Y,Z) corresponds to a morphism � : X̂ ! Y , but the dual
homomorphism b⇤ : H1(Y,Z) ! H1(X,Z)⇤⇤ ⇠= H1(X,Z) involves the isomorphism
with the double dual, and for that reason, there is an extra sign: the corresponding
morphism is ��̂ : Y ! X̂. In this manner, the condition that f is an isometry
turns into the identity

Å
��̂ ↵̂
�̂ ��̂

ãÅ
↵ �
� �

ã
=

Å
0 id
id 0

ã
,

which is exactly saying that
Å

↵ �
� �

ã
2 U(X ⇥ X̂, Y ⇥ Ŷ ).

We now conclude by applying Corollary 20.4. ⇤

Deligne’s theorem on absolute Hodge classes. The next topic, which is going
to take up the rest of the semester, is a theorem by Deligne about Hodge classes on
abelian varieties. We started with a brief overview. Let X be a smooth projective
variety over the complex numbers. For k � 0, we have the Hodge decomposition

H2k(X,C) =
M

p+q=2k

Hp,q(X).



5

A cohomology class ↵ 2 H2k(X,Z) is called an (integral) Hodge class if its image in
H2k(X,C) lands in the subspace Hk,k(X) – in other words, if it has type (k, k) with
respect to the Hodge decomposition. Any closed subvariety Z ✓ X of codimension
k has a fundamental class

[Z] 2 H2k(X,Z),

and this is always a Hodge class. (Proof: Let µ : Z̃ ! Z be a resolution of singu-
larities; then [Z] is Poincaré dual to the image of µ, and so

Z

Z̃

µ⇤↵ =

Z

X

[Z] ^ ↵

for every closed form ↵ 2 A2n�2k(X), where n = dimX. As dim Z̃ = n � k,
the integral vanishes except when ↵ 2 An�k,n�k(X).) Hodge asked whether every
integral Hodge class is “algebraic”, meaning a linear combination of fundamental
classes of subvarieties. Over Z, there are counterexamples: cases where [Z] is torsion
(and therefore a Hodge class for trivial reasons), and cases where some multiple of
[Z] is algebraic, but [Z] cannot be a linear combination of fundamental classes for
degree reasons. The Hodge conjecture is therefore properly stated over Q.

Conjecture 21.5 (Hodge). Every Hodge class in H2k(X,Q) is a Q-linear combi-
nation of fundamental classes of subvarieties of codimension k.

For k = 1, this is true even over Z, by the Lefschetz (1, 1)-theorem: every Hodge
class in H2(X,Z) is the first Chern class of a line bundle. This works even on
compact Kähler manifolds. But for larger values of k, the Hodge conjecture is
known to be false on compact Kähler manifolds. (In fact, one can find compact
complex tori that have Hodge classes in H2k(X,Q), but that don’t contain any
closed analytic subsets of codimension k.) So one has to use the fact that X is
projective, and one way of doing this is by looking at arithmetic aspects (that
make sense for polynomials but not for holomorphic functions). Deligne’s theory
of “absolute Hodge classes” is one step in this direction.

The general idea is as follows. Let X ✓ P
N

C be a smooth projective variety.
It is of course the common zero set of finitely many homogeneous polynomials in
C[z0, . . . , zN ], and the finitely many coe�cients of all these polynomials generate
a subfield k ✓ C that is finitely generated over Q. By construction, X is defined
over this much smaller field k. If we have an automorphism � 2 Aut(C/Q), we can
apply it to the coe�cients of the polynomials defining X, and obtain a new smooth
projective variety X�. It is isomorphic to the original X as a variety over Q – if a
point [z0, . . . , zN ] lies on X, then its image [�(z0), . . . , �(zN )] lies on X� – but not
over C. In fact, not only are X and X� not isomorphic as complex manifolds, they
are usually even not isomorphic as topological spaces.

The cohomology H⇤(X,C) can actually be computed algebraically (using the
algebraic de Rham complex), and for that reason, H⇤(X,C) ⇠= H⇤(X�,C). The
isomorphism is functorial, but it does not take the subspace H⇤(X,Q) to the sub-
space H⇤(X�,Q), because one needs the underlying topological space to define the
cohomology with Q-coe�cients, and the underlying topological spaces of X and
X� are not isomorphic. So if one has a Hodge class ↵ 2 H2k(X,Q), there is no
reason why its image ↵�

2 H2k(X�,C) should again be a Hodge class – it might
not even be a rational cohomology class. On the other hand, the fundamental class
[Z] of a closed subvariety does remain a Hodge class, because the isomorphism
H2k(X,C) ⇠= H2k(X�,C) takes [Z] to [Z�]. This potentially di↵erent behavior
between Hodge classes and algebraic classes motivates the following definition.

Definition 21.6. A Hodge class ↵ 2 H2k(X,Q) is called absolute if for every
� 2 Aut(C/Q), the image ↵�

2 H2k(X�,C) is again a Hodge class.
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The Hodge conjecture then breaks up into two steps: (1) Show that every Hodge
class is absolute. (2) Show that every absolute Hodge class is algebraic. Absolute
Hodge classes don’t make sense on compact Kähler manifolds, and so this limits
the scope of the problem to smooth projective varieties.

On abelian varietes, the Hodge conjecture is still open (and while I am skeptical
about the general case, I do think that the Hodge conjecture is true on abelian
varieties). If you went to Markman’s talk two weeks ago, you’ll remember that
he proved the Hodge conjecture for all 4-dimensional abelian varieties. The best
general result that we have is the following cool theorem by Deligne.

Theorem 21.7 (Deligne). Every Hodge class on an abelian variety is absolute.

In the rest of the semester, we’ll talk about the proof of Deligne’s theorem. It
involves moduli spaces of abelian varieties; complex multiplication (CM) on abelian
varieties; certain special Hodge classes called “Weil classess”; and other things.


