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Lecture 17 (April 1)

Grothendieck duality. In additional to the general definitions from last time,
we also need two basic tools for actually working with derived categories. The first
one is Grothendieck duality. The general theory is fairly complicated, and so we
shall only discuss a special case that is su�cient for the purposes of this course.

Let me begin by recalling Serre’s duality theorem. It says that if F is a coherent
sheaf on a smooth projective variety X, then

Extn�i(F , !X) ' HomC
�
Hi(X, F ),C

�
,

where n = dimX and !X denotes the canonical bundle of X. We can reformulate
this using the derived category. Because of the relationship between Ext-groups
and morphisms in the derived category, we have

Hi(X, F ) ' Exti(OX , F ) ' Hom
D

b
coh(OX)

�
OX , F [i]

�

Extn�i(F , !X) ' Hom
�
F [i], !X [n]

�
.

Serre duality can therefore be rewritten in the form

Hom
�
F, !X [n]

�
' Hom

�
Hom(OX , F ),C

�
,

where F = F [i]. Using suitable resolutions, this can be improved to the following
general result in the derived category Db

coh(OX).

Theorem 17.1. Let X be a smooth projective variety, and let F and G be two
objects of Db

coh(OX). Then one has an isomorphism of C-vector spaces

Hom
D

b
coh(OX)

⇣
F, G ⌦ !X [n]

⌘
' Hom

⇣
Hom

D
b
coh(OX)

(G, F ),C
⌘

that is functorial in F and G.

Grothendieck duality is a relative version of Serre duality, where instead of a
single variety, one has a proper morphism f : X ! Y . In Grothendieck’s formu-
lation, duality becomes a statement about certain functors: we have the derived
pushforward functor Rf⇤ : Db

coh(OX) ! Db
coh(OY ), and the problem is to construct

a right adjoint f ! : Db
coh(OY ) ! Db

coh(OX), pronounced “f -shriek”. In other words,
we would like to define f ! in such a way that we have functorial isomorphisms

Hom
D

b
coh(OY )

�
Rf⇤F, G

�
' Hom

D
b
coh(OX)

�
F, f !G

�

for F 2 Db
coh(OX) and G 2 Db

coh(OY ). For arbitrary proper morphisms, the con-
struction requires considerable technical e↵ort; it is explained in Hartshorne’s book
Residues and Duality. (There is also a modern treatment by Amnon Neeman, based
on the Brown’ representability theorem.) But in the special case that both X and
Y are smooth projective, there is a much simpler construction due to Alexei Bondal
and Mikhail Kapranov.

Theorem 17.2. If f : X ! Y is a morphism between two smooth projective vari-
eties, then

f !G = !X [dimX]⌦ Lf⇤�G ⌦ !�1

Y
[� dimY ]

�

for any G 2 Db
coh(OY ).

Proof. This follows very easily from the fact that Lf⇤ is the left adjoint of Rf⇤ – if
we use Serre duality to interchange left and right. Fix two objects F 2 Db

coh(OX)
and G 2 Db

coh(OY ). Applying Serre duality on Y , we get

Hom
�
Rf⇤F, G ⌦ !Y [dimY ]

�
' Hom

⇣
Hom

�
G,Rf⇤F

�
,C

⌘
.

Because Lf⇤ is the left adjoint of Rf⇤, we have

Hom
�
G,Rf⇤F

�
' Hom

�
Lf⇤G, F

�
.



2

If we now apply Serre duality on X, we get back to

Hom
⇣
Hom

�
Lf⇤G, F

�
,C

⌘
' Hom

�
F,Lf⇤G ⌦ !X [dimX]

�
.

Putting all three isomorphisms together, we obtain the desired formula for f !G. ⇤

For a more concise statement, let !X/Y = !X ⌦ f⇤!�1

Y
denote the relative

canonical bundle; then the formula in Theorem 17.2 becomes

f ! = !X/Y [dimX � dimY ]⌦ Lf⇤.

Note that dimX � dimY is simply the relative dimension of the morphism f . To
summarize, we have a functorial isomorphism

Hom
⇣
Rf⇤F, G

⌘
' Hom

⇣
F, !X/Y [dimX � dimY ]⌦ Lf⇤G

⌘

for F 2 Db
coh(OX) and G 2 Db

coh(OY ). In this form, Grothendieck duality will
appear frequently in the derived category calculations below.

Flat base change. Another technical result that we shall use below is the base
change theorem. As in the case of Grothendieck duality, there is a very general
statement (in the derived category); for our purposes, however, two special cases
are enough, and so we shall restrict our attention to those.

The general problem addressed by the base change theorem is the following.
Suppose we have a cartesian diagram of schemes:

X 0 X

Y 0 Y

g
0

f
0

f

g

We would like to compare the two functors g⇤f⇤ and f 0
⇤g

0⇤; more generally, on the
level of the derived category, the two functors Lg⇤Rf⇤ and Rf 0

⇤Lg0⇤. Using the
adjointness of pullback and pushforward, we always have morphisms of functors

g⇤f⇤ ! f 0
⇤g

0⇤ and Lg⇤Rf⇤ ! Rf 0
⇤Lg0⇤,

but without some assumptions on f or g – or on the sheaves or complexes to which
we apply the functors – they are not isomorphisms.

The simplest case where the two functors are isomorphic is when g (and hence
also g0) is flat. We begin by looking at the case of sheaves.

Lemma 17.3. Suppose that g is flat, and that f is separated and quasi-compact.
Then the base change morphism

g⇤f⇤F ! f 0
⇤g

0⇤
F

is an isomorphism for every quasi-coherent sheaf F on X.

Proof. The statement is local on Y and Y 0, and so we may assume without loss of
generality that Y = SpecA and Y 0 = SpecA0 are a�ne, with A0 flat over A. Let
F

0 = g0⇤F ; then all sheaves involved are quasi-coherent on Y 0, and so it su�ces
to show that

F (X)⌦A A0
! F

0(X 0)

is an isomorphism.
We first consider the case when X = SpecB is also a�ne; in that case, X 0 =

SpecA0
⌦A B. We have F = M̃ for some B-module M ; then g⇤f⇤F is the quasi-

coherent sheaf corresponding to the A0-module

A0
⌦A MA,
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while f 0
⇤g

0⇤
F is the quasi-coherent sheaf corresponding to

(A0
⌦A B)⌦B M.

The two are evidently isomorphic, which proves the assertion in case X is a�ne.
In general, cover X by finitely many a�ne open subsets U1, . . . , Un. Because F is
a sheaf, the complex of A-modules

0 ! F (X) !
nM

i=1

F (Ui) !
nM

i,j=1

F (Ui \ Uj)

is exact. Now A0 is flat over A, and so

0 ! F (X)⌦A A0
!

nM

i=1

F (Ui)⌦A A0
!

nM

i,j=1

F (Ui \ Uj)⌦A A0

remains exact. We conclude from the a�ne case above that the kernel is isomorphic
to F

0(X 0), which is the result we were after. ⇤
In the derived category, we have the following version.

Proposition 17.4. Suppose that g is flat, and the f is separated and quasi-compact.
Then for any F 2 D+

�
QCoh(X)

�
, the base change morphism

Lg⇤Rf⇤F ! Rf 0
⇤Lg0⇤F

is an isomorphism.

Proof. After replacing F by an injective resolution, we may assume without loss of
generality that F is a complex of injective quasi-coherent sheaves. The result now
follows by applying Lemma 17.3 termwise. ⇤
Mukai’s Fourier transform. From now on, let’s write Db(X) for the bounded
derived category of coherent sheaves on X. It may happen that two smooth pro-
jective varieties X and Y have isomorphic derived categories, without X and Y
themselves being isomorphic.1 The first interesting example of this was discovered
by Mukai: if X is an abelian variety, and X̂ the dual abelian variety, then

Db(X) ⇠= Db(X̂).

Here “isomorphic” means that there is an exact k-linear equivalence between the
two categories. This equivalence comes from the Poincaré bundle P on the product
X ⇥ X̂, using the projections to the two factors:

X ⇥ X̂ X̂

X

p1

p2

Given a complex K 2 Db(X), we can define its “Fourier transform”

R�P (K) = R(p2)⇤
�
Lp⇤

1
K ⌦ P

�

which is an object in Db(X̂). Because p1 is flat, the functor p⇤
1
is already exact;

similarly, P is a line bundle, and so the tensor product with P is also exact. So the
only genuinely derived functor is R(p2)⇤, and so R�P really is the derived functor
of the naive functor F 7! (p2)⇤(p⇤1F⌦P ) on sheaves. Mukai called this the “Fourier
transform” because of its formal similarities with the Fourier transform

f̂(⇠) =

Z 1

�1
f(x)e�2⇡ix⇠ dx

1
Bondal and Orlov proved that if the (anti-)canonical bundle of X is ample, then any isomor-

phism D
b
(X) ⇠= D

b
(Y ) comes from an isomorphism X ⇠= Y .
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for L1-functions on R. (In this analogy, complexes of sheaves are functions; ten-
soring with P is multiplication by the exponential function; and the direct image
along p2 is integration along the fibers.)

With that in mind, Mukai’s theorem is as follows.

Theorem 17.5 (Mukai). Let X be an abelian variety, and let X̂ be the dual abelian
variety. Then the Fourier transform

R�P : Db(X) ! Db(X̂)

is an equivalence of categories.

Note that X and X̂ are usually not isomorphic; but they are nevertheless related
on the level of the derived category.

General integral transforms. The Fourier transform is an example of what
people call an “integral transform” (or “Fourier-Mukai transform”) between derived
categories. Suppose that X and Y are two smooth projective varieties, and that
E 2 Db(X ⇥ Y ) is an object on the product. We can then define an exact functor

R�E : Db(X) ! Db(Y )

by the same formula as above:

R�E(K) = R(p2)⇤
�
Lp⇤

1

L
⌦ E

�
,

but now the tensor product is also derived (because E is no longer locally free).
The object E is called the “kernel” of the transform; the name again comes from
integral transforms on function spaces (where the kernel is some kind of function
or distribution on the product).

Example 17.6. A basic example is E = �⇤OX , the structure sheaf of the diagonal
on the product X ⇥ X. In this case, R�E : Db(X) ! Db(X) is the identity.

X X ⇥ X X

X

�

id

id
p1

p2

Indeed, for any object K 2 Db(X), we have

Lp⇤
1
K

L
⌦�⇤OX

⇠= R�⇤K

by the projection formula, and therefore

R�E(K) ⇠= R(p2)⇤R�⇤K ⇠= K.

Example 17.7. More generally, take a morphism f : X ! Y , look at its graph

�f : X ! X ⇥ Y, �f (x) =
�
x, f(x)

�
,

and use the object E = (�f )⇤OX on the product X ⇥Y as the kernel of an integral
transform. The following diagram shows the relevant morphisms:

X X ⇥ Y Y

X

�f

f

id
p1

p2
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By exactly the same computation as above, we haveR�E = Rf⇤ : Db(X) ! Db(Y ).
If we swap the roles of X and Y , and denote by

R E : Db(Y ) ! Db(X)

the integral transform with kernel E going the other way, then we have

Lp⇤
2
K

L
⌦ (�f )⇤OX

⇠= R�⇤Lf⇤K,

and therefore R E(K) ⇠= R(p1)⇤R�⇤Lf⇤K ⇠= Lf⇤K. So both Rf⇤ and Lf⇤ are
special cases of integral transforms.

Let’s check that the composition of two integral transforms is again an integral
transform. Say E 2 Db(X ⇥ Y ) and F 2 Db(Y ⇥ Z) are two kernels. Consider the
composition

R�F �R�E : Db(X) ! Db(Z).

To work out what this does, we are going to use the following big diagram:

X ⇥ Y ⇥ Z Y ⇥ Z Z

X ⇥ Y Y

X

p12

p1

p3

p23

p1

p2

p1

p2

Let K 2 Db(X) be any object. Then

R�E(K) = R(p2)⇤
�
Lp⇤

1
K

L
⌦ E

�
.

In order to compute Lp⇤
1
of this complex, we can use flat base change (along the

projection p1 : Y ⇥ Z ! Y ). This gives

Lp⇤
1
R�E(K) ⇠= R(p23)⇤

�
Lp⇤

12
(Lp⇤

1
K

L
⌦ E)

�
⇠= R(p23)⇤

�
Lp⇤

1
K

L
⌦ Lp⇤

12
E
�
.

Tensoring by F and pushing forward to Z then produces

R�FR�E(K) ⇠= R(p2)⇤
⇣
R(p23)⇤

�
Lp⇤

1
K ⌦ Lp⇤

12
E
� L
⌦ F

⌘

⇠= R(p2)⇤R(p23)⇤
⇣
Lp⇤

1
K ⌦ Lp⇤

12
E

L
⌦ Lp⇤

23
F
⌘

⇠= R(p3)⇤
⇣
Lp⇤

1
K ⌦ Lp⇤

12
E

L
⌦ Lp⇤

23
F
⌘
;

to go from the first to the second line, we used the projection formula (for the
morphism p23 : X ⇥ Y ⇥ Z ! Y ⇥ Z. If we now use the factorization

X ⇥ Y ⇥ Z X ⇥ Z Z

X

p3

p1

p13

p1

p2

and apply the projection formula one more time, we can rewrite this as

R�FR�E(K) ⇠= R(p2)⇤
⇣
Lp⇤

1

L
⌦R(p13)⇤

�
Lp⇤

12
E

L
⌦ Lp⇤

23
F
�⌘

.
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The composition is therefore again an integral transform, with kernel the object

E ⇤ F = R(p13)⇤
�
Lp⇤

12
E

L
⌦ Lp⇤

23
F
�⌘

2 Db(X ⇥ Z).

This object is called the “convolution” of the two kernels E 2 Db(X ⇥ Y ) and
F 2 Db(Y ⇥ Z), again by analogy with the convolution of two functions (which is
defined by integration over a common argument). With this notation, we have

(17.8) R�F �R�E
⇠= R�E⇤F ,

where “isomorphism” really means that the two functors are related by a natural
isomorphism. This kind of computation – using flat base change and the projection
formula – is very typical in the subject.

Example 17.9. In order to show that an integral transform R�E : Db(X) ! Db(Y )
is an equivalence, it is enough to find an object F 2 Db(Y ⇥X) such that E ⇤F ⇠=
�⇤OX is the structure sheaf of the diagonal on X ⇥ X, and F ⇤ E ⇠= �⇤OY is the
structure sheaf of the diagonal on Y ⇥ Y . The reason is that the structure sheaf of
the diagonal represents the identity.

Let me also mention, without proof, the following very nice theorem by Orlov.

Theorem 17.10. Let X and Y be two smooth projective varieties. Then any (exact
and k-linear) equivalence of categories F : Db(X) ! Db(Y ) is of the form F ⇠= R�E

for an object E 2 Db(X ⇥ Y ), unique up to isomorphism.

Thinking of E as the family of objects

Ex = E|{x}⇥Y 2 Db(Y ),

parametrized by the closed point x 2 X(k), one necessarily has

Ex
⇠= F

�
k(x)

�
,

the image of the skyscraper sheaf k(x) 2 Db(X) under the equivalence F . The
di�cult thing is to show that these objects actually fit together into a complex of
coherent sheaves on X ⇥ Y .

The symmetric Fourier transform. As a postdoc, when I was doing a lot of
computations with Mukai’s Fourier transform, I found that I could never remember
all the formulas, and so each time I wanted to prove something, I had to go back to
Mukai’s paper and look up the correct formula. (There are shifts by ± dimX, signs,
and inverses, and it is hard to remember which goes where.) This eventually led me
to write a paper with the grand title “The Fourier-Mukai transform made easy”,
whose main point was that one can change the definition of the Fourier transform
very slightly, and make all the formulas easy to remember. The idea is to use the
(contravariant) Grothendieck duality functor

R�X = RHom
�
�, !X [dimX]

�
: Db(X) ! Db(X)op ,

where !X = det⌦1

X/k
is the canonical bundle of the smooth projective variety X.

In the case X = Spec k, we shall use the simplified notation R�k.

Definition 17.11. Let X be an abelian variety, and let P = PX be the Poincaré
bundle on X ⇥ X̂. The exact functor

FMX = R�P �R�X : Db(X) ! Db(X̂)op

is called the symmetric Fourier-Mukai transform.
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Note that FMX is a contravariant functor; this turns out to be quite useful in
practice. The following theorem justifies the name “symmetric Fourier-Mukai trans-
form”; it is of course equivalent to Mukai’s theorem (because the duality functor is
a contravariant equivalence of categories).

Theorem 17.12. The composed functors FM
X̂
�FMX and FMX �FM

X̂
are natu-

rally isomorphic to the identity. In other words,

FMX : Db(X) ! Db(X̂)op

is an equivalence of categories, with quasi-inverse FM
X̂
.

One advantage of the modified definition is that it respects the symmetry be-
tween the two abelian varieties X and X̂. For example, one can show that

(17.13) FMX

�
k(0)

�
= O

X̂
and FMX(OX) = k(0).

Here k(0) = e⇤OSpec k means the structure sheaf of the closed point 0 2 X(k); we

use the same notation also on X̂.
Let’s verify the two identities in (17.13). The first one is very easy: Grothendieck

duality, applied to the morphism e : Spec k ! X, gives

R�X

�
k(0)

�
= e⇤R�Spec k

�
OSpec k

�
= e⇤OSpec k = k(0),

and so the symmetric Fourier-Mukai transform of k(0) is

FMX

�
k(0)

�
= R�P

�
k(0)

�
= OX .

The second isomorphism comes from the fact that (e ⇥ id)⇤P = P |{0}⇥X̂
is trivial.

In exactly the same way, one can show that

FMX

�
k(x)

�
= P |{x}⇥X̂

.

The Fourier-Mukai transform therefore takes structure sheaves of points to line
bundles in Pic0(X̂).

For the second identity in (17.13), we need to compute

FMX(OX) = R�P

⇣
!X [dimX]

⌘
= R(p2)⇤

⇣
P ⌦ p⇤

1
!X [dimX]

⌘
.

Recall from (15.13) that we have

Ri(p2)⇤P ⇠=

®
0 if i 6= dimX,

k(0) if i = dimX.

In terms of the derived category, this says that R(p2)⇤P ⇠= k(0)[� dimX]. If we
put this together with the formula above, and remember that !X is trivial, we get

FMX(OX) ⇠= k(0),

as required. We will prove later that for any L 2 Pic0(X), one has

FMX(L) ⇠= k(↵),

where ↵ 2 X̂(k) is the unique closed point corresponding to L under the isomor-
phism of groups X̂(k) ⇠= Pic0(X).


