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Lecture 16 (March 27)

The derived category. Derived categories were introduced to have a better foun-
dation for the theory of derived functors. When we calculate derived functors such
as Tor or Ext, we typically find a (locally free, or flat, or injective) resolution of our
given module/sheaf, apply the functor in question to each term of the resolution,
and then take cohomology. The main idea behind the derived category is to keep
not just the cohomology modules/sheaves, but the complexes themselves. Because
the same module/sheaf can be resolved in many di↵erent ways, keeping the com-
plex only makes sense if we declare di↵erent complexes obtained in this way to be
isomorphic. This leads to the notion of a quasi-isomorphism: a morphism between
two complexes that induces isomorphisms on cohomology.

Example 16.1. Consider the case of modules over a ring. Every module M has a
(typically infinite) free resolution

· · · ! F2 ! F1 ! F0 ! M ! 0,

and in the derived category, we want to consider the complex F• as being isomorphic
to M . If G• is another free resolution of M , then a basic result in homological
algebra says that there is a morphism of complexes f : F• ! G• making the diagram

· · · F2 F1 F0 M

· · · G2 G1 G0 M

d

f

d

f f id

d d

commute. This morphism is only unique up to homotopy: for any other choice
f 0 : F• ! G•, there are homomorphisms s : Fn ! Gn+1 such that f 0

� f = ds+ sd.

· · · F2 F1 F0 M

· · · G2 G1 G0 M

d

f

d

f
s

f
s

id

d d

If we want to consider M , F•, and G• as being isomorphic to each other, the two
liftings of id : M ! M should be equal, and so we are forced to consider morphisms
of complexes up to homotopy.

Example 16.2. In other cases, say for computing Ext, we might want to replace M
by an injective resolution of the form

0 ! M ! I0
! I1

! I2
! · · · ,

Now an injective resolution and a free resolution do not have much in common; the
only thing we can say is that we have a morphism of complexes

· · · F2 F1 F0 0 0 · · ·

· · · 0 0 I0 I1 I2
· · ·

d d

d d

that is an isomorphism on the level of cohomology—being resolutions of M , both
complexes have cohomology only in degree zero. If we want both complexes to
be isomorphic as objects of the derived category, we need to make sure that such
quasi-isomorphisms have inverses.

Quasi-isomorphisms also arise naturally if we consider resolutions of complexes.
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Example 16.3. An injective resolution of a complex M• of modules is a complex
I• of injective modules, and a morphism of complexes M•

! I• that induces
isomorphisms on cohomology. This generalizes the usual definition for a single
module to complexes.

Unfortunately, not every quasi-isomorphism has an inverse. The following ex-
ample (in the category of Z-modules) shows one way in which this can happen.

Example 16.4. In the category of Z-modules, the morphism

0 Z Z 0

0 0 Z/2Z 0

2

is a quasi-isomorphism; but it clearly has no inverse, not even up to homotopy,
because there are no nontrivial homomorphisms from Z/2Z to Z.

Let me now explain the classical construction of the derived category. Let A be
an arbitrary abelian category (such as modules over a ring, or coherent sheaves on
a scheme). Depending on what kind of complexes we want to consider, there are
several derived categories: the unbounded derived category D(A), whose objects
are arbitrary complexes of objects in A; the categories D+(A) and D�(A), whose
objects are semi-infinite complexes that are allowed to be infinite in the positive
respectively negative direction; and finally the bounded derived category Db(A),
whose objects are bounded complexes of objects in A. All of these categories are
constructed in two stages; we explain this in the case of Db(A).

(1) Starting from the category of bounded complexes Kb(A), form the so-called
homotopy category Hb(A). It has exactly the same objects, but the mor-
phisms between two complexes are taken up to homotopy; in other words,

HomHb(A)(A
•, B•) = HomKb(A)(A

•, B•)
�
Hom0

Kb(A)
(A•, B•),

where Hom0

Kb(A)
(A•, B•) denotes the subgroup of those morphisms that

are homotopic to zero.
(2) Now form the derived category Db(A) by inverting quasi-isomorphisms; this

can be done by a formal construction similar to the passage from Z to Q.
That is to say, in Db(A), a morphism between two complexes A• and B• is
represented by a fraction f/h, which stands for the diagram

C•

A• B•

h f

where f : C•
! B• is a morphism of complexes and h : C•

! A• is a quasi-
isomorphism. As with ordinary fractions, there is an equivalence relation
that we shall not dwell on; it is also not entirely trivial to show that the
composition of two morphisms is again a morphism.

In other words, the objects of the derived category are still just complexes;
but the set of morphisms between two complexes has become more complicated
(especially because a morphism may involve an additional complex).

Example 16.5. For us, the most interesting case is when the abelian category is
Coh(X), the category of coherent sheaves on a scheme X. By applying the above
construction, we get the bounded derived category Db

�
Coh(X)

�
; once again, the

objects of this category are just bounded complexes of coherent sheaves. For prac-
tical purposes, a broader definition of the derived category is more useful. Inside
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the unbounded derived category D(OX) of all complexes of sheaves of OX -modules,
consider the full subcategory Db

coh(OX); by definition, a complex

· · · ! F
�1

! F
0
! F

1
! F

2
! · · ·

belongs to this subcategory if its cohomology sheaves H
i(F •) are coherent, and

nonzero for only finitely many values of i. Clearly,

Db
�
Coh(X)

�
✓ Db

coh(OX),

and under some mild assumptions on X, this inclusion is actually an equivalence
of categories. The larger category has the advantage of being more flexible: for
example, an injective resolution of a coherent sheaf is an object of Db

coh(OX) but
not of Db

�
Coh(X)

�
.

Morphisms in the derived category. The definition of the derived category
leads to several questions. The first one is whether one can describe the space of
morphisms between two complexes in more basic terms. At least in the case of
complexes with only one nonzero cohomology object, this is possible.

We first define the following shift functor. Given a complex A•
2 K(A) and an

integer n 2 Z, we obtain a new complex A•[n] by setting

A•[n] = A•+n;

we also multiply all the di↵erentials in the original complex by the factor (�1)n.
(This convention makes it easier to remember certain formulas.) For example, if
A• is the complex

· · · A�1 A0 A1 A2
· · ·

d d d

then A•[1] is the same complex shifted to the left by one step,

· · · A0 A1 A2 A3
· · ·

�d �d �d

and with the sign of all di↵erentials changed. This operation passes to the derived
category, and defines a collection of functors [n] : D(A) ! D(A).

Example 16.6. Morphisms in Db(A) are related to Ext-groups in the sense of
Yoneda. (When the abelian category A has enough injective objects, these are
the same as the derived functors of Hom, computed using an injective resolution.)
If A and B are two objects of the abelian category A, then one has

HomDb(A)

�
A, B[n]

�
' Extn(A, B);

in particular, this group is trivial for n < 0. Let us consider the case n = 1. An
element of Ext1(A, B) is represented by a short exact sequence of the form

0 ! B ! E ! A ! 0.

Now the morphism of complexes

0 B E 0

0 0 A 0

is obviously a quasi-isomorphism; on the other hand, we have

0 B E 0

0 B 0 0

id

and together, they determine a morphism in Db(A) from A (viewed as a complex
in degree 0) to B[1] (viewed as a complex in degree �1).
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Exercise 16.1. Show that, conversely, every element of HomDb(A)

�
A, B[1]

�
gives rise

to an extension of A by B, and that the two constructions are inverse to each other.

Other models for the derived category. Recall that the objects of the bounded
derived category Db

coh(OX) are complexes of sheaves of OX -modules whose coho-
mology sheaves are coherent and vanish outside some bounded interval. I already
mentioned that, under some mild assumptions on X, this category is equivalent to
the much smaller category Db

�
Coh(X)

�
, whose objects are bounded complexes of

coherent sheaves on X. There are various other models for the derived category,
each based on a certain class of sheaves (such as injective sheaves or flat sheaves).
Let me illustrate this principle with the following example.

Example 16.7. Let Inj(OX) denote the (additive, but not abelian) category of in-
jective sheaves of OX -modules. Every OX -module has a semi-infinite resolution
by injectives; using the Cartan-Eilenberg construction, every semi-infinite complex
of OX -modules is quasi-isomorphic to a semi-infinite complex of injectives. This
means that the inclusion

D+
�
Inj(OX)

�
✓ D+(OX)

is an equivalence of categories. By restricting to complexes with bounded and
coherent cohomology sheaves, we also obtain an equivalence of categories

Db
coh

�
Inj(OX)

�
' Db

coh(OX).

The advantage of using injectives is that we do not need to worry about inverses
for quasi-isomorphisms. Indeed, suppose that f : I•

1
! I•

2
is a quasi-isomorphism

between two complexes of injective OX -modules. The universal mapping property
of injectives implies that there is a morphism of complexes g : I•

2
! I•

1
such that

both f � g and g � f are homotopic to the identity. Thus

D+
�
Inj(OX)

�
' H+

�
Inj(OX)

�

and, extending our earlier notation in the obvious way, also

Hb

coh

�
Inj(OX)

�
' Db

coh(OX).

The same construction works for sheaves of flat OX -modules; under certain addi-
tional assumptions on the scheme X, one can also use locally free sheaves.

In this model for the derived category, the morphisms are much easier to describe.
Nevertheless, it is better to work with the category Db

coh(OX), because it gives us
more flexibility: we can choose injective or flat or locally free resolutions as the
occasion demands.

Triangulated categories. The derived category is no longer an abelian category,
because the kernel and cokernel of a morphism do not make sense. (This is due to all
the additional morphisms that we have introduced when adding inverses for quasi-
isomorphisms.) But there is a replacement for short exact sequences, the so-called
distinguished triangles, and Db(A) is an example of a triangulated category.

A triangulated category is given by specifying a class of triangles. The motivation
for introducing triangles lies in the mapping cone construction from homological
algebra; let us briefly review this construction, and explain in what sense it acts as a
substitute for short exact sequences. Given a morphism of complexes f : A•

! B•,
the mapping cone of f is the complex

C•
f
= B•

� A•[1] = B•
� A•+1

with di↵erential d(b, a) = (db+fa,�da). (The terminology comes from the mapping
cone in algebraic topology.) Since we defined A•[1] by changing the sign of all
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di↵erentials, this makes the sequence of complexes

0 ! B•
! C•

f
! A•[1] ! 0

short exact. In total, we have a sequence of four morphisms

(16.8) A•
! B•

! C•
f
! A•[1],

and the composition of any two adjacent morphisms is zero up to homotopy.

Exercise 16.2. Verify that the composite morphisms

A•
! B•

! C•
f

and C•
f
! A•[1] ! B•[1]

are both homotopic to zero.

A sequence of four morphisms as in (16.8) is called a triangle; this is because
we can arrange it into the shape of a triangle, with the convention that the arrow
marked [1] really goes from C•

f
to A•[1]:

A•

C•
f

B•

[1]

The short exact sequence of complexes gives rise to a long exact sequence

· · · ! Hi(A•) ! Hi(B•) ! Hi(C•
f
) ! Hi+1(A•) ! · · ·

for the cohomology of the complexes. In order to write down this long exact se-
quence, all we need is the four morphisms in (16.8). Taking this example as a
model, we say that any sequence of four morphisms of complexes

A•
! B•

! C•
! A•[1]

is a distiguished triangle if it is isomorphic, in the derived category, to a triangle
coming from the mapping cone construction. (In particular, the composition of
two adjacent morphisms in the triangle is then actually homotopic to zero.) This
definition endows the derived category with the structure of a triangulated category.

Here are two basic properties of distinguished triangles that you should try to
verify as an exercise. There are many others, and by abstracting from this example,
Verdier arrived at the concept of a triangulated category; since the precise definition
is not relevant for our purposes, we shall not dwell on the details.

Exercise 16.3. Suppose that A•
! B•

! C•
! A•[1] is a distinguished triangle.

Show that B•
! C•

! A•[1] ! B•[1] and C•[�1] ! A•
! B•

! C• are again
distinguished triangles. This means that distinguished triangles can be “rotated”
in both directions.

Exercise 16.4. Show that a distinguished triangle A•
! B•

! C•
! A•[1] gives

rise to a long exact sequence

· · · ! Hi(A•) ! Hi(B•) ! Hi(C•) ! Hi+1(A•) ! · · ·

in the abelian category A.

I already mentioned that distinguished triangles are a replacement for short exact
sequences; let me elaborate on this point a bit. On the one hand, the prototypical
example of a distinguished triangle in (16.8) came from the short exact sequence
of the mapping cone. On the other hand, once we look at complexes up to quasi-
isomorphism, every short exact sequence of complexes is actually that of a mapping
cone (under some conditions on A). Let me illustrate this claim with the example
of modules over a ring.
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Example 16.9. Suppose we have a short exact sequence of complexes of R-modules

0 ! B•
! C•

! A•[1] ! 0.

Up to quasi-isomorphism, we can replace any complex by a free resolution, and
so we may assume that A• is a complex of free R-modules. We can then choose
splittings

Cn
' Bn

� An+1.

With respect to this decomposition, the di↵erential d : Cn
! Cn+1 is represented

by a matrix Å
d f
0 �d

ã

for some homomorphism f : An
! Bn; the identity d � d = 0 implies that f defines

a morphism of complexes from A• to B•, and our exact sequence of complexes is
the one for the mapping cone of f .

In closing, let me mention one other general fact that is frequently useful.
Namely, suppose that A•

! B•
! C•

! A•[1] is a distinguished triangle in
Db(A). Then for every E•

2 Db(A), one gets two long exact sequences of abelian
groups

· · · ! Hom(E•, A•) ! Hom(E•, B•) ! Hom(E•, C•) ! Hom
�
E•, A•[1]

�
! · · ·

· · · ! Hom
�
A•[1], E•�

! Hom(C•, E•) ! Hom(B•, E•) ! Hom(A•, E•) ! · · ·

where Hom(�,�) means the set of morphisms in Db(A).

Derived functors. From now on, we shall concentrate on the derived category
Db

coh(OX), where X is a scheme. Here is a very useful fact:

Example 16.10. If X is nonsingular and quasi-compact, so that every coherent sheaf
on X has a finite resolution by locally free sheaves, then every complex in Db

coh(OX)
is quasi-isomorphic to a bounded complex of locally free sheaves.

Our goal is to define derived functors for the commonly used functors in algebraic
geometry, such as ⌦, Hom, or pushforwards and pullbacks. The original functors
are either left or right exact, and in classical homological algebra, the higher derived
functors correct the lack of exactness. In the setting of triangulated categories, the
relevant definition is the following.

Definition 16.11. An additive functor between two triangulated categories is exact
if it takes distinguished triangles to distinguished triangles.

If we have an exact functor F : Db(A) ! Db(B) between the derived categories
of two abelian categories, we get a long exact sequence in cohomology: if

A•
! B•

! C•
! A•[1]

is a distinguished triangle in Db(A), then

F (A•) ! F (B•) ! F (C•) ! F (A•)[1]

is a distinguished triangle in Db(B), and so

· · · ! HiF (A•) ! HiF (B•) ! HiF (C•) ! Hi+1F (A•) ! · · ·

is a long exact sequence in the abelian category B. This explains the terminology.
When defining a derived functor, we have two choices:

(1) Use a definition that works only for certain complexes, such as complexes of
injective sheaves or flat sheaves. Then show that the subcategory consisting
of such complexes is equivalent to the entire derived category. In this way,
we obtain a non-constructive definition of the functor.
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(2) Use a definition that works for arbitrary complexes. This may require more
e↵ort, but seems better from a mathematical point of view.

Example 16.12. Let f : X ! Y be a morphism of schemes, say quasi-compact and
separated (in order for f⇤ to preserve quasi-coherence). We want to define the
derived functor Rf⇤ : D+

�
QCoh(X)

�
! D+

�
QCoh(Y )

�
. Since we already know

that injective sheaves are acyclic, we should obviously define

Rf⇤I
• = f⇤I

•

if I• is a complex of injective sheaves. Since the subcategory D+
�
Inj(X)

�
is equiv-

alent to D+
�
QCoh(X)

�
, we can choose an inverse functor to the inclusion – this

basically amounts to choosing an injective resolution for every complex of quasi-
coherent sheaves – and compose the two. In this way, we obtain a functor

Rf⇤ : D
+
�
QCoh(X)

�
! D+

�
QCoh(Y )

�
.

If f is proper, then f⇤ preserves coherence, and Rf⇤ restricts to a functor

Rf⇤ : D
b
coh(OX) ! Db

coh(OY ).

It remains to verify that Rf⇤ is an exact functor.

Exercise 16.5. Show that Rf⇤ takes distinguished triangles to distinguished trian-
gles. (Hint: It is enough to prove this for a triangle of the form

I•
1
! I•

2
! C•

'
! I•

1
[1],

for ' : I•
1
! I•

2
a morphism between two complexes of injective sheaves.)

Example 16.13. If the above definition of Rf⇤ involves too many choices for your
taste, here is another possibility. Flasque sheaves are also acyclic for f⇤, and have
the advantage that there is a canonical resolution by flasque sheaves, the so-called
Godement resolution. Given a sheaf of abelian groups F , let G0(F ) denote the
sheaf of discontinuous sections: for any open subscheme U ✓ X,

G0(F )(U) =
Y

x2U

Fx.

This sheaf is flasque and contains F as a subsheaf. Now we define G1(F ) by
applying the same construction to the cokernel of F ,! G0(F ); in general, we set
Gn+1(F ) = G0

�
Gn(F )/Gn�1(F )

�
. The resulting complex of sheaves

0 ! F ! G0(F ) ! G1(F ) ! G2(F ) ! · · ·

is exact; this is the Godement resolution G•(F ). The same construction produces
canonical flasque resolutions for complexes of sheaves: apply the construction to
each sheaf in the complex to get a double complex, and then take the associated
single complex. This allows us to define Rf⇤ by setting

Rf⇤F = f⇤G
•(F )

for any F 2 D+(OX). One can show that Rf⇤F is canonically isomorphic to f⇤F
when F is a flasque sheaf; up to isomorphism, the two constructions of Rf⇤ are
therefore the same.

By one of those methods, one can also define the derived functors
L
⌦, RHom,

R�, RHom, as well as Lf⇤ for morphisms f : X ! Y . All of the properties of the
underived functors carry over to this setting: for example, Lf⇤ is the left adjoint
of Rf⇤. In classical homological algebra, the composition of two functors leads to
a spectral sequence (such as the Grothendieck spectral sequence); in the derived
category, this simply becomes an identity between two derived functors.
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Example 16.14. For two morphisms f : X ! Y and g : Y ! Z, one has Rg⇤�Rf⇤ '

R(g � f)⇤. This can be proved by observing that the pushforward of an injective
sheaf is again injective: for a complex of injective sheaves,

(g � f)⇤I
• = g⇤

�
f⇤I

•�.
A special case of this is the formula R�(Y,�) � Rf⇤ ' R�(X,�), which is the
derived category version of the Leray spectral sequence.

Example 16.15. Similar reasoning proves the formula R� �RHom ' RHom.

The big advantage of working in the derived category is that many relations
among the underived functors that are true only for locally free sheaves, now hold
in general. Technically, this is true on nonsingular varieties, because every complex
in Db

coh(OX) is then quasi-isomorphic to a bounded complex of locally free sheaves.
As a case in point, let us consider the projection formula. The version in

Hartshorne says that if f : X ! Y is a morphism of schemes, and if E is a lo-
cally free OY -module of finite rank, then f⇤

�
F ⌦OX f⇤

E
�
' f⇤F ⌦OY E . In the

derived category, we have the following generalization.

Proposition 16.16. Let f : X ! Y be a morphism of schemes, with Y nonsingular
and quasi-compact. Then one has

Rf⇤
�
F

L
⌦OX Lf⇤G

�
' Rf⇤F

L
⌦OY G

for every F 2 Db
coh(OX) and every G 2 Db

coh(OY ).

Proof. We may assume without loss of generality that G is a bounded complex of
locally free sheaves and that F is a complex of injective sheaves. In that case,

Rf⇤
�
F

L
⌦OX Lf⇤G

�
= f⇤

�
F ⌦OX f⇤G

�
,

and by the usual projection formula, this is isomorphic to

f⇤F ⌦OY G = Rf⇤F
L
⌦OY G. ⇤


