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Lecture 15 (March 25)

Group schemes. This was the first lecture after spring break, so I briefly re-
viewed what we had done before the break. Let X be an abelian variety over an
algebraically closed field k. We are interested in the group

Pic0(X) =
�

L 2 Pic(X)
�� t⇤

x
L ⇠= L for every x 2 X

 

of translation-invariant line bundles on X, and in particular, in constructing an
abelian variety X̂, the so-called “dual” abelian variety, that is isomorphic to Pic0(X)
as a group. Let L be an ample line bundle. We showed that

'L : X ! Pic0(X), 'L(x) = t⇤
x
L⌦ L�1,

is a surjective homomorphism, and that K(L) = ker'L is a finite subgroup of X.
In characteristic zero, we then defined the dual abelian variety as the quotient

X̂ = X/K(L).

We also constructed a universal line bundle P on X⇥X̂, called the Poincaré bundle,
with the property that

(id⇥⇡)⇤P ⇠= m⇤L⌦ p⇤
1
L�1
⌦ p⇤

2
L�1.

The pair (X̂, P ) serves as a “moduli space” for families of line bundles in Pic0(X),
but we were only able to prove this for families parametrized by normal varieties.

To construct the dual abelian variety in all characteristics, we need to take
into account that K(L) is not just a finite set, but that it has a natural scheme
structure. This follows from the scheme version of the seesaw theorem. Indeed, by
Proposition 14.8, there is a maximal closed subscheme X0 ✓ X with the property
that the line bundle

M = m⇤L⌦ p⇤
1
L�1
⌦ p⇤

2
L�1

is trivial on X ⇥X0; the set of closed points of X0 is exactly our subgroup K(L),
and this endows K(L) with a scheme structure. In fact, K(L) is an example of a
“group scheme”: a group-object in the category of schemes (of finite type over k).

Definition 15.1. A group scheme is a scheme G (of finite type over the field k)
with a closed point e 2 G(k) and two morphisms

m : G⇥G! G and i : G! G,

subject to the following conditions:

(1) m is associative, meaning that the diagram

G⇥G⇥G G⇥G

G⇥G G

m⇥id

id⇥m m

m

is commutative.
(2) e is the unit element, meaning that the diagram

G

G⇥G G

G

(id,e)

id

m

(e
,id

)

id

is commutative; here we view e as a morphism e : Spec k ! G.
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(3) i is the inverse, meaning that the diagram

G⇥G

G Spec k G

G⇥G

m(id,i)

(i,id)

e

m

is commutative.

If G is a group scheme, then for every scheme S (of finite type over k), the set of
G-valued points G(S) = HomSpec k(S, G) becomes a group; conversely, if G(S) is a
group in a way that is functorial in S, then G has the structure of a group scheme.

Example 15.2. An abelian variety is obviously a group scheme; by definition, every
abelian variety is reduced and irreducible. If we define

Xn = ker
�
nX : X ! X

�

as the kernel of the morphism x 7! nx, then Xn is a closed subscheme of length
deg nX = n2 dimX . We saw earlier that it has n2 dimX points when n is not a
multiple of the characteristic char(k); but for example Xp always has at most
pdimX many points, and must therefore be nonreduced.

Example 15.3. For n � 1, the n-th roots of unity form a group scheme

µn = Spec k[x]/(xn
� 1).

The group operation is given by the morphism of k-algebras

k[x]/(xn
� 1)! k[y, z]/(yn

� 1, zn � 1), x 7! yz.

When the field k has characteristic p, the group scheme µp is nonreduced and only
has a single closed point, because

k[x]/(xp
� 1) = k[x]/(x� 1)p.

Example 15.4. In characteristic p, the Frobenius morphism

F : k[x]! k[x], F (x) = xp,

is a ring homomorphism. The fiber over the origin is the group scheme

Spec k[x]/(xp),

which is again nonreduced with a single closed point. (The group operation is now
x 7! y + z, in the same notation as in the previous example.)

The examples show that, in characteristic p, group schemes can have a nontriv-
ial (meaning nonreduced) scheme structure. In characteristic zero, this does not
happen, because of the following theorem.

Theorem 15.5. Every group scheme over a field of characteristic 0 is nonsingular.

The proof has two steps. First, one shows that the sheaf of Kähler di↵erentials
⌦1

G/k
on a group scheme G is always locally free. Recall that, according to one

construction of the Kähler di↵erentials, ⌦1

G/k
⇠= I/I2, where I is the ideal sheaf of

the diagonal � : G ! G ⇥ G. Because G is a group scheme, we can describe the
diagonal in terms of the group operations. Let

s = m � (id, i) : G⇥G! G
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be the morphism that acts on closed points as s(x, y) = xy�1. One can show that

G G⇥G

Spec k G

�

s

e

is a Cartesian diagram, and therefore

⌦1

G/k
⇠= I/I2 ⇠= s⇤

�
me/m

2

e

�
⇠= OG ⌦k me/m

2

e
,

where me is the ideal sheaf of the closed point e 2 G(k). This proves that the sheaf
of Kähler di↵erentials is locally free of rank equal to the dimension of the k-vector
space me/m2

e
. This much is true independently of the characteristic of the field.

Example 15.6. For µp = Spec k[x]/(xp
� 1), we have d(x� 1)p = p(x� 1)p�1 = 0,

and so the module of Kähler di↵erentials is isomorphic to

⌦1

k[x]/k
⌦k[x] k[x]/(xp

� 1) ⇠= k[x]/(xp
� 1),

hence free of rank one.

The characteristic zero magic happens in the following lemma.

Lemma 15.7. Let X be a scheme of finite type over a field k of characteristic zero.
If the sheaf of Kähler di↵erentials ⌦1

X/k
is locally free, then X is nonsingular.

Proof. I did not present the proof in class, but here it is. Let x 2 X(k) be an
arbitrary closed point. It is enough to show that the local ring OX,x is regular. So
we may assume that (A,m) is a local k-algebra with residue field A/m ⇠= k, and
that the module of Kähler di↵erentials ⌦1

A/k
is locally free. We need to show that A

is regular, which means that dimA = dimk m/m2. Set n = dimk m/m2, and choose
n elements f1, . . . , fn 2 m whose images in m/m2 form a basis over k. Because
⌦1

A/k
⌦A k ⇠= m/m2, the rank of the free A-module ⌦1

A/k
is equal to n, and so we

have an isomorphism of A-modules

⌦1

A/k
⇠= An.

By the universal property of the Kähler di↵erentials, this gives us n derivations
�1, . . . , �n 2 Derk(A), with the property that �i(fj) = 1 if i = j, and 0 otherwise.
It follows that �i(m`) ✓ m`�1 for all ` � 1.

Now both dimk m/m2 and dimA don’t change under completion, and so we may
replace A by its completion

Â = lim
 �
`

A/m`.

Because �i(m`) ✓ m`�1, our derivations extend to Â as well; we may therefore
assume that A is complete to begin with. Because A is complete, we then get a
homomorphism of k-algebras

↵ : k[[x1, . . . , xn]]! A, ↵(xi) = fi,

from the ring of formal power series, and ↵ is easily seen to be surjective. For any
f 2 A, we denote by f(0) 2 k its image in A/m. Because char(k) = 0, we can also
define a function

� : A! k[[x1, . . . , xn]], �(f) =
X

k1,...,kn

1

k1! · · · kn!

�
�k1
1

· · · �kn
n

f
�
(0),

that sends every f 2 A to its Taylor series; a short computation proves that � is a
ring homomorphism. The composition

� � ↵ : k[[x1, . . . , xn]]! k[[x1, . . . , xn]]
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is the identity modulo (x1, . . . , xn)2, and is therefore an automorphism; in partic-
ular, ↵ must be injective, and so ↵ is an isomorphism. This proves that A is a
regular local ring. ⇤

We also need talk briefly about quotients. Suppose that G is a finite (hence
a�ne) group scheme. An action of G on a scheme X is a morphism G ⇥X ! X,
subject to the condition that certain diagrams commute. As in Lecture 12, one can
define the quotient X/G, under the assumption that the orbit of every closed point
is contained in an a�ne open subset of X. If U = SpecA is a G-invariant a�ne
open subset, then G⇥ U ! U corresponds to a morphism of k-algebras

� : A! �(G, OG)⌦k A,

and one defines the subalgebra of G-invariant functions as

AG =
�

f 2 A
�� �(f) = 1⌦ f

 
.

One can show that AG is again a finitely-generated k-algebra, and the quotient
U/G is defined as SpecAG.

The dual abelian variety in general. Let X be an abelian variety, and let L
be an ample line bundle on X. Consider the line bundle

(15.8) M = m⇤L⌦ p⇤
1
L�1
⌦ p⇤

2
L�1

on X ⇥ X, and let K(L) ✓ X be the maximal closed subscheme such that the
restriction of M to X⇥K(L) is trivial; the set of closed points of this subscheme is
the group ker'L that we used earlier. This is actually a group scheme: the group
operation is induced by m : X ⇥X ! X.

Lemma 15.9. The group operation m : X⇥X ! X on the abelian variety restricts
to a morphism m : K(L)⇥K(L)! K(L).

Proof. Set K = K(L). We need to show that the composition

K ⇥K X ⇥X Xm

factors through the closed subscheme K. By the universal property in Proposi-
tion 14.8, this is equivalent to the pullback line bundle (id⇥m)⇤M being trivial on
X ⇥K ⇥K. We are going to use the following notation:

X X ⇥K X

X ⇥K X ⇥K ⇥K X ⇥X X

K ⇥K X

p1 m

m

p12

m⇥id

p23

id⇥m

m

p2

p1

m

Because of (15.8), we have

(id⇥m)⇤M ⇠= (m⇥ id)⇤m⇤L⌦ p⇤
23

m⇤L�1
⌦ p⇤

1
L�1.

We can rewrite the first factor as

(m⇥ id)⇤m⇤L ⇠= (m⇥ id)⇤M ⌦ (m⇥ id)⇤p⇤
1
L⌦ p⇤

3
L ⇠= p⇤

12
m⇤L⌦ p⇤

3
L,

because M is trivial on X ⇥K (by definition of K). Similarly, we have

p⇤
12

m⇤L ⇠= p⇤
12

M ⌦ p⇤
1
L⌦ p⇤

2
L ⇠= p⇤

1
L⌦ p⇤

2
L,

again because M is trivial on X ⇥K. Combining the three previous lines gives

(id⇥m)⇤M ⇠= p⇤
1
L⌦ p⇤

2
L⌦ p⇤

3
L⌦ p⇤

23
m⇤L�1

⌦ p⇤
1
L�1

⇠= p⇤
23

�
m⇤L�1

⌦ p⇤
1
L⌦ p⇤

2
L
�
⇠= p⇤

23
M�1,
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which is trivial because M is trivial on K ⇥K. This proves the lemma. ⇤
We can now define the dual abelian variety as the quotient

X̂ = X/K(L)

by the finite group scheme K(L). If we let ⇡ : X ! X̂ be the quotient morphism,
we again get a Poincaré bundle P on the product X ⇥ X̂, with the property that

(id⇥⇡)⇤P ⇠= m⇤L⌦ p⇤
1
L�1
⌦ p⇤

2
L�1.

By construction, the two line bundles

P |X⇥{0} and P |{0}⇥X̂

are trivial, and the maximal closed subscheme Z ✓ X̂ such that P is trivial on
X ⇥ Z is the reduced singleton Z = {0}. The pair (X̂, P ) is now a moduli space
for translation-invariant line bundles on X on the category of all schemes (of finite
type over k). Indeed, one can prove the following universal property (similar to
what we did in Lecture 13, but using Proposition 14.8).

Theorem 15.10. Given a scheme S, and a line bundle L on X⇥S such that

Ls = L|X⇥{s} 2 Pic0(X)

for every closed point s 2 S(k), and such that L|{0}⇥S is trivial, there is a unique

morphism f : S ! X̂ with the property that L ⇠= (id⇥f)⇤P .

Cohomology of the structure sheaf. We showed that nontrivial line bundles
in Pic0(X) have no cohomology whatsoever. But we still haven’t computed the
cohomology groups of the trivial line bundle OX . We are going to do this by
computing the cohomology of the Poincaré bundle P at the same time. The result
is exactly the same as over the complex numbers.

Theorem 15.11. Let X be an abelian variety of dimension g.

(a) We have dimk Hi(X, OX) =

Ç
g

i

å
.

(b) The cohomology of the Poincaré bundle is

Hi(X ⇥ X̂, P ) ⇠=

®
0 if i 6= g,

k if i = g.

From (a), it follows that the natural map
^i

H1(X, OX)! Hi(X, OX)

is an isomorphism of k-vector spaces. We will carry out the proof of the theorem
in six steps; the main ingredient is (as usual) the base change theorem.

Step 1 . Let p2 : X ⇥ X̂ ! X̂ be the second projection. For i 2 N, define

Fi = Ri(p2)⇤P,

which is a coherent sheaf on X̂. Because dimX = g, we have Fi = 0 for i > g. We
are going to prove (b) by computing these higher direct image sheaves. For any
closed point ↵ 2 X̂(k), we set

P↵ = P |X⇥{↵} 2 Pic0(X),

and observe that P↵ is trivial i↵ ↵ = 0. By Observation 7 in Lecture 13, we therefore
have Hi(X, P↵) = 0 for all i 2 Z and all ↵ 6= 0; the base change theorem (in
Corollary 9.9) therefore tells us that Fi is supported at the closed point 0 2 X̂(k).
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Step 2 . Since SuppFi = {0}, we have Hj(X̂, Fi) = 0 for j > 0, and so we get
(from the Leray spectral sequence) that

Hi
�
X ⇥ X̂, P

�
⇠= H0

�
X̂, Fi

�
= 0

for i > g. From this, one can deduce by Serre duality that the same thing is true
for i < g, and hence that Fi = 0 for i 6= g; this is a nice exericse, but we will prove
it in a di↵erent way in the next two steps of the argument.

Step 3 . Now let’s study what happens near the point 0 2 X̂(k). We can work
over the local ring A = O

X̂,0
; as usual, we denote the maximal ideal by m = m0.

According to Theorem 9.4, we can find a bounded complex

0! K0
! K1

! · · ·! Kn
! 0

of finitely-generated free A-modules that “universally” computes the higher direct
images Ri(p2)⇤P , in the sense that for any A-algebra B, one has

Hi
�
K•
⌦A B

�
⇠= Hi

�
X ⇥ X̂, P ⌦A B

�
.

Since we are working over a local ring, we may choose the complex K• to be
minimal, which means that all the di↵erentials d : Ki

! Ki+1 have entries in the
maximal ideal m. From

Hi
�
K•
⌦A k

�
⇠= Hi

�
X, P0

�
⇠= Hi(X, OX)

and minimality, we see that

rkKi = dimk Hi(X, OX).

In particular, we have Ki = 0 for i > g, and so our minimal complex takes the form

0! K0
! K1

! · · ·! Kg
! 0.

Let Mi be the finitely-generated A-module corresponding to Fi = Ri(p2)⇤P ; these
are the cohomology modules of the complex K•.

Step 4 . The following simple lemma from commutative algebra now lets us conclude
that Mi = 0 for i < g.

Lemma 15.12. Let (A,m) be a regular local ring of dimension g. Let

0! K0
! K1

! · · ·! Kn
! 0

be a bounded complex of finitely-generated free A-modules, such that all cohomology
modules Hi(K•) have finite length. Then Hi(K•) = 0 for i < g.

Proof. The statement is trivial for g = 0, and so we can argue by induction on g � 0.
Choose an element f 2 m such that f 62 m2; then the quotient ring Ā = A/Af is
regular of dimension g� 1 (by dimension theory). If we set K̄• = K•

⌦A Ā, we get
a short exact sequence of complexes

0 K• K• K̄• 0
f

and therefore an exact sequence in cohomology

Hi(K•) Hi(K•) Hi(K̄•) Hi+1(K•) Hi+1(K•).
f f

Because all cohomology modules of K• have finite length, it follows that the co-
homology modules of K̄• also have finite length. By induction, we therefore get
Hi(K̄•) = 0 for i < g � 1. From the exact sequence, f : Hi(K) ! Hi(K) is then
injective for i < g; but because Hi(K) has finite length, it is annihilated by some
power of f , and so Hi(K) = 0 for i < g. ⇤
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If we apply this to our complex, we find that Mi = 0 for i < g, and hence
that Mg is the only nontrivial cohomology module of K•. In other words, K• is a
minimal free resolution of the A-module Mg.

Step 5 . Now let’s combine this with what we know about the Poincaré bundle
(from the construction of X̂). We have H0(X, OX) = k, and so K0 ⇠= A; setting
n = rkK1, we also get K1 ⇠= An. The di↵erential

d : K0
! K1

is therefore given by n elements f1, . . . , fn 2 m (by minimality). We showed during
the proof of Proposition 14.8 that the maximal closed subscheme of X̂ over which
P is trivial is defined by the ideal (f1, . . . , fn). In our case, this closed subscheme
is {0}, and so we must have (f1, . . . , fn) = m. Consider now the dual complex

0! (Kn)⇤ ! · · ·! (K1)⇤ ! (K0)⇤ ! 0.

By the lemma from Step 4, this complex is again exact in all places except at the
right end, and there, the cohomology is A/(f1, . . . , fn) = A/m = k. The dual
complex is therefore a minimal free resolution of the residue field k.

Step 6 . But we know from commutative algebra what the minimal free resolution of
A/m looks like in a regular local ring: it is the Koszul complex for a regular sequence
x1, . . . , xg 2 m. The Koszul complex is the tensor product of the g complexes

0 A A 0
xi

and therefore has the shape

0! A(g0) ! A(g1) ! A(g2) ! · · ·! A( g
g�1) ! A(gg) ! 0.

Because minimal free resolutions are unique (up to isomorphism), the dual complex
of K•, and hence K• itself, must be a Koszul complex as well. This gives

dimk Hi(X, OX) = rkKi =

Ç
g

i

å
,

which proves (a). We also find that Mg = Hg(K•) ⇠= A/m, and so Fg is the

structure sheaf of the closed point 0 2 X̂(k). We now get (b) from the computation
in Step 2. ⇤
Note. In fact, we have shown that

Ri(p2)⇤P ⇠=

®
0 if i 6= g,

O0 if i = g.

This result will be important when we study derived categories of abelian varieties.

Corollary 15.13. We have dimHq(X,⌦p

X/k
) =

Ç
g

p

åÇ
g

q

å
.

Proof. The Kähler di↵erentials ⌦1

X/k
are locally free of rank g = dimX. Therefore

⌦p

X/k
=

V
p ⌦1

X/k
is locally free of rank

�
g

p

�
, and the formula follows from the

theorem. ⇤


