LECTURE 14 (MARCH13)

Properties of the dual abelian variety. Last time, we constructed the dual
abelian variety X and the Poincaré bundle P on X x X. For a point a € X, we
introduced the notation

P, = P|X><{a} € PICO(X)v

this is the line bundle corresponding to o under the isomorphism X 2 Pic’(X). In
class, I first went over the proof of the universal property again. During the proof,
we used the fact that the field k has characteristic zero; the general case needs a
bit more work.

We then looked at a few basic properties of the construction. First, let L be any
line bundle on the abelian variety X, and consider the homomorphism

ér: X = Pic®(X), ¢p(x)=t:Le L'
This is in fact a morphism of abelian varieties; more precisely, under our isomor-
phism X = PicO(X)7 the homomorphism ¢; comes from a morphism f: X — X.
For the proof, consider the line bundle
K=m'LepiL ' @psL~"
on the product X x X. We have
Klxxiay 2t L@ L™" and Kloyxx = Ox,

and so we can apply the universal property (which we called (B) last time). This
gives us a unique morphism f: X — X such that K = (id x f)* P. Restricting to
X x{x}, we get Pypy 2 t5L@ L™ = ¢ (x), and so f does indeed realize ¢ 1. Note
that f is a group homomorphism (because ¢, is).

The next result says that the dual abelian variety is really a functor on the
category of abelian varieties. Recall that a morphism of abelian varieties is a
morphism that is also a group homomorphism. We showed that any morphism
f:+ X =Y with f(0) = 0 is a homomorphism.

Proposition 14.1. Let f: X — Y be a morphism of abelian varieties. Then the
pullback homomorphism f*: Pic(Y') — Pic(X) defines a morphism f: Y — X.

Proof. Let’s write Px for the Poincaré bundle on X X X, and Py for the one on
Y xY. On X xY, consider the line bundle (f xid)* Py . Its restriction to {0} x Y is
trivial because f(0) = 0; the restrictions to X x {a} are in Pic’(X) by Observation 6
from last time (because this holds when « = 0). By the universal property for X,
there is thus a unique morphism f: Y — X such that

(14.2) (f x id)*Py = (id x f)* Px.

Here is a diagram of the two morphisms:

o fxid -

X XY — Y xY
lid x f
X xX
If we restrict the isomorphism to X x {a}, we obtain
Py floy = [ Py
which is saying that the morphism f realizes the pullback f* on line bundles. [

We can say a bit more in the case of isogenies.
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Proposition 14.3. Let f: X — Y be an isogeny. Then f: Y — X is also an
isogeny, and ker f and ker f are dual abelian groups, in the sense that

ker f = Hom (ker f, k).
Proof. We showed at the end of Lecture 12 that
ker(f*: Pic(Y) = Pic(X)) = Hom (ker f, k)

is true for separable isogenies (and all isogenies are separable because we are as-
suming that k has characteristic zero). So it suffices to show that if f*L is trivial
for a line bundle L € Pic(Y), then L € Pic?(Y). This implies that ker f is dual to
ker f, hence finite, and then f must be an isogeny for dimension reasons. The proof
is very easy: ker f* is a finite group (because it is dual to the finite group ker f),

and so L has finite order; but we showed that any line bundle of finite order is in
Pic’(Y). O
Ezxample 14.4. The isogeny nx: X — X has the property that nx: X > X is
equal to ng. This follows from the identity n% L = L for L € Pic’(X) that we

proved last time.

Example 14.5. Over the complex numbers, we can write an abelian variety as
X = V/T, where V is a g-dimensional complex vector space, and T is a lattice of
rank 2¢g. The dual abelian variety is

Pic’(X) = HY(X, Ox)/H (X, 7).
Now H;(X,Z) 2T, and therefore
H'(X,7Z) = Homg(T', Z)
is the lattice dual to I'. We also have
H'(X,0x) = Home(V,C),

with a conjugate-linear functional f: V' — C mapping to the translation-invariant
(0,1)-form df. The embedding of the dual lattice works by extending a homo-
morphism ¢: I' — Z uniquely to a linear functional p¢: I' ®z C — C, and then
projecting to the second summand in

Home (T ®7 C, C) = Home(V @ V,C) = Home(V, C) @ Home(V, C).
This explains the reason for calling PicO(X ) the “dual” abelian variety.

Symmetric description of the dual abelian variety. While this is not clear
from our construction of X (as a quotient of X'), the two abelian varieties X and X
really play the same role. To make this precise, we make the following definition.

Definition 14.6. A divisorial correspondence between two abelian varieties X and
Y is a line bundle @ on X x Y such that Q|oyxy and Q|xx (o} are trivial.

We could realize @ by a divisor on X x Y, which would then be a divsorial
correspondence in the proper sense, but it is much better to work with line bundles.
By Observation 6 from last time, we have

Qliayxy €Pic’(Y) and  Qlxxyy) € Pic’(X)
for every z € X and every y € Y.
Proposition 14.7. Let X and Y be abelian varieties of the same dimension, and

let Q be a divisorial correspondence between X and Y. Then the following two
conditions are equivalent:

(a) Ql{zyxy trivial implies that x = 0.
(b) Qlxx{y} trivial implies that y = 0.
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If either of these conditions is satisfied, then X = Y and Y =2 X, and Q is isomor-
phic to the pullback of both Poincaré bundles Px and Py .

Proof. We only need to prove that (a) implies (b); the converse follows by in-
terchanging X and Y. Let’s first consider ) as a family of line bundles on Y.
By the universal property of the dual abelian variety, we get a unique morphism
f: X — Y such that Q = (f xid)*s* Py, where s: Y x Y — Y x Y is the morphism
s(y,n) = (n,y) that swaps the two factors. But (a) tells us that

Py f(z) = Qlizyxy

is trivial only when z = 0, and so ker f = {0}. Therefore f is injective, hence
bijective (because dim X = dimY’), hence an isomorphism (because char(k) = 0).

We can also view @ as a family of line bundles on X, and so we also get a unique
morphism ¢: ¥ — X such that Q 2 (id xg)* Px.

id xg

XxY =25 X x X
lfxid
Y xY
In order to prove (b), we need to show that g is injective. Let K C ker g be any

finite subgroup of g; we shall argue that K = {0}, which is enough to conclude that
g is injective. Because K C ker g, we get a factorization

g
y T,z 9, X,
where Z = Y/K is the quotient. If we set L = (id x§)* Px, which is a line bundle
on X x Z, then Q = (id x7)*L. Viewing L as a family of line bundles on Z, we
get a third morphism h: X — Z, with the property that L = (h x id)*s*Pz. Let
#: Z — 'Y be the morphism dual to 7: Y — Z. According to (14.2), we have
(7T X ld)*PZ = (ld Xﬁ')*Py.
If we combine this with the formulas for @ and L, we get
Q = (id xm)*(h x1d)*s* Py = (h x id)*s* (7 x id)* Py
> (h x id)*s™(id x71)* Py = (h x id)* (& x id)*s" Py
> ((foh) xid)*s* Py.
But @ is also isomorphic to (f x id)*s* Py, and so the uniqueness of the morphism

(in the universal property of the dual abelian variety) implies that f = # o h. In
other words, we found a factorization

/
X sz 5y,
Now f is an isomorphism by (a), and so h must be injective. For dimension reasons,
h is then an isomorphism, and so 7 is an isomorphism as well. By Proposition 14.3,

the kernel of 7 is dual to K = kernw. Therefore K is trivial, and so g: ¥ — X is
injective, as claimed. This proves (b). Along the way, we have shown that

f+X—>Y and ¢:Y =X
are isomorphisms, and that (id xg)*Px =2 Q = (f x id)*s* Py. O



We can apply this to the Poincaré bundle Px on the product X X X ; this is a
divisorial correspondence, and P, = Px|xx{q} is trivial only when a = 0. The
proposition then tells us that the dual abelian variety of X is isomorphic to the
original abelian variety X, and that the Poincaré bundle Py is isomorphic to s* Py,
where s: X x X = X x X again swaps the two factors.

Positive characteristic and schemes. In the construction of the dual abelian
variety, we had to assume that k has characteristic zero to prove the universal
property. Ultimately, it comes down to the fact that when we have a line bundle
L on X x S, we are treating the locus in S such that L, is trivial as a set, instead
of as a scheme. (This applies in particular to the subgroup K (L) inside X.) That
is also the reason for the (unsatisfying) assumption that the parameter space S in
the universal property needs to be normal. To fix these problems, we first need to
revisit the seesaw theorem and make it works for schemes.

Proposition 14.8. Let X be a complete variety, S a scheme, and L a line bundle
on X x S. There is a unique closed subscheme Sy C S such that:

(a) Llxxs, = psLo for a line bundle Ly on Sy.
(b) If f: T — S is a morphism of schemes such that (id X f)*L = p5 K for a
line bundle K on T, then f factors through Sy.

Proof. The proof is basically the same as that of Theorem 9.10, we just need to
pay a little bit more attention to the details. For a closed point s € S(k), let’s put
as usual Ly = L|xx(s3. We already know that the set of s € S(k) such that L,
is trivial is closed in the Zariski topology. All we need to do is to put a natural
scheme structure on this set. The problem being local, we may fix a point s € S(k)
such that Lg is trivial, and then replace S by an affine open neighborhood Spec A
of the point s. According to Theorem 9.4, we can find a bounded complex

0K’ K' ... 5 K" =0

of finitely-generated free A-modules — we can make them free by shrinking S, if
necessary — such that for every B-algebra A, one has

Hp(X X Spec A Spec B, L ® 4 B) = Hp(K. XA B)

We may further assume that the complex is minimal at the point s; if we let m C A
denote the maximal ideal corresponding to s € S(k), then this means that the
complex K*® ®4 A/m has trivial differentials. Because this complex computes the
cohomology of L ®4 A/m = L, and because L, is trivial, we get H°(X, L,) = k,
and so K° must have rank one, hence K = A. Likewise, K' = A" for some
r > 1, and the differential d: K° — K! is therefore represented by r elements
fi,--., fr € A. For the time being, let I = (f1,..., fr) € A be the ideal generated
by these elements. Taking B = A/I, we get

(14.9) H°(X Xgpeca Spec(A/I),L®a A/I) = H*(K* ®4 A/I) = A/,

because d: K® @4 A/I — K ®4 A/I is of course trivial by construction. So the
restriction of L to the closed subscheme X Xgpec 4 Spec(A/I) has a nontrivial global
section. In fact, we get a line bundle Ly on Spec(A/I), corresponding to the free
A/I-module in (14.9), and the global section is really a morphism from p3Lg to the
restriction of L.

As in Theorem 9.10, we now repeat this procedure for the line bundle L~1!; this
gives us several additional elements g¢1,...,g, € A, which we add to the ideal I.
The desired closed subscheme is then Sy = Spec(A/I). The reason is that both L
and L1 have a nontrivial global section on X xg Sy (and so Ly is trivial for every
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closed point of Sy). The argument above gives us a line bundle Ly on Sy, and an
isomorphism p5Lo =2 L|xxs,. This proves (a).

For (b), we may assume (by uniqueness) that T = Spec B is affine and that
the line bundle K is trivial. The morphism f: 7T — S is given by a morphism of
k-algebras ¢: A — B, and to show that f factors through Sy, we need to prove
that I C ker . Because (id x f)*L = p5 K, we get

B> H°(X Xgpeca Spec B,L ®4 B) = H(K* ® 4 B),

and because K° =2 A, this is only possible if the differential d: K°® 4B — K'®4 B
is zero. But this means exactly that ¢(f1) = - =p(f) =0. O

As before, this improved version of the seesaw theorem implies the theorem of
the cube for schemes.

Corollary 14.10. Let L be a line bundle on X XY x S, where X,Y are complete
varieties, and S is a scheme. Suppose that there are points xg € X, yo € Y, and
so € S such that the three line bundles

L‘{zo}xYxSa L|X><{y0}><S7 L|X><Y><{so}
are trivial. Then L s trivial.

With this result in hand, we can now construct the dual abelian variety in
general. Let L be an ample line bundle on X. We proved that

br: X — Pic’(X)

is surjective, and that its kernel K (L) is a finite group. The dual abelian variety
should therefore still be the quotient of X by this subgroup, in a suitable sense.

We first observe that the closed subgroup K(L) C X has a natural scheme
structure on it. Indeed, if we take the line bundle

M=m*Lep;L ' @psL~!
on X x X, and consider the first copy of X as the parameter space, then Proposi-
tion 14.8 shows that there is a unique closed subscheme Xy C X such that
L|x,xx = pilo

for some line bundle Ly on Xy. Because M |{0}X x is trivial, Ly must be trivial, and
so Xo C X is the maximal closed subscheme of X such that L|x,xx is trivial. The
set of closed points of X is of course our subgroup K (L), and so this puts a scheme
structure on K(L). From now on, we are going to denote this subscheme by the
same symbol K (L). We’ll show next time that the group operation m: X x X — X
restricts to a morphism K (L) x K (L) — K(L), and this makes K (L) into a “group
scheme”. We can then define the dual abelian variety as

X = X/K(L),

but where we now take the scheme structure on K (L) into account when taking
the quotient. (In characteristic zero, every group scheme is reduced; but in positive
characteristic, K (L) might be nonreduced, and then the quotient is different.)



