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Lecture 14 (March13)

Properties of the dual abelian variety. Last time, we constructed the dual
abelian variety X̂ and the Poincaré bundle P on X ⇥ X̂. For a point ↵ 2 X̂, we
introduced the notation

P↵ = P |X⇥{a} 2 Pic0(X);

this is the line bundle corresponding to ↵ under the isomorphism X̂ ⇠= Pic0(X). In
class, I first went over the proof of the universal property again. During the proof,
we used the fact that the field k has characteristic zero; the general case needs a
bit more work.

We then looked at a few basic properties of the construction. First, let L be any
line bundle on the abelian variety X, and consider the homomorphism

�L : X ! Pic0(X), �L(x) = t⇤
x
L ⌦ L�1.

This is in fact a morphism of abelian varieties; more precisely, under our isomor-
phism X̂ ⇠= Pic0(X), the homomorphism �L comes from a morphism f : X ! X̂.
For the proof, consider the line bundle

K = m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1

on the product X ⇥ X. We have

K|X⇥{x} ⇠= t⇤
x
L ⌦ L�1 and K|{0}⇥X

⇠= OX ,

and so we can apply the universal property (which we called (B) last time). This
gives us a unique morphism f : X ! X̂ such that K ⇠= (id⇥f)⇤P . Restricting to
X ⇥{x}, we get Pf(x)

⇠= t⇤
x
L⌦L�1 = �L(x), and so f does indeed realize �L. Note

that f is a group homomorphism (because �L is).
The next result says that the dual abelian variety is really a functor on the

category of abelian varieties. Recall that a morphism of abelian varieties is a
morphism that is also a group homomorphism. We showed that any morphism
f : X ! Y with f(0) = 0 is a homomorphism.

Proposition 14.1. Let f : X ! Y be a morphism of abelian varieties. Then the
pullback homomorphism f⇤ : Pic(Y ) ! Pic(X) defines a morphism f̂ : Ŷ ! X̂.

Proof. Let’s write PX for the Poincaré bundle on X ⇥ X̂, and PY for the one on
Y ⇥ Ŷ . On X⇥ Ŷ , consider the line bundle (f ⇥ id)⇤PY . Its restriction to {0}⇥ Ŷ is
trivial because f(0) = 0; the restrictions to X⇥{↵} are in Pic0(X) by Observation 6
from last time (because this holds when ↵ = 0). By the universal property for X̂,
there is thus a unique morphism f̂ : Ŷ ! X̂ such that

(14.2) (f ⇥ id)⇤PY
⇠= (id⇥f̂)⇤PX .

Here is a diagram of the two morphisms:

X ⇥ Ŷ Y ⇥ Ŷ

X ⇥ X̂

id⇥f̂

f⇥id

If we restrict the isomorphism to X ⇥ {↵}, we obtain

P
X,f̂(↵)

⇠= f⇤PY,↵,

which is saying that the morphism f̂ realizes the pullback f⇤ on line bundles. ⇤

We can say a bit more in the case of isogenies.
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Proposition 14.3. Let f : X ! Y be an isogeny. Then f̂ : Ŷ ! X̂ is also an
isogeny, and ker f and ker f̂ are dual abelian groups, in the sense that

ker f̂ ⇠= Hom
�
ker f, k⇥�.

Proof. We showed at the end of Lecture 12 that

ker
�
f⇤ : Pic(Y ) ! Pic(X)

�
⇠= Hom

�
ker f, k⇥�

is true for separable isogenies (and all isogenies are separable because we are as-
suming that k has characteristic zero). So it su�ces to show that if f⇤L is trivial
for a line bundle L 2 Pic(Y ), then L 2 Pic0(Y ). This implies that ker f̂ is dual to
ker f , hence finite, and then f̂ must be an isogeny for dimension reasons. The proof
is very easy: ker f⇤ is a finite group (because it is dual to the finite group ker f),
and so L has finite order; but we showed that any line bundle of finite order is in
Pic0(Y ). ⇤

Example 14.4. The isogeny nX : X ! X has the property that n̂X : X̂ ! X̂ is
equal to n

X̂
. This follows from the identity n⇤

X
L ⇠= Ln for L 2 Pic0(X) that we

proved last time.

Example 14.5. Over the complex numbers, we can write an abelian variety as
X = V/�, where V is a g-dimensional complex vector space, and � is a lattice of
rank 2g. The dual abelian variety is

Pic0(X) = H1(X, OX)/H1(X,Z).

Now H1(X,Z) ⇠= �, and therefore

H1(X,Z) ⇠= HomZ(�,Z)

is the lattice dual to �. We also have

H1(X, OX) ⇠= HomC
�
V̄ ,C

�
,

with a conjugate-linear functional f : V ! C mapping to the translation-invariant
(0, 1)-form df . The embedding of the dual lattice works by extending a homo-
morphism ' : � ! Z uniquely to a linear functional 'C : � ⌦Z C ! C, and then
projecting to the second summand in

HomC(�⌦Z C,C) ⇠= HomC(V � V̄ ,C) ⇠= HomC(V,C)�HomC(V̄ ,C).

This explains the reason for calling Pic0(X) the “dual” abelian variety.

Symmetric description of the dual abelian variety. While this is not clear
from our construction of X̂ (as a quotient of X), the two abelian varieties X and X̂
really play the same role. To make this precise, we make the following definition.

Definition 14.6. A divisorial correspondence between two abelian varieties X and
Y is a line bundle Q on X ⇥ Y such that Q|{0}⇥Y and Q|X⇥{0} are trivial.

We could realize Q by a divisor on X ⇥ Y , which would then be a divsorial
correspondence in the proper sense, but it is much better to work with line bundles.
By Observation 6 from last time, we have

Q|{x}⇥Y 2 Pic0(Y ) and Q|X⇥{y} 2 Pic0(X)

for every x 2 X and every y 2 Y .

Proposition 14.7. Let X and Y be abelian varieties of the same dimension, and
let Q be a divisorial correspondence between X and Y . Then the following two
conditions are equivalent:

(a) Q|{x}⇥Y trivial implies that x = 0.
(b) Q|X⇥{y} trivial implies that y = 0.
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If either of these conditions is satisfied, then X ⇠= Ŷ and Y ⇠= X̂, and Q is isomor-
phic to the pullback of both Poincaré bundles PX and PY .

Proof. We only need to prove that (a) implies (b); the converse follows by in-
terchanging X and Y . Let’s first consider Q as a family of line bundles on Y .
By the universal property of the dual abelian variety, we get a unique morphism
f : X ! Ŷ such that Q ⇠= (f ⇥ id)⇤s⇤PY , where s : Y ⇥ Ŷ ! Ŷ ⇥Y is the morphism
s(y, ⌘) = (⌘, y) that swaps the two factors. But (a) tells us that

PY,f(x)
⇠= Q|{x}⇥Y

is trivial only when x = 0, and so ker f = {0}. Therefore f is injective, hence
bijective (because dimX = dimY ), hence an isomorphism (because char(k) = 0).

We can also view Q as a family of line bundles on X, and so we also get a unique
morphism g : Y ! X̂ such that Q ⇠= (id⇥g)⇤PX .

X ⇥ Y X ⇥ X̂

Ŷ ⇥ Y

f⇥id

id⇥g

In order to prove (b), we need to show that g is injective. Let K ✓ ker g be any
finite subgroup of g; we shall argue that K = {0}, which is enough to conclude that
g is injective. Because K ✓ ker g, we get a factorization

Y Z X̂,⇡

g

g̃

where Z = Y/K is the quotient. If we set L = (id⇥g̃)⇤PX , which is a line bundle
on X ⇥ Z, then Q ⇠= (id⇥⇡)⇤L. Viewing L as a family of line bundles on Z, we
get a third morphism h : X ! Ẑ, with the property that L ⇠= (h ⇥ id)⇤s⇤PZ . Let
⇡̂ : Ẑ ! Ŷ be the morphism dual to ⇡ : Y ! Z. According to (14.2), we have

(⇡ ⇥ id)⇤PZ
⇠= (id⇥⇡̂)⇤PY .

If we combine this with the formulas for Q and L, we get

Q ⇠= (id⇥⇡)⇤(h ⇥ id)⇤s⇤PZ
⇠= (h ⇥ id)⇤s⇤(⇡ ⇥ id)⇤PZ

⇠= (h ⇥ id)⇤s⇤(id⇥⇡̂)⇤PY
⇠= (h ⇥ id)⇤(⇡̂ ⇥ id)⇤s⇤PY

⇠= ((⇡̂ � h)⇥ id)⇤s⇤PY .

But Q is also isomorphic to (f ⇥ id)⇤s⇤PY , and so the uniqueness of the morphism
(in the universal property of the dual abelian variety) implies that f = ⇡̂ � h. In
other words, we found a factorization

X Ẑ Ŷ .h

f

⇡̂

Now f is an isomorphism by (a), and so h must be injective. For dimension reasons,
h is then an isomorphism, and so ⇡̂ is an isomorphism as well. By Proposition 14.3,
the kernel of ⇡̂ is dual to K = ker⇡. Therefore K is trivial, and so g : Y ! X̂ is
injective, as claimed. This proves (b). Along the way, we have shown that

f : X ! Ŷ and g : Y ! X̂

are isomorphisms, and that (id⇥g)⇤PX
⇠= Q ⇠= (f ⇥ id)⇤s⇤PY . ⇤
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We can apply this to the Poincaré bundle PX on the product X ⇥ X̂; this is a
divisorial correspondence, and P↵ = PX |X⇥{↵} is trivial only when ↵ = 0. The

proposition then tells us that the dual abelian variety of X̂ is isomorphic to the
original abelian variety X, and that the Poincaré bundle P

X̂
is isomorphic to s⇤PX ,

where s : X ⇥ X̂ ! X̂ ⇥ X again swaps the two factors.

Positive characteristic and schemes. In the construction of the dual abelian
variety, we had to assume that k has characteristic zero to prove the universal
property. Ultimately, it comes down to the fact that when we have a line bundle
L on X ⇥ S, we are treating the locus in S such that Ls is trivial as a set, instead
of as a scheme. (This applies in particular to the subgroup K(L) inside X.) That
is also the reason for the (unsatisfying) assumption that the parameter space S in
the universal property needs to be normal. To fix these problems, we first need to
revisit the seesaw theorem and make it works for schemes.

Proposition 14.8. Let X be a complete variety, S a scheme, and L a line bundle
on X ⇥ S. There is a unique closed subscheme S0 ✓ S such that:

(a) L|X⇥S0
⇠= p⇤

2
L0 for a line bundle L0 on S0.

(b) If f : T ! S is a morphism of schemes such that (id⇥f)⇤L ⇠= p⇤
2
K for a

line bundle K on T , then f factors through S0.

Proof. The proof is basically the same as that of Theorem 9.10, we just need to
pay a little bit more attention to the details. For a closed point s 2 S(k), let’s put
as usual Ls = L|X⇥{s}. We already know that the set of s 2 S(k) such that Ls

is trivial is closed in the Zariski topology. All we need to do is to put a natural
scheme structure on this set. The problem being local, we may fix a point s 2 S(k)
such that Ls is trivial, and then replace S by an a�ne open neighborhood SpecA
of the point s. According to Theorem 9.4, we can find a bounded complex

0 ! K0
! K1

! · · · ! Kn
! 0

of finitely-generated free A-modules – we can make them free by shrinking S, if
necessary – such that for every B-algebra A, one has

Hp
�
X ⇥SpecA SpecB, L ⌦A B

�
⇠= Hp(K•

⌦A B).

We may further assume that the complex is minimal at the point s; if we let m ✓ A
denote the maximal ideal corresponding to s 2 S(k), then this means that the
complex K•

⌦A A/m has trivial di↵erentials. Because this complex computes the
cohomology of L ⌦A A/m ⇠= Ls, and because Ls is trivial, we get H0(X, Ls) ⇠= k,
and so K0 must have rank one, hence K0 ⇠= A. Likewise, K1 ⇠= Ar for some
r � 1, and the di↵erential d : K0

! K1 is therefore represented by r elements
f1, . . . , fr 2 A. For the time being, let I = (f1, . . . , fr) ✓ A be the ideal generated
by these elements. Taking B = A/I, we get

(14.9) H0
�
X ⇥SpecA Spec(A/I), L ⌦A A/I

�
⇠= H0(K•

⌦A A/I) ⇠= A/I,

because d : K0
⌦A A/I ! K1

⌦A A/I is of course trivial by construction. So the
restriction of L to the closed subscheme X⇥SpecASpec(A/I) has a nontrivial global
section. In fact, we get a line bundle L0 on Spec(A/I), corresponding to the free
A/I-module in (14.9), and the global section is really a morphism from p⇤

2
L0 to the

restriction of L.
As in Theorem 9.10, we now repeat this procedure for the line bundle L�1; this

gives us several additional elements g1, . . . , gp 2 A, which we add to the ideal I.
The desired closed subscheme is then S0 = Spec(A/I). The reason is that both L
and L�1 have a nontrivial global section on X ⇥S S0 (and so Ls is trivial for every
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closed point of S0). The argument above gives us a line bundle L0 on S0, and an
isomorphism p⇤

2
L0

⇠= L|X⇥S0 . This proves (a).
For (b), we may assume (by uniqueness) that T = SpecB is a�ne and that

the line bundle K is trivial. The morphism f : T ! S is given by a morphism of
k-algebras ' : A ! B, and to show that f factors through S0, we need to prove
that I ✓ ker'. Because (id⇥f)⇤L ⇠= p⇤

2
K, we get

B ⇠= H0
�
X ⇥SpecA SpecB, L ⌦A B

�
⇠= H0(K•

⌦A B),

and because K0 ⇠= A, this is only possible if the di↵erential d : K0
⌦AB ! K1

⌦AB
is zero. But this means exactly that '(f1) = · · · = '(fr) = 0. ⇤

As before, this improved version of the seesaw theorem implies the theorem of
the cube for schemes.

Corollary 14.10. Let L be a line bundle on X ⇥ Y ⇥ S, where X, Y are complete
varieties, and S is a scheme. Suppose that there are points x0 2 X, y0 2 Y , and
s0 2 S such that the three line bundles

L|{x0}⇥Y⇥S , L|X⇥{y0}⇥S , L|X⇥Y⇥{s0}

are trivial. Then L is trivial.

With this result in hand, we can now construct the dual abelian variety in
general. Let L be an ample line bundle on X. We proved that

�L : X ! Pic0(X)

is surjective, and that its kernel K(L) is a finite group. The dual abelian variety
should therefore still be the quotient of X by this subgroup, in a suitable sense.

We first observe that the closed subgroup K(L) ✓ X has a natural scheme
structure on it. Indeed, if we take the line bundle

M = m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1

on X ⇥ X, and consider the first copy of X as the parameter space, then Proposi-
tion 14.8 shows that there is a unique closed subscheme X0 ✓ X such that

L|X0⇥X
⇠= p⇤

1
L0

for some line bundle L0 on X0. Because M |{0}⇥X is trivial, L0 must be trivial, and
so X0 ✓ X is the maximal closed subscheme of X such that L|X0⇥X is trivial. The
set of closed points of X0 is of course our subgroup K(L), and so this puts a scheme
structure on K(L). From now on, we are going to denote this subscheme by the
same symbol K(L). We’ll show next time that the group operation m : X⇥X ! X
restricts to a morphism K(L)⇥K(L) ! K(L), and this makes K(L) into a “group
scheme”. We can then define the dual abelian variety as

X̂ = X/K(L),

but where we now take the scheme structure on K(L) into account when taking
the quotient. (In characteristic zero, every group scheme is reduced; but in positive
characteristic, K(L) might be nonreduced, and then the quotient is di↵erent.)


