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Lecture 11 (March 4)

We continue our study of line bundles on abelian varieties, based on the theorem
of the cube. At the end of the previous class, we proved that if f, g, h are three
morphisms from an arbitrary variety T to an abelian variety X, and if L is any line
bundle on X, then

(11.1) (f+g+h)⇤L ⇠= (f+g)⇤L⌦(f+h)⇤L⌦(g+h)⇤L⌦f⇤L�1
⌦g⇤L�1

⌦h⇤L�1.

As a first application of this formula, we have the so-called “theorem of the square”;
over the complex numbers, we already proved this back in Lecture 6.

Corollary 11.2. Let L be a line bundle on an abelian variety, and x, y 2 X any

two points. Then t⇤
x+y

L ⌦ L�1 ⇠= t⇤
x
L ⌦ t⇤

y
L.

Proof. Let f : ! X be the constant map f ⌘ x, let g : X ! X be the constant
map g ⌘ y, and let h = id be the identity. Then f + h = tx, g + h = ty, and
f + g + h = tx+y, and we get the desired isomorphism by applying (11.1). ⇤

As in Lecture 6, the theorem of the square has the following interpretation. Let
Pic(X) denote the set of isomorphism classes of line bundles on X; this is an abelian
group under tensor product. Any line bundle L on X determines a function

�L : X ! Pic(X), �L(x) = t⇤
x
L ⌦ L�1.

The theorem of the square shows that �L(x + y) = �L(x) ⌦ �L(y), and so �L

is a group homomorphism. Moreover, any line bundle of the form t⇤
x
L ⌦ L�1 is

translation-invariant, because

t⇤
y

�
t⇤
x
L ⌦ L�1

�
= t⇤

x+y
L ⌦ t⇤

y
L�1 ⇠= t⇤

x
L ⌦ L�1.

Later on, we are going to show that the set of translation-invariant line bundles
is itself an abelian variety, denoted Pic0(X), and that �L : X ! Pic0(X) is a
morphism of abelian varieties.

Example 11.3. In terms of divisors, the theorem of the cube becomes a result about
linear equivalence: for any divisor D, one has

t⇤
x+y

D + D ⌘ t⇤
x
D + t⇤

y
D,

where ⌘ means linear equivalence. In particular, we always have

t⇤
x
D + t⇤�x

D ⌘ 2D,

just as in the complex case.

A second application concerns the homomorphisms

nX : X ! X, x 7! n · x

and how they a↵ect line bundles.

Corollary 11.4. Let n 2 Z. For any line bundle L on X, one has

n⇤
X

L ⇠= Ln(n�1)/2
⌦ (�1)⇤

X
Ln(n�1)/2.

Proof. Take f = (n + 1)X , g = 1X , and h = (�1)X . Then f + g + h = (n + 1)X ,
f + g = (n + 2)X , f + h = nX , and g + h ⌘ 0, and so (11.1) gives

(n + 1)⇤
X

L ⇠= (n + 2)⇤
X

L ⌦ n⇤
X

L ⌦ (n + 1)⇤
X

L�1
⌦ L�1

⌦ (�1)⇤
X

L�1.

We can put this into the nicer-looking form

(n + 2)⇤
X

L ⌦ (n + 1)⇤
X

L�2
⌦ n⇤

X
L ⇠= L ⌦ (�1)⇤

X
L,
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and then we recognize this as the “second di↵erence” of the function Z ! Pic(X),
n 7! n⇤

X
L. Recall that if f : Z ! G is a function from the integers into an abelian

group, f has degree  1 i↵ the first di↵erence

f(n + 1)� f(n) = a

is constant, equal to some a 2 G; in that case, f(n) = n · a + b, where b = f(0).
Similarly, f has degree  2 if the second di↵erence

f(n + 2)� 2f(n + 1) + f(n) = a

is constant, and in that case, f(n) =
�
n

2

�
a+

�
n

1

�
b+

�
n

0

�
c for some b, c 2 G. Applied

to our situation, this gives

n⇤
X

L ⇠=
�
L ⌦ (�1)⇤

X
L
�n(n�1)/2

⌦ Mn

1
⌦ M2,

for certain line bundles M1, M2, and by taking n = 0 and n = 1, one finds that
M1

⇠= L and M2
⇠= OX . Therefore

n⇤
X

L ⇠=
�
L ⌦ (�1)⇤

X
L
�n(n�1)/2

⌦ Ln,

which simplifies to the formula we wanted. ⇤
Example 11.5. A line bundle L is called symmetric if L ⇠= (�1)⇤

X
L; this happens

for example if L = OX(D) for a divisor D that is invariant under the involution
x 7! �x. When L is symmetric, one has

n⇤
X

L ⇠= Ln
2

.

Similarly, L is called anti-symmetric if L�1 ⇠= (�1)⇤
X

L; in that case,

n⇤
X

L ⇠= Ln.

Those are the two extreme cases. Of course, for any L, the tensor product L ⌦

(�1)⇤
X

L will be symmetric, and L�1
⌦ (�1)⇤

X
L will be anti-symmetric.

The homomorphism �L and ampleness. Let’s look at the homomorphism

�L : X ! Pic(X), �L(x) = t⇤
x
L ⌦ L�1,

in more detail. In the complex case, we proved that if L = L(H, ↵), with H positive
definite, then �L has a finite kernel, of order (dimH0(X, L))2. In general, �L gives
us a useful way for detecting whether or not L is ample.

Definition 11.6. For a line bundle L on an abelian variety X, we define

K(L) = ker�L =
�

x 2 X
�� t⇤

x
L ⇠= L

 

which is a subgroup of the abelian group X.

In fact, K(L) is also closed in the Zariski topology. To see why, consider the line
bundle m⇤L ⌦ p⇤

2
L�1 on the product X ⇥ X, where m : X ⇥ X ! X is the group

operation. For x 2 X, we have

m⇤L ⌦ p⇤
2
L�1

|{x}⇥X
⇠= t⇤

x
L ⌦ L�1,

and so the subgroup K(L) can also be written in the form

K(L) =
�

x 2 X
�� m⇤L ⌦ p⇤

2
L�1 is trivial on {x}⇥ X

 
.

By the seesaw theorem (in Theorem 9.10), this is a closed subset of X.
Now let D be an e↵ective divisor on X, and consider the line bundle L = OX(D);

in other words, we are assuming that H0(X, L) 6= 0.

Theorem 11.7. The following four conditions are equivalent:

(a) L is ample.

(b) K(L) is a finite group.
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(c) The group H =
�

x 2 X
�� t⇤

x
D = D

 
is finite.

(d) The linear system |2D| has no base points, and defines a finite morphism

to projective space.

Note that in (c), t⇤
x
D = D means equality as divisors, so every irreducible

component of D needs to be invariant under translation by x. The most interesting
implication is that finiteness of K(L) implies ampleness of L; but also note that
(d) is very similar to the Lefschetz theorem (in Theorem 6.5).

Proof. Clearly H ✓ K(L), and so (b) trivially implies (c). It is also not hard to
see that (d) implies (a). Indeed, the morphism �|2D| : X ! P

N has the property
that �⇤

|2D|OPN (1) ⇠= L2. Now the pullback of an ample line bundle by a finite

morphism remains ample, and so L must be ample. (This fact is a substitute for
the complex-analytic description of ampleness in terms of positive metrics.)

Let’s show that (a) implies (b). We know that K(L) is a closed subgroup,
and so the connected component containing the point 0 2 K(L) is an abelian
variety Y ✓ X. To prove that K(L) is finite, we need to show that dimY = 0.
By construction, we have t⇤

y
L ⇠= L for every y 2 Y . Now consider the restriction

LY = L|Y . This is an ample line bundle on the abelian variety Y , with the property
that t⇤

y
LY

⇠= LY for every y 2 Y . By the seesaw theorem (applied to the line bundle

m⇤LY ⌦ p⇤
2
L�1

Y
on Y ⇥ Y ), it follows that m⇤LY ⌦ p⇤

1
L�1

Y
⌦ p⇤

2
L�1

Y
is trivial, and

hence that
m⇤LY

⇠= p⇤
1
LY ⌦ p⇤

2
LY .

If we now pull back this identity along the mapping Y ! Y ⇥ Y , y 7! (y,�y), we
get

OY
⇠= LY ⌦ (�1)⇤

Y
LY .

But both line bundles on the right-hand side are ample, and an ample line bundle
on a complete variety Y can only be trivial if dimY = 0. Therefore K(L) must be
finite.

The most interesting implication is from (c) to (d). We already know that |2D|

has no base points: the reason is that

t⇤
x
D + t⇤�x

D ⌘ 2D,

and so for any y 2 X, we only need to choose x 2 X such that y ± x 62 SuppD to
get a divisor linearly equivalent to 2D that does not pass through the point y. So
we always have a morphism

� = �|2D| : X ! P
N ,

where P
N is really the projectivization of the k-vector space H(X,L2). We need

to show that � is a finite morphism. Because X is proper, � is proper, and so it
su�ces to prove that � has finite fibers. Let’s argue by contradiction and assume
that � does not have finite fibers. Then there is an irreducible proper curve C ✓ X
such that �(C) is a point. Because the divisors in |2D| correspond to hyperplanes
in P

N , and because a hyperplane either passes through a given point or is disjoint
from it, we find that every divisor in |2D| either contains the curve C, or is disjoint
from it. In particular, for every x 2 X, the divisor t⇤

x
D + t⇤�x

D either contains
C, or is disjoint from C. Because C cannot be contained in all translates of D for
obvious reasons, we can certainly find a point x 2 X such that C is disjoint from
the divisor t⇤

x
D.

Now write t⇤
x
D = m1D1 + · · · + mkDk as a sum of irreducible divisors. The

lemma below implies that each Dj is invariant under all translations of the form
tx2�x1 with x1, x2 2 C. But this clearly contradicts the finiteness of H, and so the
morphism �L must have been finite after all. ⇤
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Lemma 11.8. Let E be an irreducible divisor on an abelian variety. If there is an

irreducible curve C such that E \ C = ;, then t⇤
x1�x2

E = E for all x1, x2 2 C.

Proof. Consider the line bundle L = OX(E). Because C is disjoint from E, the
restriction L|C is trivial, and therefore has degree 0. Because the degree is constant
in families, the restriction of t⇤

x
L to C will have degree 0 for every x 2 X. (To prove

this rigorously, we can pull back to the normalization and use the Riemann-Roch
theorem to express the degree in terms of the Euler characteristic; we know from
Corollary 9.8 that the Euler characteristic is constant in families.) This implies
that if the curve tx(C) intersects E, then it must be contained in E (because a line
bundle of degree 0 with a nontrivial section is trivial).

Now let x1, x2 2 C and y 2 E. Then the curve ty�x2(C) intersects E in the
point y, and so ty�x2(C) ✓ E; therefore y + x1 � x2 2 E for every y 2 E, which
says exactly that t⇤

x1�x2
E = E. ⇤

The theorem shows that on abelian varieties, ampleness of a line bundle can be
detected on curves. A very neat corollary of the theorem is that abelian varieties
are always projective.

Corollary 11.9. Every abelian variety is projective.

Proof. Let U ✓ X be an a�ne open set containing the point 0 2 X. Because
X is complete and nonsingular, the complement X \ U is a union of irreducible
divisors D1, . . . , Dr (because regular functions on nonsingular varieties extend over
subvarieties of codimension � 2). Set D = D1 + · · ·+ Dr. The subgroup

H =
�

x 2 X
�� t⇤

x
D = D

 

is closed in X, and translation by any x 2 H preserves U = X \D. Because 0 2 U ,
this shows that H ✓ U . But now H is complete and U is a�ne, and so H must be
finite. Theorem 11.7 implies that OX(D) is ample. ⇤

Torsion points. As in the complex case, we can also prove that X is always a
divisible group.

Corollary 11.10. The group X is divisible, and Xn =
�

x 2 X
�� n · x = 0

 
is

finite.

Proof. For divisibility, we only need to prove that the homomorphism nX : X !

X is surjective for every n 6= 0. For dimension reasons, it is enough to prove
that kernX is finite. Let L be an ample line bundle (which exists because X is
projective). Then

n⇤
X

L ⇠= Ln(n+1)/2
⌦ (�1)⇤

X
Ln(n�1)/2,

and the line bundle on the right-hand side is again ample. Since an ample line
bundle cannot be trivial on a complete variety of positive dimension, we find that
ker(nX) must be 0-dimensional, and therefore finite. ⇤

In the complex case, the fact that X ⇠= (R/Z)2g made it easy to compute the
kernel of nX . We can prove somewhat similar results in general, except when the
characteristic p = char(k) divides n.

Proposition 11.11. Let n 2 Z be an integer.

(a) The degree of nX is equal to n2g
, where g = dimX.

(b) nX is separable i↵ p - n.
(c) If p - n, then Xn

⇠= (Z/nZ)2g.
(d) There is an integer r 2 {0, 1, . . . , g} such that Xpe ⇠= (Z/peZ)r.
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Suppose that f : X ! Y is a surjective morphism between two n-dimensional
varieties. The extension of function fields

k(Y ) ✓ k(X)

is finite algebraic, and we define deg f =
�
k(X) : k(Y )

�
. When f is separable,

meaning when the field extension is separable, the number of points in the fiber
f�1(y) is equal to deg f for most y 2 Y . (More precisely, there is a nonempty
Zariski-open subset of Y where this is true.) When f is inseparable, we define the
separable degree of f as the separable degree of the field extension k(Y ) ✓ k(X);
then the number of points in the general fiber is equal to the separable degree.

Recall from the complex case that an isogeny f : X ! Y is a surjective homomor-
phism between two abelian varieties whose kernel is finite. The typical examples are
the homomorphisms nX : X ! X with n 6= 0. In the case of an isogeny, all fibers
have the same number of points; therefore the number of points in Xn = ker(nX)
is equal to the separable degree of nX . We’ll compute this degree next time.


