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Lecture 10 (February 27)

Last time, someone asked where the name “seesaw theorem” comes from. In
one of the explanatory paragraphs in his collected works, André Weil writes that
he introduced the name in a course on abelian varieties that he taught at the
University of Chicago in 1954/55. Unfortunately, he does not explain why the
theorem made him think of a seesaw. Ravi Vakil (in The Rising Sea) says that
he has no idea why it is called the seesaw theorem. Herbert Lange (in his book
Complex Abelian Varieties) says that it is “called the seesaw theorem for obvious
reasons”. Perhaps the reason is that if we draw X ⇥ Y like this

XY

then the two slices {x0}⇥ Y and X ⇥ {y0} look like the two opposite positions of
a seesaw. But your guess is as good as mine.

Anyway, here is a useful corollary.

Corollary 10.1. Let L be a line bundle on X ⇥ Y , where X, Y are varieties, and

X is complete. If L|X⇥{y} is trivial for every y 2 Y , and if L|{x0}⇥Y is trivial for

some point x0 2 X, then L is trivial.

Proof. By the seesaw theorem, we have L ⇠= p⇤
2
M for a line bundle M on Y ; now

restrict to {x0}⇥ Y to conclude that M is trivial. ⇤
The theorem of the cube. Our main topic today is the “theorem of the cube”,
which is a result about line bundles on X ⇥ Y ⇥ Z. It is the crucial ingredient in
proving results about line bundles on abelian varieties. Here is the statement.

Theorem 10.2. Let L be a line bundle on X ⇥Y ⇥Z, where X, Y, Z are varieties,

and X and Y are complete. Suppose that there are points x0 2 X, y0 2 Y , and

z0 2 Z such that the three line bundles

L|{x0}⇥Y⇥Z , L|X⇥{y0}⇥Z , L|X⇥Y⇥{z0}

are trivial. Then L is trivial.

Note that this only works for three or more factors: a line bundle on X ⇥ Y can
be trivial on {x0} ⇥ Y and on X ⇥ {y0} without being trivial. We can get some
intuition for the statement from the case of complex manifolds. If Pic(X) denotes
the group of holomorphic line bundles, we have an exact sequence

0 Pic0(X) Pic(X) H2(X,Z)
c1

where Pic0(X) means line bundles with trivial first Chern class. Now consider a
holomorphic line bundle L on X ⇥ Y ⇥ Z, say with X, Y, Z connected. By the
Künneth formula, we have

H2(X ⇥ Y ⇥ Z,Z) ⇠= H2(X,Z)� H2(Y,Z)� H1(X,Z)⌦ H1(Y,Z)�

H1(X,Z)⌦ H1(Z,Z)� H1(Y,Z)⌦ H1(Z,Z)� H2(Z,Z).

Each summand involves at most two factors of the product, because we are looking
at H2. If the restriction of L to all three slices {x0} ⇥ Y ⇥ Z, X ⇥ {y0} ⇥ Z and
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X ⇥ Y ⇥ {z0} is trivial, it follows from this that c1(L) = 0. Because Pic0(X) ⇠=
H1(X, OX)/H1(X,Z), we also get from the Künneth formula that

Pic0(X ⇥ Y ⇥ Z) ⇠= Pic0(X)⇥ Pic0(Y )⇥ Pic0(Z),

and so a line bundle L 2 Pic0(X ⇥Y ⇥Z) that is trivial on all three slices is trivial.
Before giving the proof, let’s first deduce the following nice corollary.

Corollary 10.3. If X and Y are complete varieties, then every line bundle on

X ⇥ Y ⇥ Z is isomorphic to a line bundle of the form

p⇤
12

L12 ⌦ p⇤
13

L13 ⌦ p⇤
23

L23,

where L12, L13, L23 are line bundles on the three double products.

Proof. Choose three points x0 2 X, y0 2 Y , and z0 2 Z. Let M1 denote the
restriction of L�1 to X ⇥ {y0} ⇥ {z0}, and define M2 and M3 similarly. After
replacing L by the tensor product

L ⌦ p⇤
1
M1 ⌦ p⇤

2
M2 ⌦ p⇤

3
M3,

we can assume without loss of generality that L is trivial on those three subvarieties.
Now suppose that L12 is a line bundle on X ⇥Y that is trivial on {x0}⇥Y and on
X ⇥ {y0}, and similarly for L13 and L23. The condition that

M = L�1
⌦ p⇤

12
L12 ⌦ p⇤

13
L13 ⌦ p⇤

23
L23

should be trivial on {x0}⇥ Y ⇥ Z, X ⇥ {y0}⇥ Z and X ⇥ Y ⇥ {z0} then uniquely
determines L12, L13, and L23. For example, we have

M |X⇥Y⇥{z0}
⇠= L�1

|X⇥Y⇥{z0} ⌦ L12,

because L13 is trivial on X ⇥ {z0} and L23 is trivial on Y ⇥ {z0}; therefore we can
set L12 = L|X⇥Y⇥{z0}. With these choices, M is trivial on all three slices. The
theorem of the cube implies that M is trivial, and this gives the desired result. ⇤
Proof of the theorem. Let L be a line bundle on X ⇥ Y ⇥ Z such that

L|{x0}⇥Y⇥Z , L|X⇥{y0}⇥Z , L|X⇥Y⇥{z0}

are trivial. We want to prove that L itself must be trivial. The proof will hopefully
make it clear why we need X and Y to be complete.

Step 1 . To get started, we observe that it is enough to prove that L|{x}⇥Y⇥{z}
is trivial for every (x, z) 2 X ⇥ Z. This is because of the seesaw theorem: Y is
complete, and if L is trivial on every fiber of p13 : X ⇥ Y ⇥ Z ! X ⇥ Z, it is the
pullback of a line bundle from Y ⇥Z; but that line bundle must be trivial because
we are assuming that L is trivial on {x0}⇥ Y ⇥ Z.

Step 2 . This observation allows us to reduce the problem to the case where X is a
nonsingular curve. Let x 2 X be an arbitrary point. Choose a complete irreducible
curve C ✓ X that passes through the two points x0 and x. (Such a curve clearly
exists when X is projective; and by Chow’s lemma, any complete variety admits
a surjective map from a projective variety.) Let f : C̃ ! C be the normalization;
then C̃ is nonsingular and irreducible. Consider the pullback M = (f ⇥ id⇥ id)⇤L
of the line bundle along the morphism

f ⇥ id⇥ id : C̃ ⇥ Y ⇥ Z ! X ⇥ Y ⇥ Z.

It still satisfies the assumptions in the theorem of the cube, but now on the product
C̃ ⇥ Y ⇥ Z. If we can show that M is trivial on every subvariety of the form
{c} ⇥ Y ⇥ {z}, then M is trivial; and because x is in the image of f , this then
implies that L is trivial on {x} ⇥ Y ⇥ {z}. So if we can prove the theorem of the
cube when dimX = 1 and X is nonsingular, then it will hold in general.



3

Remark. We don’t actually need Chow’s lemma here. For fixed z 2 Z, the set of
points x 2 X such that L is trivial on {x}⇥ Y ⇥ {z} is closed (by Theorem 9.10),
and so it is enough to prove this for all x in an a�ne open neighborhood of the
point x0. But any two points in an a�ne variety can clearly be connected by an
irreducible curve.

Step 3 . From now on, we assume that X is an complete, irreducible, and nonsingular
curve. By the same argument as in Step 1, it is enough to prove that the line bundle

L(y,z) = L|X⇥{y}⇥{z}

is trivial for every (y, z) 2 Y ⇥ Z; in fact, we can even replace Z by a dense open
subset, because the set of all such points is closed in Y ⇥Z by the seesaw theorem.

Let !X be the canonical line bundle on the curve X, and let g = dimH0(X, !X)
be the genus of the curve. We can choose g points P1, . . . , Pg 2 C such that the
divisor D = P1 + · · · + Pg satisfies dimH0

�
X, !X(�D)

�
= 0: take a nontrivial

section of !X and pick the first point P1 such that the section does not vanish at
P1; then dimH0

�
X, !X(�P1)

�
= g � 1; and so on. By Serre duality, we get

dimH1
�
X, OX(D)

�
= dimH0

�
X, !X(�D)

�
= 0.

We now adjust the line bundle L as follows. Let p1 : X ⇥ Y ⇥ Z ! X be the first
projection, and define

L0 = L ⌦ p⇤
1
OX(D).

As before, we set L0
(y,z)

= L0
|X⇥{y}⇥{z}; evidently,

(10.4) L0
(y,z)

⇠= L(y,z) ⌦ OX(D).

Because L is trivial on X ⇥ Y ⇥ {z0}, we get L0
(y,z0)

⇠= OX(D) for all y 2 Y ;

consequently, the first cohomology H1
�
X, L0

(y,z0)

�
= 0.

By Corollary 9.8, the set

F =
�
(y, z) 2 Y ⇥ Z

�� dimH1
�
X, L0

(y,z)

�
� 1

 

is closed in Y ⇥ Z. Because Y is proper, the image p2(F ) ✓ Z is also closed. We
have just seen that it does not contain the point z0. We can therefore find an
open set Z 0

✓ Z containing the point z0, such that p2(F ) \ Z0 = ;. This means
concretely that

H1
�
X, L0

(y,z)

�
= 0

for every (y, z) 2 Y ⇥ Z 0. After replacing Z by the dense open subset Z 0, we can
assume that this holds for every (y, z) 2 Y ⇥ Z.

Step 4 . We can use this to compute the space of global sections. By Corollary 9.8,
the Euler characteristic is constant, and so

dimH0
�
X,L0

(y,z)

�
= �

�
L0

(y,z)

�
= �

�
L0

(y,z0)

�
= �

�
X, OX(D)

�

= degD � g + 1 = 1

by the Riemann-Roch theorem. Every line bundle L0
(y,z)

therefore has (up to scal-

ing) a unique nontrivial global section, and so it determines a unique e↵ective
divisor on X (of degree g = degD). As we move (y, z) 2 Y ⇥ Z, these divisors are
going to sweep out a divisor D̃ on X ⇥ Y ⇥ Z.

To construct D̃ rigorously, we can argue as follows. First, dimH0
�
X, L0

(y,z)

�
= 1

is constant, and so Corollary 9.9 implies that the pushforward (p23)⇤L0 is a line
bundle on Y ⇥Z. On any open set U ✓ Y ⇥Z where this line bundle is trivial, we
can choose a nowhere vanishing section sU 2 H0

�
U, (p23)⇤L0�. By the definition

of the pushforward, it comes from a section s̃U 2 H0
�
X ⇥ U, L0�, and we let D̃U

be the divisor of s̃U . If V ✓ Y ⇥ Z is another open set of this type, then sU and
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sV di↵er from each other by an element of H0(U \ V, O⇥
X
), and so D̃U and D̃V

agree on X ⇥ (U \ V ). Consequently, there is a well-defined divisor D̃ such that
D̃|U = D̃U . It is clear from the construction that D̃|X⇥{y}⇥{z} is the divisor of the
unique nontrivial section of L0

(y,z)
.

Step 5 . We’ll complete the proof by showing that D̃ = p⇤
1
(D). Observe that

D̃|X⇥{y}⇥{z0} = D and D̃|X⇥{y0}⇥{z} = D

for every y 2 Y and every z 2 Z; the reason is that L0
(y,z0)

⇠= L0
(y0,z)

⇠= OX(D). So
if we take a point P 2 X with P 6= Pj for j = 1, . . . , g, then the divisor

D̃P = D̃|{P}⇥Y⇥Z

does not intersect the two closed subsets {P}⇥Y ⇥ {z0} and {P}⇥ {y0}⇥Z. The
projection p2(D̃P ) ✓ Z is a closed subset (because Y is complete); because it does
not contain the point z0, it must be a proper closed subset. For dimension reasons,
this implies that the divisor D̃P is supported on a finite union of closed subsets of
the form {P}⇥ Y ⇥ Tj , where Tj ✓ Z has codimension one. But D̃P also does not
intersect {P}⇥ {y0}⇥ Z, and this is now only possible if D̃P is empty.

Step 6 . The conclusion is that D̃ does not intersect the set {P}⇥Y ⇥Z, and being
a divisor, it must therefore be of the form

D̃ =
gX

j=1

cj · {Pj}⇥ Y ⇥ Z

for certain integers c1, . . . , cg 2 N. But D̃|X⇥{y}⇥{z0} = D, and so c1 = · · · = cg =

0, or equivalently, D̃ = p⇤
1
(D). This gives L0

(y,z)
⇠= OX(D). If we now go back to

(10.4), we find that

L(y,z)
⇠= L0

(y,z)
⌦ OX(�D) ⇠= OX ,

and so L is indeed trivial on all subvarieties of the form X ⇥ {y}⇥ {z}. As we said
above, this is enough to conclude that L is trivial on X ⇥ Y ⇥ Z.

Line bundles on abelian varieties. The theorem of the cube has many nice
consequences for line bundles on abelian varieties. Let X be an abelian variety,
and let L be a line bundle on X. The group operation is m : X ⇥ X ! X, and by
extension, we also write

m : X ⇥ X ⇥ X ! X, m(x, y, z) = x + y + z.

Denote by pi,j : X ⇥ X ⇥ X ! X ⇥ X the projections, and set

mi,j : X ⇥ X ⇥ X ! X, mi,j = m � pi,j .

Consider the line bundle

M = m⇤L ⌦ m⇤
1,2

L�1
⌦ m⇤

1,3
L�1

⌦ m⇤
1,3

L�1
⌦ p⇤

1
L ⌦ p⇤

2
L ⌦ p⇤

3
L.

Because 0 2 X is the neutral element, it is easy to see that M is trivial on all three
slices {0}⇥ X ⇥ X, X ⇥ {0}⇥ X, and X ⇥ X ⇥ {0}. By the theorem of the cube,
M is trivial on X ⇥ X ⇥ X, and therefore

(10.5) m⇤L ⇠= m⇤
1,2

L ⌦ m⇤
1,3

L ⌦ m⇤
1,3

L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1

⌦ p⇤
3
L�1.

If we now have three morphisms f, g, h : T ! X from some other variety T , we can
pull back this identity along the mapping (f, g, h) : T ! X ⇥ X ⇥ X; this proves
the following result.
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Corollary 10.6. Let f, g, h : T ! X be three morphisms to an abelian variety. For

any line bundle L on X, one has

(f + g + h)⇤L ⇠= (f + g)⇤L ⌦ (f + h)⇤L ⌦ (g + h)⇤L ⌦ f⇤L�1
⌦ g⇤L�1

⌦ h⇤L�1.


