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Brief review: weight spaces
Let V be a representation of g. The subspace

V [λ] =
{

v ∈ V
∣∣∣ h · v = λ(h)v for all h ∈ h

}
is called the weight space of weight λ ∈ h∗.

Notation: P(V ) =
{
λ ∈ h∗

∣∣∣ V [λ] 6= 0
}

When V is finite-dimensional, we proved:
I The weight decomposition V =

⊕
λ∈P(V )

V [λ].

I dimV [λ] = dimV [w(λ)] for every w ∈ W .
I P(V ) is a subset of the weight lattice

P =
{
λ ∈ h∗

∣∣∣ 2(α, λ)
(α, α)

∈ Z for all α ∈ R
}
.



Example: weight lattice in type G2

Dynkin diagram of type G2:

An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
∑n

i=1 vi. It is clear
that v "= 0, since the vectors v1, v2, . . . , vn are linearly independent. Then

0 < 〈v, v〉 =
n∑

i=1

〈vi, vi〉 +
∑

i<j

2 〈vi, vj〉 = n +
∑

i<j

2 〈vi, vj〉 .

If the vertices vi and vj are connected, then 2 〈vi, vj〉 ∈
{
−1,−

√
2,−

√
3
}
.

In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i "= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
an orthonormal set and we can express c as follows:

c =

k∑

i=0

〈c, vi〉 vi.

Since c is a unit vector, 〈c, c〉 =
∑k

i=0 〈c, vi〉2 = 1. But 〈c, v0〉 "= 0, thus

k∑

i=1

4 〈c, vi〉2 < 4. (4)

8

There are two simple roots α1 and α2 with

2(α1, α2)

(α1, α1)
= −3 and 2(α1, α2)

(α2, α2)
= −1.

The weight lattice P is the set of vectors xα1 + yα2 with

2x(α1, α1) + 2y(α1, α2)

(α1, α1)
= 2x − 3y ∈ Z

2x(α2, α1) + 2y(α2, α2)

(α2, α2)
= 2y − x ∈ Z

In this case, it follows that x , y ∈ Z, and so P is exactly the
lattice generated by the two simple roots α1 and α2.



Example: weight lattice of type G2
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Brief review: highest weight representations
A nonzero representation V of g is called a highest weight
representation if it is generated by a vector v ∈ V [λ] with

x · v = 0 for all x ∈ n+.

The decomposition g = n− ⊕ h⊕ n+ comes from a choice of
polarization R = R+ t R− of the root system.

Last time, we proved:
I Every irreducible finite-dimensional representation is a

highest weight representation.
I Every highest weight representation of highest weight λ is

isomorphic to a quotient of the Verma module Mλ.
I Every highest weight representation admits a weight

decomposition with finite-dimensional weight spaces.
I The highest weight λ is unique, and dimV [λ] = 1.



Irreducible finite-dimensional representations

Goal: Classify irreducible finite-dimensional representations.

Every such representation is highest weight representation,
hence a quotient of some Mλ. Two natural questions:
1. Which quotients of Mλ are irreducible?
2. Which of these are finite-dimensional?

The answer to the first question is easy.

Theorem
For each λ ∈ h∗, the Verma module Mλ has a unique quotient
Lλ that is irreducible as a representation of g.

This says that, up to isomorphism, there is a unique irreducible
highest weight representation of highest weight λ.



Irreducible highest weight representations
Theorem
For each λ ∈ h∗, the Verma module Mλ has a unique quotient
Lλ that is irreducible as a representation of g.

Proof:
I The quotient Mλ/W is nonzero and irreducible
⇐⇒ W is maximal among proper submodules of Mλ.

I Every submodule W admits a weight decomposition.
(Reason: Mλ admits a weight decomposition.)

I If W 6= Mλ, then W [λ] = 0.
(Reason: Mλ[λ] generates Mλ, and dimMλ[λ] = 1)

I Let Wλ be the sum over all W such that W [λ] = 0.
I Clearly Wλ is the unique maximal proper submodule.
I Therefore Lλ = Mλ/Wλ does the job.



Irreducible finite-dimensional representations

Goal: Classify irreducible finite-dimensional representations.

Every such representation is isomorphic to Lλ for a unique
weight λ ∈ h∗. It remains to figure out when dim Lλ <∞.

The answer to this question is less easy, but still very pretty.

Main theorem
Lλ is finite-dimensional ⇐⇒ λ ∈ P+

Definition: A weight λ ∈ h∗ is called dominant integral if

2(α, λ)
(α, α)

∈ N for all α ∈ R+.

The set of dominant integral weights is denoted P+.



Dominant integral weights

Definition: A weight λ ∈ h∗ is called dominant integral if

2(α, λ)
(α, α)

∈ N for all α ∈ R+.

The set of dominant integral weights is denoted P+.

I By definition, P+ is contained in the weight lattice

P =
{
λ ∈ h∗

∣∣∣ 2(α, λ)
(α, α)

∈ Z for all α ∈ R
}
.

I It is enough to check the condition for all simple roots.
I P+ = P ∩ C+ is the intersection of the weight lattice P

with the closure of the positive Weyl chamber C+.



Example: sl(3,C)

α1

α2



Example: Lie algebra of type G2

α2

α1



Proof of main theorem

Main theorem
Lλ is finite-dimensional ⇐⇒ λ ∈ P+

Proof: I will only prove the easy direction.
I Suppose that dim Lλ <∞.
I Let α ∈ R+ be a positive root, sl(2,C)α = 〈eα, fα, hα〉.
I The highest weight vector vλ ∈ Lλ satisfies

eαvλ = 0 and hαvλ = λ(hα)vλ =
2(α, λ)
(α, α)

vλ.

I But in a finite-dimensional representation of sl(2,C), the
highest weight is a nonnegative integer.

I Therefore 2(α, λ)/(α, α) ∈ N, hence λ ∈ P+.



Irreducible finite-dimensional representations

The main theorem solves our problem (at least in theory):
1. For every λ ∈ P+, the representation Lλ is irreducible and

finite-dimensional.
2. These representations are pairwise non-isomorphic.
3. Every irreducible finite-dimensional representation is

isomorphic to a unique Lλ.
In practice, there are usually better ways to get your hands on
the irreducible finite-dimensional representations.



Computing dimensions

Define ρ = 1
2
∑

α∈R+

α. This is a special element in E .

Theorem

One has dim Lλ =
∏

α∈R+

(
1+ (α, λ)

(α, ρ)

)
for every λ ∈ P+.

This is a consequence of the Weyl character formula.

For λ ∈ P+, it gives a (big) formula for the character

ch(Lλ) =
∑

µ

dim Lλ[µ] · eµ ∈ C[P],

involving the set of positive roots R+, the Weyl group W , and
the special element ρ.



Example: sl(3,C)
For the Lie algebra sl(3,C), we had

E ∼= R3/R(e1 + e2 + e3) ∼=
{

x ∈ R3
∣∣∣ x1 + x2 + x3 = 0

}
.

The simple roots are α1 = e1 − e2 and α2 = e2 − e3. Hence

2(α1, α2)

(α1, α1)
=

2(α1, α2)

(α2, α2)
= −1.

A weight λ = xα1 + yα2 belongs to P+ iff

a =
2x(α1, α1) + 2y(α1, α2)

(α1, α1)
= 2x − y ∈ N

b =
2x(α2, α1) + 2y(α2, α2)

(α2, α2)
= 2y − x ∈ N

Solving for x , y , we get x = 1
3(2a + b) and y = 1

3(a + 2b).



Example: sl(3,C)

Dominant integral weights are therefore of the form

λ =
2a + b

3 α1 +
a + 2b

3 α2

for a pair of natural numbers a, b ∈ N.

These are in one-to-one correspondence with irreducible
finite-dimensional representations.

The dimension formula (with ρ = α1 + α2) gives the
dimension of the corresponding representation as

dim Lλ = (1+ a)(1+ b)
(
1+ a + b

2

)
.



Example: sl(3,C)
The standard representation on C3 has weights

e1 ≡ 1
3(2e1 − e2 − e3) =

2
3α1 +

1
3α2 = λ,

e2 = e1 − (e1 − e2) ≡ λ− α1,

e3 = e2 − (e2 − e3) ≡ λ− α1 − α2.

It corresponds to (a, b) = (1, 0).

The representation ∧2C3 has weights

e1 + e2 ≡ 1
3(e1 + e2 − 2e3) =

1
3α1 +

2
3α2 = µ,

e1 + e3 = (e1 + e2)− (e2 − e3) ≡ µ− α2,

e2 + e3 = (e1 + e3)− (e1 − e2) ≡ µ− α1 − α2.

It corresponds to (a, b) = (0, 1).



Example: sl(3,C)

α1

α2

λ
µ



Example: Lie algebra of type G2

α2

α1




