Irreducible finite-dimensional representations of semisimple Lie algebras

MAT 552

May 6, 2020

Brief review: weight spaces

Let V be a representation of \mathfrak{g} . The subspace

$$V[\lambda] = \left\{ v \in V \ \Big| \ h \cdot v = \lambda(h) v \text{ for all } h \in \mathfrak{h}
ight\}$$

is called the weight space of weight $\lambda \in \mathfrak{h}^*$.

Notation:
$$P(V) = \left\{ \lambda \in \mathfrak{h}^* \mid V[\lambda] \neq 0 \right\}$$

When V is finite-dimensional, we proved:

- The weight decomposition $V = \bigoplus_{\lambda \in P(V)} V[\lambda].$
- dim $V[\lambda] = \dim V[w(\lambda)]$ for every $w \in W$.
- P(V) is a subset of the weight lattice

$$P = \Big\{ \lambda \in \mathfrak{h}^* \ \Big| \ \frac{2(\alpha, \lambda)}{(\alpha, \alpha)} \in \mathbb{Z} \text{ for all } \alpha \in R \Big\}.$$

Example: weight lattice in type G_2

Dynkin diagram of type G_2 : $\bigcirc = \bigcirc$

There are two simple roots α_1 and α_2 with

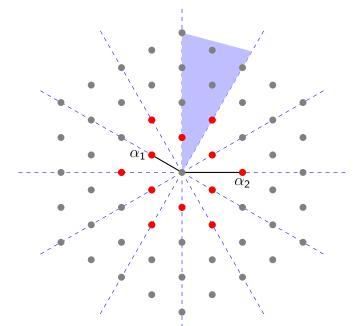
$$\frac{2(\alpha_1,\alpha_2)}{(\alpha_1,\alpha_1)} = -3 \quad \text{and} \quad \frac{2(\alpha_1,\alpha_2)}{(\alpha_2,\alpha_2)} = -1.$$

The weight lattice *P* is the set of vectors $x\alpha_1 + y\alpha_2$ with

$$\frac{2x(\alpha_1,\alpha_1)+2y(\alpha_1,\alpha_2)}{(\alpha_1,\alpha_1)} = 2x - 3y \in \mathbb{Z}$$
$$\frac{2x(\alpha_2,\alpha_1)+2y(\alpha_2,\alpha_2)}{(\alpha_2,\alpha_2)} = 2y - x \in \mathbb{Z}$$

In this case, it follows that $x, y \in \mathbb{Z}$, and so P is exactly the lattice generated by the two simple roots α_1 and α_2 .

Example: weight lattice of type G_2



Brief review: highest weight representations

A nonzero representation V of g is called a highest weight representation if it is generated by a vector $v \in V[\lambda]$ with

 $x \cdot v = 0$ for all $x \in \mathfrak{n}_+$.

The decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ comes from a choice of polarization $R = R_+ \sqcup R_-$ of the root system.

Last time, we proved:

- Every irreducible finite-dimensional representation is a highest weight representation.
- Every highest weight representation of highest weight λ is isomorphic to a quotient of the Verma module M_λ.
- Every highest weight representation admits a weight decomposition with finite-dimensional weight spaces.
- The highest weight λ is unique, and dim $V[\lambda] = 1$.

Irreducible finite-dimensional representations

Goal: Classify irreducible finite-dimensional representations.

Every such representation is highest weight representation, hence a quotient of some M_{λ} . Two natural questions:

- 1. Which quotients of M_{λ} are irreducible?
- 2. Which of these are finite-dimensional?

The answer to the first question is easy.

Theorem

For each $\lambda \in \mathfrak{h}^*$, the Verma module M_{λ} has a unique quotient L_{λ} that is irreducible as a representation of \mathfrak{g} .

This says that, up to isomorphism, there is a unique irreducible highest weight representation of highest weight λ .

Irreducible highest weight representations

Theorem

For each $\lambda \in \mathfrak{h}^*$, the Verma module M_{λ} has a unique quotient L_{λ} that is irreducible as a representation of \mathfrak{g} .

Proof:

- The quotient M_{λ}/W is nonzero and irreducible $\iff W$ is maximal among proper submodules of M_{λ} .
- Every submodule W admits a weight decomposition.
 (Reason: M_λ admits a weight decomposition.)
- ► If $W \neq M_{\lambda}$, then $W[\lambda] = 0$. (Reason: $M_{\lambda}[\lambda]$ generates M_{λ} , and dim $M_{\lambda}[\lambda] = 1$)
- Let W_{λ} be the sum over all W such that $W[\lambda] = 0$.
- Clearly W_{λ} is the unique maximal proper submodule.
- Therefore $L_{\lambda} = M_{\lambda}/W_{\lambda}$ does the job.

Irreducible finite-dimensional representations

Goal: Classify irreducible finite-dimensional representations.

Every such representation is isomorphic to L_{λ} for a unique weight $\lambda \in \mathfrak{h}^*$. It remains to figure out when dim $L_{\lambda} < \infty$.

The answer to this question is less easy, but still very pretty.

Main theorem

 L_{λ} is finite-dimensional $\iff \lambda \in P_+$

Definition: A weight $\lambda \in \mathfrak{h}^*$ is called dominant integral if

$$\frac{2(\alpha,\lambda)}{(\alpha,\alpha)} \in \mathbb{N} \quad \text{for all } \alpha \in R_+.$$

The set of dominant integral weights is denoted P_+ .

Dominant integral weights

Definition: A weight $\lambda \in \mathfrak{h}^*$ is called **dominant integral** if

$$\frac{2(\alpha,\lambda)}{(\alpha,\alpha)} \in \mathbb{N} \quad \text{for all } \alpha \in R_+.$$

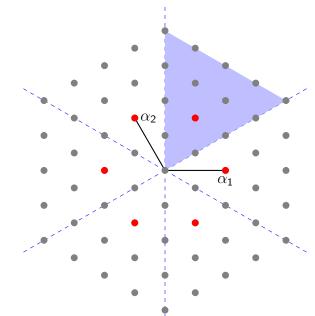
The set of dominant integral weights is denoted P_+ .

▶ By definition, P_+ is contained in the weight lattice

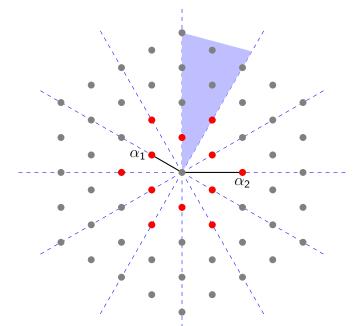
$${\mathcal P}=\Big\{\,\lambda\in \mathfrak{h}^*\ \Big|\ rac{2(lpha,\lambda)}{(lpha,lpha)}\in {\mathbb Z} ext{ for all } lpha\in {\mathcal R}\,\Big\}.$$

- It is enough to check the condition for all simple roots.
- P₊ = P ∩ C₊ is the intersection of the weight lattice P with the closure of the positive Weyl chamber C₊.

Example: $\mathfrak{sl}(3,\mathbb{C})$



Example: Lie algebra of type G_2



Proof of main theorem

Main theorem

 L_{λ} is finite-dimensional $\iff \lambda \in P_+$

Proof: I will only prove the easy direction.

- Suppose that dim $L_{\lambda} < \infty$.
- Let $\alpha \in R_+$ be a positive root, $\mathfrak{sl}(2,\mathbb{C})_{\alpha} = \langle e_{\alpha}, f_{\alpha}, h_{\alpha} \rangle$.
- The highest weight vector $v_{\lambda} \in L_{\lambda}$ satisfies

$$e_{lpha}v_{\lambda}=0 \quad ext{and} \quad h_{lpha}v_{\lambda}=\lambda(h_{lpha})v_{\lambda}=rac{2(lpha,\lambda)}{(lpha,lpha)}v_{\lambda}.$$

- ▶ But in a finite-dimensional representation of sl(2, C), the highest weight is a nonnegative integer.
- Therefore $2(\alpha, \lambda)/(\alpha, \alpha) \in \mathbb{N}$, hence $\lambda \in P_+$.

Irreducible finite-dimensional representations

The main theorem solves our problem (at least in theory):

- 1. For every $\lambda \in P_+$, the representation L_λ is irreducible and finite-dimensional.
- 2. These representations are pairwise non-isomorphic.
- 3. Every irreducible finite-dimensional representation is isomorphic to a unique L_{λ} .

In practice, there are usually better ways to get your hands on the irreducible finite-dimensional representations.

Computing dimensions

Define
$$\rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$$
. This is a special element in *E*.

Theorem

One has dim
$$L_{\lambda} = \prod_{\alpha \in R_+} \left(1 + \frac{(\alpha, \lambda)}{(\alpha, \rho)} \right)$$
 for every $\lambda \in P_+$.

This is a consequence of the Weyl character formula.

For $\lambda \in P_+$, it gives a (big) formula for the character

$$\mathsf{ch}(L_{\lambda}) = \sum_{\mu} \dim L_{\lambda}[\mu] \cdot e^{\mu} \in \mathbb{C}[P],$$

involving the set of positive roots R_+ , the Weyl group W, and the special element ρ .

Example: $\mathfrak{sl}(3,\mathbb{C})$

For the Lie algebra $\mathfrak{sl}(3,\mathbb{C})$, we had

$$E\cong \mathbb{R}^3/\mathbb{R}(e_1+e_2+e_3)\cong \left\{ x\in \mathbb{R}^3 \ \Big| \ x_1+x_2+x_3=0
ight\}.$$

The simple roots are $\alpha_1 = e_1 - e_2$ and $\alpha_2 = e_2 - e_3$. Hence

$$\frac{2(\alpha_1,\alpha_2)}{(\alpha_1,\alpha_1)} = \frac{2(\alpha_1,\alpha_2)}{(\alpha_2,\alpha_2)} = -1$$

A weight $\lambda = x\alpha_1 + y\alpha_2$ belongs to P_+ iff

$$a = \frac{2x(\alpha_1, \alpha_1) + 2y(\alpha_1, \alpha_2)}{(\alpha_1, \alpha_1)} = 2x - y \in \mathbb{N}$$
$$b = \frac{2x(\alpha_2, \alpha_1) + 2y(\alpha_2, \alpha_2)}{(\alpha_2, \alpha_2)} = 2y - x \in \mathbb{N}$$

Solving for x, y, we get $x = \frac{1}{3}(2a+b)$ and $y = \frac{1}{3}(a+2b)$.

Example:
$$\mathfrak{sl}(3,\mathbb{C})$$

Dominant integral weights are therefore of the form

$$\lambda = \frac{2a+b}{3}\alpha_1 + \frac{a+2b}{3}\alpha_2$$

for a pair of natural numbers $a, b \in \mathbb{N}$.

These are in one-to-one correspondence with irreducible finite-dimensional representations.

The dimension formula (with $\rho = \alpha_1 + \alpha_2$) gives the dimension of the corresponding representation as

$$\dim L_{\lambda} = (1+a)(1+b)\left(1+\frac{a+b}{2}\right)$$

Example:
$$\mathfrak{sl}(3,\mathbb{C})$$

The standard representation on \mathbb{C}^3 has weights

$$e_{1} \equiv \frac{1}{3}(2e_{1} - e_{2} - e_{3}) = \frac{2}{3}\alpha_{1} + \frac{1}{3}\alpha_{2} = \lambda$$

$$e_{2} = e_{1} - (e_{1} - e_{2}) \equiv \lambda - \alpha_{1},$$

$$e_{3} = e_{2} - (e_{2} - e_{3}) \equiv \lambda - \alpha_{1} - \alpha_{2}.$$

It corresponds to (a, b) = (1, 0).

The representation $\wedge^2 \mathbb{C}^3$ has weights

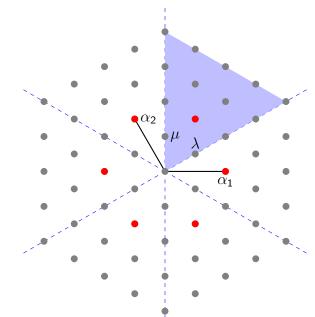
$$e_1 + e_2 \equiv \frac{1}{3}(e_1 + e_2 - 2e_3) = \frac{1}{3}\alpha_1 + \frac{2}{3}\alpha_2 = \mu,$$

$$e_1 + e_3 = (e_1 + e_2) - (e_2 - e_3) \equiv \mu - \alpha_2,$$

$$e_2 + e_3 = (e_1 + e_3) - (e_1 - e_2) \equiv \mu - \alpha_1 - \alpha_2.$$

It corresponds to (a, b) = (0, 1).

Example: $\mathfrak{sl}(3,\mathbb{C})$



Example: Lie algebra of type G_2

