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Brief review: representations of sl(2,C)

A few weeks ago, we proved the following results:
I Every finite-dimensional representation of sl(2,C) is

completely reducible.
I Up to isomorphism, there is a unique irreducible

representation of every finite dimension.
I Every finite-dimensional representation V decomposes as

V =
⊕
n∈Z

V [n]

into weight spaces V [n] =
{
v ∈ V

∣∣∣ h · v = nv
}
.

I One has the symmetry dimV [n] = dimV [−n].



Brief review: representations of sl(2,C)

The irreducible representation of dimension n + 1 is

Vn = 〈v0, v1, . . . , vn〉,

with the action by sl(2,C) given by the following formulas:

hvk = (n − 2k)vk

fvk = (k + 1)vk+1

evk = (n − k + 1)vk−1

The vector v0 is called a highest weight vector because

hv0 = nv0 and ev0 = 0.



Brief review: representations of sl(2,C)
In fact, for any λ ∈ C, one can define a representation

Mλ = 〈v0, v1, . . . , vk , . . . 〉

with the action by sl(2,C) given by the following formulas:

hvk = (λ− 2k)vk

fvk = (k + 1)vk+1

evk = (λ− k + 1)vk−1

The vector v0 is still a highest weight vector.
I When λ 6∈ N, the representation Mλ is irreducible.
I When λ ∈ N, the subspace

W = 〈vλ+1, vλ+2, . . . 〉

is a subrepresentation, and Vλ
∼= Mλ/W .



Representations of semisimple complex Lie algebras

Goal: Generalize this to all semisimple complex Lie algebras.

Let g be a semisimple complex Lie algebra.
I We know that every finite-dimensional representation is

completely reducible.
I We will therefore focus on irreducible representations.

The main tool is the root decomposition

g = h⊕
⊕
α∈R

gα,

where h is a Cartan subalgebra.



Weight spaces
As in the example of sl(2,C), the key idea is to decompose
representations into eigenspaces for the Cartan subalgebra h.

Let V be a representation of g.

We say that a vector v ∈ V has weight λ ∈ h∗ if

h · v = λ(h)v for all h ∈ h.

The subspace of vectors of a given weight λ ∈ h∗ is denoted

V [λ] =
{
v ∈ V

∣∣∣ h · v = λ(h)v for all h ∈ h
}

and is called the weight space of weight λ.

If V [λ] is nonzero, we say that λ is a weight of V .

Notation: P(V ) =
{
λ ∈ h∗

∣∣∣ V [λ] 6= 0
}



Weight decomposition and weight lattice
Theorem
Let V be a finite-dimensional representation of g.
1. One has a weight decomposition

V =
⊕

λ∈P(V )

V [λ].

2. For any root α ∈ R, one has gα · V [λ] ⊆ V [λ + α].
3. P(V ) is always a subset of the weight lattice

P =
{
λ ∈ h∗

∣∣∣ 2(α, λ)

(α, α)
∈ Z for all α ∈ R

}
⊆ E .

Example
For the adjoint representation of g, the weight decomposition
is the root decomposition, and P(g) = R ∪ {0}.



Weight decomposition and weight lattice
Proof:

I Let α ∈ R be a root, and hα ∈ h the element with

λ(hα) =
2(α, λ)

(α, α)
for all λ ∈ h∗.

I Consider V as a representation of the subalgebra

sl(2,C)α = g−α ⊕ Chα ⊕ gα.

I From the representation theory of sl(2,C), we know that
hα ∈ End(V ) is diagonalizable, with integer eigenvalues.

I Since h is commutative, we obtain

V =
⊕

λ∈P(V )

V [λ].



Weight decomposition and weight lattice
I Let α ∈ R and λ ∈ P(V ). For any v ∈ V [λ], we have

hα · v = λ(hα)v =
2(α, λ)

(α, α)
v .

I Since hα has integer eigenvalues, we get

2(α, λ)

(α, α)
∈ Z

for every root α ∈ R , hence P(V ) ⊆ P.
I If Π = {α1, . . . , αn} are the simple roots, then

P =
{
λ ∈ h∗

∣∣∣ 2(αi , λ)

(αi , αi)
∈ Z for i = 1, . . . , n

}
.

I Therefore P is indeed a lattice in E .



Example: weight lattice of sl(3,C)

For the Lie algebra sl(3,C), we had

2(α1, α2)

(α1, α1)
=

2(α1, α2)

(α2, α2)
= −1.

The weight lattice P is the set of vectors xα1 + yα2 with

2x(α1, α1) + 2y(α1, α2)

(α1, α1)
= 2x − y ∈ Z

2x(α2, α1) + 2y(α2, α2)

(α2, α2)
= 2y − x ∈ Z

It follows that x , y ∈ 1
3Z.



Example: weight lattice of sl(3,C)

α1

α2



Weight spaces and the Weyl group

Theorem
Let V be a finite-dimensional representation of g. Then

dimV [λ] = dimV [w(λ)]

for every element w ∈ W of the Weyl group.

Example
In the case of sl(2,C), the Weyl group has two elements that
act as ±1 on E ∼= R; this explains why

dimV [n] = dimV [−n].



Weight spaces and the Weyl group
Proof:

I W is generated by the simple reflections s1, . . . , sn,
corresponding to the simple roots Π = {α1, . . . , αn}.

I We may therefore assume that w = si . Now

w(λ) = λ− nαi ,

where n = 2(αi , λ)/(αi , αi) ∈ Z.
I Consider V as a representation of sl(2,C)αi = 〈ei , fi , hi〉.
I As a representation of sl(2,C), the subspace V [λ] has

weight n, and the subspace V [λ− nαi ] has weight −n.
I From the representation theory of sl(2,C), we know that

f n
i : V [λ]→ V [λ− nαi ] and en

i : V [λ− nαi ]→ V [λ]

are isomorphisms.
I This gives dimV [λ] = dimV [w(λ)].



Highest weight representations
Recall that a choice of polarization R = R+ t R− of the root
system gives us a decomposition

g = n− ⊕ h⊕ n+

into h and the two nilpotent subalgebras n± =
⊕

α∈R±

gα.

Definition
A nonzero representation V of g is called a highest weight
representation if it is generated by a vector v ∈ V [λ] with

x · v = 0 for all x ∈ n+.

In this case, v is called the highest weight vector.



Highest weight representations

Theorem
Every irreducible finite-dimensional representation of g is a
highest weight representation.

Proof:
I Choose λ ∈ P(V ) such that λ+α 6∈ P(V ) for all α ∈ R+.
I This exists: take h ∈ h such that α(h) > 0 for all α ∈ R+,

and then choose λ ∈ P(V ) such that λ(h) is maximal.
I Let v ∈ V [λ] be a nonzero vector.
I Since λ + α 6∈ P(V ), we have x · v = 0 for every x ∈ n+.
I The subrepresentation generated by v is a highest weight

representation; by irreducibility, it must be all of V .



Verma modules

Goal: Construct all highest weight representations.

Let V be a highest weight representation, v ∈ V [λ]. Then

h · v = λ(h)v for all h ∈ h,
x · v = 0 for all x ∈ n+.

Consider the “universal highest weight representation” Mλ,
generated by a vector vλ that satisfies the two relations above.

Using the universal enveloping algebra, we can define

Mλ = Ug/Iλ,

where Iλ is the left ideal generated by the elements x ∈ n+
and h − λ(h), for h ∈ h. This is called the Verma module.



Verma modules
Recall that representations of the Lie algebra g are the same
thing as left modules over the universal enveloping algebra Ug.

I The Verma module Mλ is a representation of g.
I We will see in a moment that dimMλ =∞.

Verma modules are universal in the following sense.

Lemma
If V is a highest weight representation of highest weight λ,
then one has

V ∼= Mλ/W

for some submodule W ⊆ Mλ.

Understanding highest weight representations is therefore
equivalent to understanding submodules of Verma modules.



Verma modules
Here is an alternative construction of Mλ. The subalgebra

b = h⊕ n+

is solvable; it is called the Borel subalgebra.

The relations above give a representation ρ : b→ End(C), with

ρ(h) = λ(h) for all h ∈ h,
ρ(x) = 0 for all x ∈ n+.

Denote this representation by the symbol Cλ. Then

Mλ
∼= Ug⊗Ub Cλ,

where the tensor product is over the subalgebra Ub ⊆ Ug.



Verma modules
Theorem
Let λ ∈ h∗, and let Mλ be the Verma module.
1. The multiplication map

Un− → Mλ, u 7→ uvλ,

is an isomorphism of vector spaces.
2. Mλ has a weight decomposition

Mλ =
⊕

µ

Mλ[µ]

with finite-dimensional weight spaces Mλ[µ].

3. P(Mλ) = λ− Q+ = λ−
{ n∑

i=1
kiαi

∣∣∣ k1, . . . , kn ∈ N
}

4. One has Mλ[λ] = 1.



Verma modules
Proof:

I Poincaré-Birkhoff-Witt theorem: g embeds into Ug, and if
x1, . . . , xd is an ordered basis for g, then the monomials
x a1

1 · · · x ad
d form a basis for Ug.

I Since g = n− ⊕ b, it follows that

Ug ∼= Un− ⊗C Ub

as left Un−-modules (and right Ub-modules).
I Using the alternative description of the Verma module,

Mλ
∼= Ug⊗Ub Cλ

∼=
(
Un− ⊗C Ub

)
⊗Ub Cλ

∼= Un− ⊗C Cλ.

I This implies (1); the other claims follow easily.



Highest weight representations
Corollary
Let V be a highest weight representation of highest weight λ.
1. The multiplication map

Un− → V , u 7→ uvλ,

is surjective.
2. V admits a weight decomposition

V =
⊕

µ∈λ−Q+

V [µ]

with finite-dimensional weight spaces V [µ].
3. One has dimV [λ] = 1.
4. The highest weight is unique, and the highest weight

vector is unique up to rescaling.



Highest weight representations
Proof:

I We have V ∼= Mλ/W for a submodule W ⊆ Mλ.
I Therefore (1) and (2) follow from the theorem about Mλ.
I For the same reason, dimV [λ] ≤ 1.
I Since V is a highest weight representation, it is a

generated by a highest weight vector v ∈ V [λ].
I Therefore V [λ] = Cv , and v is unique up to scaling.
I If λ′ was another highest weight, then

λ′ ∈ λ− Q+ and λ ∈ λ′ − Q+.

I Therefore λ′ − λ and λ− λ′ belong to

Q+ =
{ n∑

i=1
kiαi

∣∣∣ k1, . . . , kn ∈ N
}
,

and so λ′ = λ.


