Representation theory of semisimple Lie algebras

MAT 552

May 4, 2020

Brief review: representations of $\mathfrak{sl}(2,\mathbb{C})$

A few weeks ago, we proved the following results:

- ► Every finite-dimensional representation of sl(2, C) is completely reducible.
- Up to isomorphism, there is a unique irreducible representation of every finite dimension.
- ▶ Every finite-dimensional representation V decomposes as

$$V = \bigoplus_{n \in \mathbb{Z}} V[n]$$

into weight spaces $V[n] = \{ v \in V \mid h \cdot v = nv \}.$

• One has the symmetry dim $V[n] = \dim V[-n]$.

Brief review: representations of $\mathfrak{sl}(2,\mathbb{C})$

The irreducible representation of dimension n + 1 is

$$V_n = \langle v_0, v_1, \ldots, v_n \rangle,$$

with the action by $\mathfrak{sl}(2,\mathbb{C})$ given by the following formulas:

$$egin{aligned} hv_k &= (n-2k)v_k\ fv_k &= (k+1)v_{k+1}\ ev_k &= (n-k+1)v_{k-1} \end{aligned}$$

The vector v_0 is called a highest weight vector because

$$hv_0 = nv_0$$
 and $ev_0 = 0$.

Brief review: representations of $\mathfrak{sl}(2, \mathbb{C})$ In fact, for any $\lambda \in \mathbb{C}$, one can define a representation

$$M_{\lambda} = \langle v_0, v_1, \ldots, v_k, \ldots \rangle$$

with the action by $\mathfrak{sl}(2,\mathbb{C})$ given by the following formulas:

$$egin{aligned} hv_k &= (\lambda-2k)v_k\ fv_k &= (k+1)v_{k+1}\ ev_k &= (\lambda-k+1)v_{k-1} \end{aligned}$$

The vector v_0 is still a highest weight vector.

- When $\lambda \notin \mathbb{N}$, the representation M_{λ} is irreducible.
- When $\lambda \in \mathbb{N}$, the subspace

$$W = \langle v_{\lambda+1}, v_{\lambda+2}, \dots \rangle$$

is a subrepresentation, and $V_{\lambda} \cong M_{\lambda}/W$.

Representations of semisimple complex Lie algebras

Goal: Generalize this to all semisimple complex Lie algebras.

Let \mathfrak{g} be a semisimple complex Lie algebra.

- We know that every finite-dimensional representation is completely reducible.
- We will therefore focus on irreducible representations.

The main tool is the root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha},$$

where \mathfrak{h} is a Cartan subalgebra.

Weight spaces

As in the example of $\mathfrak{sl}(2,\mathbb{C})$, the key idea is to decompose representations into eigenspaces for the Cartan subalgebra \mathfrak{h} .

Let V be a representation of \mathfrak{g} .

We say that a vector $v \in V$ has weight $\lambda \in \mathfrak{h}^*$ if

$$h \cdot v = \lambda(h)v$$
 for all $h \in \mathfrak{h}$.

The subspace of vectors of a given weight $\lambda \in \mathfrak{h}^*$ is denoted

$$V[\lambda] = ig\{ \, oldsymbol{v} \in V \ \Big| \ h \cdot oldsymbol{v} = \lambda(h) oldsymbol{v} ext{ for all } h \in \mathfrak{h} ig\}$$

and is called the weight space of weight λ .

If $V[\lambda]$ is nonzero, we say that λ is a weight of V.

Notation:
$$P(V) = \left\{ \lambda \in \mathfrak{h}^* \mid V[\lambda] \neq 0 \right\}$$

Weight decomposition and weight lattice

Theorem

Let V be a finite-dimensional representation of \mathfrak{g} .

1. One has a weight decomposition

$$V = \bigoplus_{\lambda \in P(V)} V[\lambda].$$

For any root α ∈ R, one has g_α · V[λ] ⊆ V[λ + α].
 P(V) is always a subset of the weight lattice

$$P = \left\{ \lambda \in \mathfrak{h}^* \mid \frac{2(lpha, \lambda)}{(lpha, lpha)} \in \mathbb{Z} \text{ for all } lpha \in R
ight\} \subseteq E.$$

Example

For the adjoint representation of \mathfrak{g} , the weight decomposition is the root decomposition, and $P(\mathfrak{g}) = R \cup \{0\}$.

Weight decomposition and weight lattice **Proof**:

▶ Let $\alpha \in R$ be a root, and $h_{\alpha} \in \mathfrak{h}$ the element with

$$\lambda(h_{lpha})=rac{2(lpha,\lambda)}{(lpha,lpha)} \ \ ext{for all} \ \lambda\in \mathfrak{h}^{*}.$$

Consider V as a representation of the subalgebra

$$\mathfrak{sl}(2,\mathbb{C})_lpha=\mathfrak{g}_{-lpha}\oplus\mathbb{C}h_lpha\oplus\mathfrak{g}_lpha.$$

- From the representation theory of sl(2, C), we know that h_α ∈ End(V) is diagonalizable, with integer eigenvalues.
- Since h is commutative, we obtain

$$V = \bigoplus_{\lambda \in P(V)} V[\lambda].$$

Weight decomposition and weight lattice

▶ Let $\alpha \in R$ and $\lambda \in P(V)$. For any $v \in V[\lambda]$, we have

$$h_{\alpha} \cdot \mathbf{v} = \lambda(h_{\alpha})\mathbf{v} = \frac{2(\alpha, \lambda)}{(\alpha, \alpha)}\mathbf{v}.$$

• Since h_{α} has integer eigenvalues, we get

$$\frac{2(\alpha,\lambda)}{(\alpha,\alpha)} \in \mathbb{Z}$$

for every root $\alpha \in R$, hence $P(V) \subseteq P$.

• If $\Pi = \{\alpha_1, \dots, \alpha_n\}$ are the simple roots, then

$$P = \Big\{ \lambda \in \mathfrak{h}^* \Big| \frac{2(\alpha_i, \lambda)}{(\alpha_i, \alpha_i)} \in \mathbb{Z} \text{ for } i = 1, \dots, n \Big\}.$$

Therefore P is indeed a lattice in E.

Example: weight lattice of $\mathfrak{sl}(3,\mathbb{C})$

For the Lie algebra $\mathfrak{sl}(3,\mathbb{C})$, we had

$$\frac{2(\alpha_1,\alpha_2)}{(\alpha_1,\alpha_1)} = \frac{2(\alpha_1,\alpha_2)}{(\alpha_2,\alpha_2)} = -1.$$

The weight lattice *P* is the set of vectors $x\alpha_1 + y\alpha_2$ with

$$\frac{2x(\alpha_1,\alpha_1)+2y(\alpha_1,\alpha_2)}{(\alpha_1,\alpha_1)} = 2x - y \in \mathbb{Z}$$
$$\frac{2x(\alpha_2,\alpha_1)+2y(\alpha_2,\alpha_2)}{(\alpha_2,\alpha_2)} = 2y - x \in \mathbb{Z}$$

It follows that $x, y \in \frac{1}{3}\mathbb{Z}$.

Example: weight lattice of $\mathfrak{sl}(3,\mathbb{C})$

Weight spaces and the Weyl group

Theorem

Let V be a finite-dimensional representation of \mathfrak{g} . Then

$$\dim V[\lambda] = \dim V[w(\lambda)]$$

for every element $w \in W$ of the Weyl group.

Example

In the case of $\mathfrak{sl}(2,\mathbb{C})$, the Weyl group has two elements that act as ± 1 on $E \cong \mathbb{R}$; this explains why

 $\dim V[n] = \dim V[-n].$

Weight spaces and the Weyl group Proof:

- W is generated by the simple reflections s₁,..., s_n, corresponding to the simple roots Π = {α₁,..., α_n}.
- We may therefore assume that $w = s_i$. Now

$$w(\lambda) = \lambda - n\alpha_i,$$

where $n = 2(\alpha_i, \lambda)/(\alpha_i, \alpha_i) \in \mathbb{Z}$.

- Consider V as a representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha_i} = \langle e_i, f_i, h_i \rangle$.
- As a representation of sl(2, C), the subspace V[λ] has weight *n*, and the subspace V[λ − nα_i] has weight −*n*.
- ▶ From the representation theory of sl(2, C), we know that

$$f_i^n \colon V[\lambda] \to V[\lambda - n\alpha_i]$$
 and $e_i^n \colon V[\lambda - n\alpha_i] \to V[\lambda]$

are isomorphisms.

• This gives dim $V[\lambda] = \dim V[w(\lambda)]$.

Highest weight representations

Recall that a choice of polarization $R = R_+ \sqcup R_-$ of the root system gives us a decomposition

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$$

into \mathfrak{h} and the two nilpotent subalgebras $\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in R_{\pm}} \mathfrak{g}_{\alpha}.$

Definition

A nonzero representation V of \mathfrak{g} is called a highest weight representation if it is generated by a vector $v \in V[\lambda]$ with

$$x \cdot v = 0$$
 for all $x \in \mathfrak{n}_+$.

In this case, v is called the highest weight vector.

Highest weight representations

Theorem

Every irreducible finite-dimensional representation of \mathfrak{g} is a highest weight representation.

Proof:

- Choose $\lambda \in P(V)$ such that $\lambda + \alpha \notin P(V)$ for all $\alpha \in R_+$.
- This exists: take h ∈ 𝔥 such that α(h) > 0 for all α ∈ R₊, and then choose λ ∈ P(V) such that λ(h) is maximal.
- Let $v \in V[\lambda]$ be a nonzero vector.
- Since $\lambda + \alpha \notin P(V)$, we have $x \cdot v = 0$ for every $x \in \mathfrak{n}_+$.
- The subrepresentation generated by v is a highest weight representation; by irreducibility, it must be all of V.

Goal: Construct all highest weight representations.

Let V be a highest weight representation, $v \in V[\lambda]$. Then

$$h \cdot v = \lambda(h)v$$
 for all $h \in \mathfrak{h}$,
 $x \cdot v = 0$ for all $x \in \mathfrak{n}_+$.

Consider the "universal highest weight representation" M_{λ} , generated by a vector v_{λ} that satisfies the two relations above. Using the universal enveloping algebra, we can define

$$M_{\lambda} = U \mathfrak{g} / I_{\lambda},$$

where I_{λ} is the left ideal generated by the elements $x \in \mathfrak{n}_+$ and $h - \lambda(h)$, for $h \in \mathfrak{h}$. This is called the Verma module.

Recall that representations of the Lie algebra \mathfrak{g} are the same thing as left modules over the universal enveloping algebra $U\mathfrak{g}$.

- The Verma module M_{λ} is a representation of \mathfrak{g} .
- We will see in a moment that dim $M_{\lambda} = \infty$.

Verma modules are universal in the following sense.

Lemma

If V is a highest weight representation of highest weight λ , then one has

$$V\cong M_\lambda/W$$

for some submodule $W \subseteq M_{\lambda}$.

Understanding highest weight representations is therefore equivalent to understanding submodules of Verma modules.

Here is an alternative construction of M_{λ} . The subalgebra

$$\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$$

is solvable; it is called the Borel subalgebra.

The relations above give a representation $\rho \colon \mathfrak{b} \to \mathsf{End}(\mathbb{C})$, with

$$egin{aligned} &
ho(h) = \lambda(h) & ext{for all } h \in \mathfrak{h}, \ &
ho(x) = 0 & ext{for all } x \in \mathfrak{n}_+. \end{aligned}$$

Denote this representation by the symbol \mathbb{C}_{λ} . Then

$$M_{\lambda}\cong U\mathfrak{g}\otimes_{U\mathfrak{b}}\mathbb{C}_{\lambda},$$

where the tensor product is over the subalgebra $U\mathfrak{b} \subseteq U\mathfrak{g}$.

Theorem

Let $\lambda \in \mathfrak{h}^*$, and let M_{λ} be the Verma module.

1. The multiplication map

$$U\mathfrak{n}_{-} \to M_{\lambda}, \quad u \mapsto uv_{\lambda},$$

- is an isomorphism of vector spaces.
- 2. M_{λ} has a weight decomposition

$$M_{\lambda} = \bigoplus_{\mu} M_{\lambda}[\mu]$$

with finite-dimensional weight spaces $M_{\lambda}[\mu]$.

3.
$$P(M_{\lambda}) = \lambda - Q_{+} = \lambda - \left\{ \sum_{i=1}^{n} k_{i}\alpha_{i} \mid k_{1}, \dots, k_{n} \in \mathbb{N} \right\}$$

4. One has $M_{\lambda}[\lambda] = 1$.

Proof:

- ▶ Poincaré-Birkhoff-Witt theorem: g embeds into Ug, and if x₁,..., x_d is an ordered basis for g, then the monomials x₁^{a₁} ··· x_d^{a_d} form a basis for Ug.
- Since $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{b}$, it follows that

$$U\mathfrak{g}\cong U\mathfrak{n}_-\otimes_\mathbb{C} U\mathfrak{b}$$

as left $U\mathfrak{n}_-$ -modules (and right $U\mathfrak{b}$ -modules).

Using the alternative description of the Verma module,

$$M_{\lambda} \cong U\mathfrak{g} \otimes_{U\mathfrak{b}} \mathbb{C}_{\lambda} \cong (U\mathfrak{n}_{-} \otimes_{\mathbb{C}} U\mathfrak{b}) \otimes_{U\mathfrak{b}} \mathbb{C}_{\lambda}$$
$$\cong U\mathfrak{n}_{-} \otimes_{\mathbb{C}} \mathbb{C}_{\lambda}.$$

This implies (1); the other claims follow easily.

Highest weight representations

Corollary

Let V be a highest weight representation of highest weight λ .

1. The multiplication map

$$U\mathfrak{n}_{-} \to V, \quad u \mapsto uv_{\lambda},$$

is surjective.

2. V admits a weight decomposition

$$V = igoplus_{\mu \in \lambda - \mathcal{Q}_+} V[\mu]$$

with finite-dimensional weight spaces $V[\mu]$.

- 3. One has dim $V[\lambda] = 1$.
- 4. The highest weight is unique, and the highest weight vector is unique up to rescaling.

Highest weight representations Proof:

- We have $V \cong M_{\lambda}/W$ for a submodule $W \subseteq M_{\lambda}$.
- Therefore (1) and (2) follow from the theorem about M_{λ} .
- For the same reason, dim $V[\lambda] \leq 1$.
- Since V is a highest weight representation, it is a generated by a highest weight vector v ∈ V[λ].
- Therefore $V[\lambda] = \mathbb{C}v$, and v is unique up to scaling.
- If λ' was another highest weight, then

$$\lambda'\in\lambda-{\it Q}_+\quad\text{and}\quad\lambda\in\lambda'-{\it Q}_+.$$

• Therefore $\lambda' - \lambda$ and $\lambda - \lambda'$ belong to

$$Q_+ = \Big\{ \sum_{i=1}^n k_i \alpha_i \ \Big| \ k_1, \ldots, k_n \in \mathbb{N} \Big\},\$$

and so $\lambda' = \lambda$.