Representations of $\mathfrak{sl}(2,\mathbb{C})$ and semisimple/nilpotent elements

MAT 552

April 8, 2020

Topic 1: Representation theory of $\mathfrak{sl}(2,\mathbb{C})$

In the first half of today's class, we are going to describe all finite-dimensional representations of $\mathfrak{sl}(2,\mathbb{C})$:

- an interesting example
- needed for the study of arbitrary semisimple Lie algebras
- shows up in many other parts of mathematics

Recall that $\mathfrak{sl}(2,\mathbb{C})$ is generated by

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

They satisfy the relations

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

Complete reducibility

Recall that $\mathfrak{sl}(2,\mathbb{C})$ is a simple Lie algebra, hence semisimple.

By the theorem from last time, every finite-dimensional representation is completely reducible (= a direct sum of irreducible representations).

So we only need to understand the irreducible representations.

Example

The standard representation on \mathbb{C}^2 is irreducible. The adjoint representation is irreducible (of dimension 3).

We will see that, for every $n \ge 0$, there is a unique irreducible representation of dimension n + 1 (up to isomorphism).

Let V be a finite-dimensional irreducible representation.

The key idea is to look at the eigenspaces of $h \in \text{End}(V)$. For any $\lambda \in \mathbb{C}$, define

$$V[\lambda] = \{ v \in V \mid hv = \lambda v \}.$$

Lemma

We have
$$e \cdot V[\lambda] \subseteq V[\lambda+2]$$
 and $f \cdot V[\lambda] \subseteq V[\lambda-2]$.

Indeed, suppose that $hv = \lambda v$. Then

$$\begin{split} h(ev) &= e(hv) + [h, e]v = e(\lambda v) + 2ev = (\lambda + 2)ev, \\ h(fv) &= f(hv) + [h, f]v = f(\lambda v) - 2fv = (\lambda - 2)fv. \end{split}$$

Let V be a finite-dimensional irreducible representation.

Let $v \in V[\lambda]$ be a nonzero eigenvector with Re λ maximal. Since $ev \in V[\lambda + 2]$, we must have ev = 0.

Consider the sequence of vectors

$$v_0 = v$$
, $v_1 = fv$, $v_2 = \frac{f^2 v}{2!}$, $v_3 = \frac{f^3 v}{3!}$,...

Clearly $v_k \in V[\lambda - 2k]$.

Lemma

We have $fv_k = (k + 1)v_{k+1}$ and $ev_k = (\lambda - k + 1)v_{k-1}$.

Here $v_{-1} = 0$ for convenience.

Proof of the lemma

Lemma

We have
$$fv_k = (k + 1)v_{k+1}$$
 and $ev_k = (\lambda - k + 1)v_{k-1}$.

The first half is clear:

$$fv_k = rac{f^{k+1}v}{k!} = (k+1)rac{f^{k+1}v}{(k+1)!} = (k+1)v_{k+1}$$

The second half is proved by induction on $k \ge 0$:

$$ev_{k+1} = \frac{efv_k}{k+1} = \frac{fev_k + [e, f]v_k}{k+1} = \frac{f(ev_k) + hv_k}{k+1}$$

By induction, $ev_k = (\lambda - k + 1)v_{k-1}$; also $hv_k = (\lambda - 2k)v_k$.

Proof of lemma

Lemma

We have
$$fv_k = (k + 1)v_{k+1}$$
 and $ev_k = (\lambda - k + 1)v_{k-1}$.

Therefore

$$ev_{k+1} = rac{(\lambda - k + 1)fv_{k-1} + (\lambda - 2k)v_k}{k+1} \ = rac{(\lambda - k + 1)kv_k + (\lambda - 2k)v_k}{k+1} \ = rac{\lambda(k+1) - k(k+1)}{k+1}v_k = (\lambda - k)v_k,$$

as required.

Since $v_k \in V[\lambda - 2k]$, the vectors v_k are linearly independent. But V is finite-dimensional, and so $v_k = 0$ for $k \gg 0$.

Let $n \ge 0$ be maximal with $v_n \ne 0$ (and $v_{n+1} = 0$). Then

$$0 = ev_{n+1} = (\lambda - n)v_n$$

implies that $\lambda = n$. In particular, λ is always an integer.

The formulas in the lemma show that

$$\langle v_0, v_1, \ldots, v_n \rangle \subseteq V$$

is a subrepresentation, hence equal to V (by irreducibility). In particular, dim V = n + 1.

Theorem

Up to isomorphism, $\mathfrak{sl}(2,\mathbb{C})$ has a unique irreducible representation of dimension n + 1, for every $n \ge 0$.

Concretely, this representation is given by

$$V = \langle v_0, v_1, \ldots, v_n \rangle,$$

with the action by $\mathfrak{sl}(2,\mathbb{C})$ defined by the following rule:

$$hv_k = (n - 2k)v_k$$

 $fv_k = (k + 1)v_{k+1}$
 $ev_k = (n - k + 1)v_{k-1}$

The vector v_0 is called a vector of highest weight.

Pictorially (with the weights in red):

Note that

$$V = V[n] \oplus V[n-2] \oplus \cdots \oplus V[-n+2] \oplus V[-n].$$

Example

For n = 1, we get the standard representation on \mathbb{C}^2 . For n = 2, we get the adjoint representation on $\mathfrak{sl}(2, \mathbb{C})$.

Finite-dimensional representations

Now let V be an arbitrary finite-dimensional representation.

- ► *V* is a direct sum of irreducible representations.
- The eigenvalues of h are called the weights of the representation. They are all integers.
- We have a weight decomposition

$$V=\bigoplus_{n\in\mathbb{Z}}V[n];$$

e increases weights by 2, and f decreases weights by 2.

For each $n \ge 1$, the endomorphisms

$$f^n \colon V[n] \to V[-n]$$
 and $e^n \colon V[-n] \to V[n]$

are isomorphisms. Hence dim $V[n] = \dim V[-n]$.

Topic 2: Semisimple/nilpotent elements

We want to understand the structure of arbitrary semisimple Lie algebras (and, ultimately, classify them).

- We should use the insights we gained from $\mathfrak{sl}(2,\mathbb{C})$.
- The element h ∈ sl(2, C) is special because of the two relations [h, e] = 2e and [h, f] = −2f.
- These are saying that ad h is diagonal in the basis e, h, f.

Definition

Let \mathfrak{g} be a Lie algebra. An element $x \in \mathfrak{g}$ is called

- semisimple if $\operatorname{ad} x \in \operatorname{End}(\mathfrak{g})$ is semisimple,
- nilpotent if $\operatorname{ad} x \in \operatorname{End}(\mathfrak{g})$ is nilpotent.

Semisimple/nilpotent elements

Definition

Let \mathfrak{g} be a Lie algebra. An element $x \in \mathfrak{g}$ is called

- semisimple if $\operatorname{ad} x \in \operatorname{End}(\mathfrak{g})$ is semisimple,
- nilpotent if ad $x \in \text{End}(\mathfrak{g})$ is nilpotent.

Example

In $\mathfrak{sl}(2,\mathbb{C})$, the element h is semisimple, and e, f are nilpotent.

Example

A matrix $x \in \mathfrak{gl}(n, \mathbb{C})$ is semisimple iff it is diagonalizable.

Now let \mathfrak{g} be a semisimple complex Lie algebra.

Theorem

Every $x \in \mathfrak{g}$ can be uniquely written as

$$x=x_s+x_n,$$

where x_s is semisimple, x_n is nilpotent, and $[x_s, x_n] = 0$. Moreover, if [x, y] = 0 for some $y \in g$, then also $[x_s, y] = 0$.

Uniqueness is easy:

- $x = x_s + x_n$ implies that $\operatorname{ad} x = \operatorname{ad} x_s + \operatorname{ad} x_n$.
- ▶ ad *x_s* is semisimple, ad *x_n* is nilpotent.
- $[\operatorname{ad} x_s, \operatorname{ad} x_n] = \operatorname{ad}[x_s, x_n] = 0$, so they commute.
- ► The Jordan decomposition of ad x is unique (and ad: g → End(g) is injective).

Now we prove existence. Fix an element $x \in \mathfrak{g}$. Let

$$\operatorname{ad} x = (\operatorname{ad} x)_s + (\operatorname{ad} x)_n$$

be the Jordan decomposition of ad $x \in End(\mathfrak{g})$.

- ▶ Initially, $(ad x)_s$ and $(ad x)_n$ are just endomorphisms of g.
- So the point is to show that

$$(\operatorname{ad} x)_s = \operatorname{ad} x_s$$
 and $(\operatorname{ad} x)_n = \operatorname{ad} x_n$

for two elements $x_s, x_n \in \mathfrak{g}$. Let \mathfrak{g}_{λ} be the λ -eigenspace of $(\operatorname{ad} x)_s$. Then

$$\mathfrak{g} = \bigoplus_{\lambda \in \mathbb{C}} \mathfrak{g}_{\lambda},$$

and $(\operatorname{ad} x - \lambda \operatorname{id})^n$ acts trivially on \mathfrak{g}_{λ} for $n \geq \dim \mathfrak{g}_{\lambda}$.

Lemma

We have $[\mathfrak{g}_{\lambda},\mathfrak{g}_{\mu}]\subseteq\mathfrak{g}_{\lambda+\mu}$.

The Jacobi identity gives

$$(\operatorname{\mathsf{ad}} x - \lambda - \mu)[y, z] = [(\operatorname{\mathsf{ad}} x - \lambda)y, z] + [y, (\operatorname{\mathsf{ad}} x - \mu)z]$$

This implies, by induction, that

$$(\operatorname{ad} x - \lambda - \mu)^{n}[y, z] = \sum_{k=0}^{n} {n \choose k} [(\operatorname{ad} x - \lambda)^{k}y, (\operatorname{ad} x - \mu)^{n-k}z].$$

If $y \in \mathfrak{g}_{\lambda}$ and $z \in \mathfrak{g}_{\mu}$, then the right-hand side vanishes once $n \ge \dim \mathfrak{g}_{\lambda} + \dim \mathfrak{g}_{\mu} - 1$. Therefore $[y, z] \in \mathfrak{g}_{\lambda+\mu}$.

Recall the Jordan decomposition $\operatorname{ad} x = (\operatorname{ad} x)_s + (\operatorname{ad} x)_n$. The lemma shows that $(\operatorname{ad} x)_s \in \operatorname{End}(\mathfrak{g})$ is a derivation:

$$(ad x)_{s}[y, z] = [(ad x)_{s} y, z] + [y, (ad x)_{s} z]$$

It is enough to check this for $y \in \mathfrak{g}_{\lambda}$ and $z \in \mathfrak{g}_{\mu}$. Then

$$\begin{split} [(\operatorname{ad} x)_{s} \, y, z] + [y, (\operatorname{ad} x)_{s} \, z] &= [\lambda y, z] + [y, \mu z], \\ (\operatorname{ad} x)_{s} [y, z] &= (\lambda + \mu)[y, z], \end{split}$$

because $[y, z] \in \mathfrak{g}_{\lambda+\mu}$ by the lemma.

We proved earlier that every derivation of a semisimple Lie algebra is an inner derivation: Der(g) = ad(g)

Recall the Jordan decomposition $\operatorname{ad} x = (\operatorname{ad} x)_s + (\operatorname{ad} x)_n$. Conclusion:

- There is a unique $x_s \in \mathfrak{g}$ with $(\operatorname{ad} x)_s = \operatorname{ad} x_s$.
- Since $(ad x)_s$ is semisimple, x_s is a semisimple element.
- It follows that $(ad x)_n = ad x_n$, where $x_n = x x_s$.
- Since $(ad x)_n$ is nilpotent, x_n is a nilpotent element.
- From $\operatorname{ad}[x_s, x_n] = [\operatorname{ad} x_s, \operatorname{ad} x_n] = 0$, we get $[x_s, x_n] = 0$.

Suppose that [x, y] = 0 for some $y \in \mathfrak{g}$.

- ▶ We have ad x.y = 0.
- Therefore ad $x_s.y = (ad x)_s y = 0$.
- This means that $[x_s, y] = 0$.

One consequence of the generalized Jordan decomposition is that every semisimple complex Lie algebra contains nonzero semisimple elements:

- Suppose that every semisimple element $x \in \mathfrak{g}$ is zero.
- By the theorem, every $x \in \mathfrak{g}$ is nilpotent.
- Consequently, ad x is nilpotent for every $x \in \mathfrak{g}$.
- ▶ By Engel's theorem, g is nilpotent, hence solvable.
- ► This contradicts the fact that g is semisimple.