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Topic 1: Representation theory of sl(2,C)
In the first half of today’s class, we are going to describe all
finite-dimensional representations of sl(2,C):

I an interesting example
I needed for the study of arbitrary semisimple Lie algebras
I shows up in many other parts of mathematics

Recall that sl(2,C) is generated by

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

They satisfy the relations

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.



Complete reducibility

Recall that sl(2,C) is a simple Lie algebra, hence semisimple.

By the theorem from last time, every finite-dimensional
representation is completely reducible (= a direct sum of
irreducible representations).

So we only need to understand the irreducible representations.

Example
The standard representation on C2 is irreducible.
The adjoint representation is irreducible (of dimension 3).

We will see that, for every n ≥ 0, there is a unique irreducible
representation of dimension n + 1 (up to isomorphism).



Irreducible representations
Let V be a finite-dimensional irreducible representation.

The key idea is to look at the eigenspaces of h ∈ End(V ).
For any λ ∈ C, define

V [λ] =
{

v ∈ V
∣∣∣ hv = λv

}
.

Lemma
We have e · V [λ] ⊆ V [λ+ 2] and f · V [λ] ⊆ V [λ− 2].

Indeed, suppose that hv = λv . Then

h(ev) = e(hv) + [h, e]v = e(λv) + 2ev = (λ+ 2)ev ,
h(fv) = f (hv) + [h, f ]v = f (λv)− 2fv = (λ− 2)fv .



Irreducible representations

Let V be a finite-dimensional irreducible representation.

Let v ∈ V [λ] be a nonzero eigenvector with Reλ maximal.
Since ev ∈ V [λ+ 2], we must have ev = 0.

Consider the sequence of vectors

v0 = v , v1 = fv , v2 =
f 2v
2! , v3 =

f 3v
3! , . . .

Clearly vk ∈ V [λ− 2k].

Lemma
We have fvk = (k + 1)vk+1 and evk = (λ− k + 1)vk−1.

Here v−1 = 0 for convenience.



Proof of the lemma

Lemma
We have fvk = (k + 1)vk+1 and evk = (λ− k + 1)vk−1.

The first half is clear:

fvk =
f k+1v

k! = (k + 1) f k+1v
(k + 1)! = (k + 1)vk+1

The second half is proved by induction on k ≥ 0:

evk+1 =
efvk

k + 1 =
fevk + [e, f ]vk

k + 1 =
f (evk) + hvk

k + 1

By induction, evk = (λ− k + 1)vk−1; also hvk = (λ− 2k)vk .



Proof of lemma

Lemma
We have fvk = (k + 1)vk+1 and evk = (λ− k + 1)vk−1.

Therefore

evk+1 =
(λ− k + 1)fvk−1 + (λ− 2k)vk

k + 1

=
(λ− k + 1)kvk + (λ− 2k)vk

k + 1

=
λ(k + 1)− k(k + 1)

k + 1 vk = (λ− k)vk ,

as required.



Irreducible representations

Since vk ∈ V [λ− 2k], the vectors vk are linearly independent.
But V is finite-dimensional, and so vk = 0 for k � 0.

Let n ≥ 0 be maximal with vn 6= 0 (and vn+1 = 0). Then

0 = evn+1 = (λ− n)vn

implies that λ = n. In particular, λ is always an integer.

The formulas in the lemma show that

〈v0, v1, . . . , vn〉 ⊆ V

is a subrepresentation, hence equal to V (by irreducibility).

In particular, dimV = n + 1.



Irreducible representations

Theorem
Up to isomorphism, sl(2,C) has a unique irreducible
representation of dimension n + 1, for every n ≥ 0.

Concretely, this representation is given by

V = 〈v0, v1, . . . , vn〉,

with the action by sl(2,C) defined by the following rule:

hvk = (n − 2k)vk

fvk = (k + 1)vk+1

evk = (n − k + 1)vk−1

The vector v0 is called a vector of highest weight.



Irreducible representations
Pictorially (with the weights in red):

v0 v1 v2 · · · vn−1 vn

n n − 2 n − 4 −n + 2 −n

f

e

f

e

f

e

f

e

f

e

Note that

V = V [n]⊕ V [n − 2]⊕ · · · ⊕ V [−n + 2]⊕ V [−n].

Example
For n = 1, we get the standard representation on C2.
For n = 2, we get the adjoint representation on sl(2,C).



Finite-dimensional representations
Now let V be an arbitrary finite-dimensional representation.

I V is a direct sum of irreducible representations.
I The eigenvalues of h are called the weights of the

representation. They are all integers.
I We have a weight decomposition

V =
⊕
n∈Z

V [n];

e increases weights by 2, and f decreases weights by 2.
I For each n ≥ 1, the endomorphisms

f n : V [n]→ V [−n] and en : V [−n]→ V [n]

are isomorphisms. Hence dimV [n] = dimV [−n].



Topic 2: Semisimple/nilpotent elements

We want to understand the structure of arbitrary semisimple
Lie algebras (and, ultimately, classify them).

I We should use the insights we gained from sl(2,C).
I The element h ∈ sl(2,C) is special because of the two

relations [h, e] = 2e and [h, f ] = −2f .
I These are saying that ad h is diagonal in the basis e, h, f .

Definition
Let g be a Lie algebra. An element x ∈ g is called

I semisimple if ad x ∈ End(g) is semisimple,
I nilpotent if ad x ∈ End(g) is nilpotent.



Semisimple/nilpotent elements

Definition
Let g be a Lie algebra. An element x ∈ g is called

I semisimple if ad x ∈ End(g) is semisimple,
I nilpotent if ad x ∈ End(g) is nilpotent.

Example
In sl(2,C), the element h is semisimple, and e, f are nilpotent.

Example
A matrix x ∈ gl(n,C) is semisimple iff it is diagonalizable.



Generalized Jordan decomposition
Now let g be a semisimple complex Lie algebra.

Theorem
Every x ∈ g can be uniquely written as

x = xs + xn,

where xs is semisimple, xn is nilpotent, and [xs , xn] = 0.
Moreover, if [x , y ] = 0 for some y ∈ g, then also [xs , y ] = 0.

Uniqueness is easy:
I x = xs + xn implies that ad x = ad xs + ad xn.
I ad xs is semisimple, ad xn is nilpotent.
I [ad xs , ad xn] = ad[xs , xn] = 0, so they commute.
I The Jordan decomposition of ad x is unique (and

ad : g→ End(g) is injective).



Generalized Jordan decomposition
Now we prove existence. Fix an element x ∈ g. Let

ad x = (ad x)s + (ad x)n

be the Jordan decomposition of ad x ∈ End(g).
I Initially, (ad x)s and (ad x)n are just endomorphisms of g.
I So the point is to show that

(ad x)s = ad xs and (ad x)n = ad xn

for two elements xs , xn ∈ g.
Let gλ be the λ-eigenspace of (ad x)s . Then

g =
⊕
λ∈C

gλ,

and (ad x − λ id)n acts trivially on gλ for n ≥ dim gλ.



Generalized Jordan decomposition

Lemma
We have [gλ, gµ] ⊆ gλ+µ.

The Jacobi identity gives

(ad x − λ− µ)[y , z ] = [(ad x − λ)y , z ] + [y , (ad x − µ)z ].

This implies, by induction, that

(ad x − λ− µ)n[y , z ] =
n∑

k=0

(
n
k

)
[(ad x − λ)ky , (ad x − µ)n−kz ].

If y ∈ gλ and z ∈ gµ, then the right-hand side vanishes once
n ≥ dim gλ + dim gµ − 1. Therefore [y , z ] ∈ gλ+µ.



Generalized Jordan decomposition

Recall the Jordan decomposition ad x = (ad x)s + (ad x)n.

The lemma shows that (ad x)s ∈ End(g) is a derivation:

(ad x)s [y , z ] = [(ad x)s y , z ] + [y , (ad x)s z ]

It is enough to check this for y ∈ gλ and z ∈ gµ. Then

[(ad x)s y , z ] + [y , (ad x)s z ] = [λy , z ] + [y , µz ],
(ad x)s [y , z ] = (λ+ µ)[y , z ],

because [y , z ] ∈ gλ+µ by the lemma.

We proved earlier that every derivation of a semisimple Lie
algebra is an inner derivation: Der(g) = ad(g)



Generalized Jordan decomposition

Recall the Jordan decomposition ad x = (ad x)s + (ad x)n.

Conclusion:
I There is a unique xs ∈ g with (ad x)s = ad xs .
I Since (ad x)s is semisimple, xs is a semisimple element.
I It follows that (ad x)n = ad xn, where xn = x − xs .
I Since (ad x)n is nilpotent, xn is a nilpotent element.
I From ad[xs , xn] = [ad xs , ad xn] = 0, we get [xs , xn] = 0.

Suppose that [x , y ] = 0 for some y ∈ g.
I We have ad x .y = 0.
I Therefore ad xs .y = (ad x)s y = 0.
I This means that [xs , y ] = 0.



Existence of semisimple elements

One consequence of the generalized Jordan decomposition is
that every semisimple complex Lie algebra contains nonzero
semisimple elements:

I Suppose that every semisimple element x ∈ g is zero.
I By the theorem, every x ∈ g is nilpotent.
I Consequently, ad x is nilpotent for every x ∈ g.
I By Engel’s theorem, g is nilpotent, hence solvable.
I This contradicts the fact that g is semisimple.


