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Brief review: the classification
Last time, we proved the following theorem.

Theorem
The Dynkin diagram of an irreducible root system is always
one of the following diagrams:

An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
∑n

i=1 vi. It is clear
that v "= 0, since the vectors v1, v2, . . . , vn are linearly independent. Then

0 < 〈v, v〉 =
n∑

i=1

〈vi, vi〉 +
∑

i<j

2 〈vi, vj〉 = n +
∑

i<j

2 〈vi, vj〉 .

If the vertices vi and vj are connected, then 2 〈vi, vj〉 ∈
{
−1,−

√
2,−

√
3
}
.

In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i "= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
an orthonormal set and we can express c as follows:

c =

k∑

i=0

〈c, vi〉 vi.

Since c is a unit vector, 〈c, c〉 =
∑k

i=0 〈c, vi〉2 = 1. But 〈c, v0〉 "= 0, thus

k∑

i=1

4 〈c, vi〉2 < 4. (4)
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Brief review: Dynkin diagrams

Let R be an irreducible root system, with basis Π ⊆ R .

The Dynkin diagram of R is constructed as follows:
I It has one vertex for every simple root α ∈ Π.
I Every pair of vertices α, β ∈ Π is connected by

nα,β · nβ,α = 4 cos2 θ ∈ {0, 1, 2, 3}

distinct edges.
I Each multiple edge has an arrow that points

towards the shorter root.

We saw last time that the Dynkin diagram determines the root
system (up to isomorphism).



Brief review: examples in rank 2

The three irreducible root systems of rank 2:

A2

Dynkin diagram:

B2

Dynkin diagram:
An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2
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The classical Lie algebras
The Dynkin diagrams of type An, Bn, Cn, and Dn correspond
to the classical Lie algebras:

I An is the root system of sl(n + 1,C)

I Bn is the root system of so(2n + 1,C)

I Cn is the root system of sp(n,C)

I Dn is the root system of so(2n,C)

Some of the diagrams for small n are the same; this reflects
“accidental” isomorphisms among some of the Lie algebras.

Example
The Dynkin diagrams of type A3,D3 are the same. The reason
is the isomorphism of Lie algebras (both 15-dimensional)

sl(4,C) ∼= so(6,C).



Example: sl(4,C) ∼= so(6,C)
Recall the definitions of the two Lie algebras:

I sl(4,C) are 4× 4-matrices x with tr x = 0.
I so(6,C) are 6× 6-matrices y with y + y t = 0.

Both are clearly 15-dimensional.

The isomorphism comes from the 6-dimensional V =
∧2 C4.

I The isomorphism det :
∧4 C4 → C defines a pairing

V ⊗ V → C, v ⊗ w 7→ det(v ∧ w).

I This is symmetric and nondegenerate.
I The action by sl(4,C) defines a morphism of Lie algebras

sl(4,C)→ so(6,C).

I This is injective, hence an isomorphism by dimension.



Example: so(2n,C)

Let us compute the root system in the example so(2n,C).
This is the Lie algebra of 2n × 2n-matrices y with y t + y = 0.

The subalgebra of block-diagonal matrices of the form
H1

H2
. . .

Hn

 , Hi =

(
0 hi
−hi 0

)
,

is a Cartan subalgebra (of dimension n).



Example: so(2n,C)
An alternative description of so(2n,C) is

g =
{
x ∈ gl(2n,C)

∣∣∣ Kx + x tK = 0
}
,

where K is the block matrix of size 2n × 2n given by

K =

(
0 In
In 0

)
.

The isomorphism takes x ∈ g to the matrix Kx ∈ so(2n,C)
(which is skew-symmetric since (Kx)t = x tK = −Kx).

In this description, the Cartan subalgebra is

h =
{
diag(h1, . . . , hn,−h1, . . . ,−hn)

∣∣∣ h1, . . . , hn ∈ C
}
.



Example: so(2n,C)
The diagonal entries give us linear functionals

ei : h→ C, diag(h1, . . . , hn,−h1, . . . , hn) 7→ hi .

In this basis, the Killing form is a multiple of the bilinear form

(ei , ej) = δi ,j .

Recall the following matrices:

Ei ,j =

 1

 i-th row

j-th column



Example: so(2n,C)
The root subspaces are easily computed:

I gei−ej = C(Ei ,j − Ej+n,i+n)

I gei+ej = C(Ei ,j+n − Ej,i+n)

I g−ei−ej = C(Ei+n,j − Ej+n,i)

For instance, if h = diag(h1, . . . , hn,−h1, . . . , hn), then

[h,Ei ,j − Ej+n,i+n] = (hi − hj)Ei ,j − (−hj + hi)Ej+n,i+n

= (hi − hj)(Ei ,j − Ej+n,i+n)

=
(
ei(h)− ej(h)

)
· (Ei ,j − Ej+n,i+n).

The root system is therefore

R =
{
±ei ± ej

∣∣∣ i 6= j
}
,

with signs chosen independently. There are 2n(n − 1) roots.



Example: so(2n,C)

A natural choice of polarization is

R+ =
{
ei ± ej

∣∣∣ i < j
}
.

The set of simple roots is Π = {α1, . . . , αn}:

α1 = e1 − e2

α2 = e2 − e3
...

αn−1 = en−1 − en

αn = en−1 + en



Example: so(2n,C)
This gives us the picture of the Dynkin diagram:

An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.
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Indeed, for 1 ≤ i < j ≤ n − 1, we have

(αi , αj) = (ei − ei+1, ej − ej+1) =

−1 if j = i + 1,
0 otherwise.

The branching at αn−2 comes from the fact that

(αn−2, αn) = (en−2 − en−1, en−1 + en) = −1
(αn−1, αn) = (en−1 − en, en−1 + en) = 0.



Brief review: root decomposition
Goal: Classify (semi-)simple complex Lie algebras

Recall how we got from Lie algebras to Dynkin diagrams:
I Let g be a semisimple complex Lie algebra.
I Choose a Cartan subalgebra h ⊆ g.
I It determines the root decomposition

g = h⊕
⊕
α∈R

gα

I The subspaces

gα =
{
x ∈ g

∣∣∣ [h, x ] = α(h)x for all h ∈ h
}

are the root root subspaces (with g0 = h).
I The set R ⊆ h∗ is the root system of g.



Brief review: root decomposition
We have classified the possible root systems. The question is
to what extent the root system R determines the Lie algebra g.

Recall the following facts about the root subspaces:
1. For each root α ∈ R , one has dim gα = 1.
2. If α, β ∈ R , then [gα, gβ] = gα+β.
3. For α ∈ R , there is a distinguished element hα ∈ h with

β(hα) =
2(α, β)

(α, α)
for all β ∈ h∗.

4. For α ∈ R , the subspace

sl(2,C)α = gα ⊕ Chα ⊕ g−α

is a subalgebra of g isomorphic to sl(2,C).



Example: the root system of type G2

α1 + α2

α1 + 2α2α2

α1

2α1 + 3α2

α1 + 3α2



The Serre relations
Let g be a semisimple complex Lie algebra. Key data:

I a non-degenerate invariant symmetric bilinear form
(−,−), for example the Killing form

I a Cartan subalgebra h

I the root system R ⊆ h∗

I a polarization R = R+ t R−
I the set of simple roots Π = {α1, . . . , αn}

Theorem 1
As a vector space, g = n− ⊕ h⊕ n+, and the two subspaces

n± =
⊕
α∈R±

gα

are subalgebras of g.



The Serre relations

Theorem 1
As a vector space, g = n− ⊕ h⊕ n+, and the two subspaces

n± =
⊕
α∈R±

gα

are subalgebras of g.

Proof:
I The first part is just the root decomposition.
I We have [gα, gβ] ⊆ gα+β.
I If α ∈ R+ and β ∈ R+, then α + β ∈ R+.
I Therefore n+ is a subalgebra.
I Similarly for n−.



The Serre relations
For each simple root αi ∈ Π, set hi = hαi ∈ h. Then

g−αi ⊕ Chi ⊕ gαi

is a subalgebra isomorphic to sl(2,C). Choosing ei ∈ gαi and
fi ∈ g−αi so that (ei , fi) = 2/(αi , αi), we get the relations

[hi , ei ] = 2ei , [hi , fi ] = −2fi , [ei , fi ] = hi .

Theorem 2
As a Lie algebra, g is generated by {ei , fi , hi}i=1,...,r . In fact:
1. The elements e1, . . . , en generate n+.
2. The elements f1, . . . , fn generate n−.
3. The elements h1, . . . , hn are a basis of h.



The Serre relations

Theorem 2
As a Lie algebra, g is generated by {ei , fi , hi}i=1,...,r . In fact:
1. The elements e1, . . . , en generate n+.
2. The elements f1, . . . , fn generate n−.
3. The elements h1, . . . , hn are a basis of h.

Proof:
I (3) holds because Π is a basis for h∗.
I Since dim gα = 1, we have gαi = Cei .
I For any two roots α, β ∈ R , we have [gα, gβ] = gα+β.
I Now (1) follows, because every positive root can be

written as a finite sum of simple roots.
I A similar argument proves (2).



The Serre relations

For two simple roots αi , αj ∈ Π, we have the integer

ai ,j = nαj ,αi = αj(hi) ∈ Z.

We have ai ,i = 2, and ai ,j ∈ {0,−1,−2,−3} if i 6= j .

Theorem 3
The elements {ei , fi , hi}i=1,...,n satisfy the following relations:
1. [hi , hj ] = 0
2. [hi , ej ] = ai ,jej and [hi , fj ] = −ai ,j fj
3. [ei , fj ] = δi ,jhi

4. (ad ei)
1−ai,jej = 0 and (ad fi)1−ai,j fj = 0, for i 6= j

The relations in the theorem are known as the Serre relations.



The Serre relations

Theorem 3
The elements {ei , fi , hi}i=1,...,n satisfy the following relations:
1. [hi , hj ] = 0
2. [hi , ej ] = ai ,jej and [hi , fj ] = −ai ,j fj

Proof:
I (1) is clear: the Cartan subalgebra h is commutative.
I Since ej ∈ gαj , we have

[hi , ej ] = αj(hi)ej = ai ,jej .

I Similarly for fj ∈ g−αj , and so (2) holds.



The Serre relations
Theorem 3
The elements {ei , fi , hi}i=1,...,n satisfy the following relations:
3. [ei , fj ] = δi ,jhi

Proof:
I (3) holds when i = j , because

[ei , fi ] = (ei , fi)Hαi =
2

(αi , αi)
Hαi = hαi = hi .

I When i 6= j , we have [ei , fj ] ∈ gαi−αj .
I But gαi−αj = {0} because αi − αj 6∈ R .
I Otherwise, either αi − αj ∈ R+ or αj − αi ∈ R+, and

both contradict αi and αj being simple.
I So (3) holds in general.



The Serre relations
Theorem 3
The elements {ei , fi , hi}i=1,...,n satisfy the following relations:
4. (ad ei)

1−ai,jej = 0 and (ad fi)1−ai,j fj = 0, for i 6= j

Proof:
I To prove (4), consider the subspace⊕

k∈Z
g−αj+kαi ⊆ g

as a representation of sl(2,C)αi = 〈ei , fi , hi〉.
I By (3), ad ei .fj = 0, so fj is a highest-weight vector.
I By (2), ad hi .fj = −ai ,j fj , so fj has weight w = −ai ,j .
I Thus (ad fi)1−ai,j fj = 0, because −w − 2 is not a weight

in an irreducible representation of highest weight w .
I The other half is proved similarly.



The Serre relations
In fact, one can prove the following theorem.

Theorem
Let R be an irreducible root system of rank n with polarization
R = R+ t R− and simple roots Π = {α1, . . . , αn}.

Let g(R) be the complex Lie algebra with 3n generators
{ei , fi , hi}i=1,...,n, subject to the Serre relations:
1. [hi , hj ] = 0
2. [hi , ej ] = ai ,jej and [hi , fj ] = −ai ,j fj
3. [ei , fj ] = δi ,jhi

4. (ad ei)
1−ai,jej = 0 and (ad fi)1−ai,j fj = 0, for i 6= j

Then g(R) is a finite-dimensional simple Lie algebra whose
root system is the given root system R.



The Serre relations
Corollary
Simple finite-dimensional complex Lie algebras are classified by
the Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4, and G2.
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(n ≥ 1)
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(n ≥ 2)

Cn

(n ≥ 3)

Dn
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E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
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that v "= 0, since the vectors v1, v2, . . . , vn are linearly independent. Then
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3
}
.

In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i "= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
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Example: the root system of type G2

α1 + α2

α1 + 2α2α2

α1

2α1 + 3α2

α1 + 3α2



Example: the root system of type G2

Let us consider the example of G2. The integers ai ,j are:

a1,1 = a2,2 = 2, a1,2 = −1, a2,1 = −3.

The corresponding Lie algebra has dimension 14. In

g = n− ⊕ h⊕ n+,

we have dim h = 2 and dim n± = 6.

The theorem tells us that n+ is generated (as a Lie algebra) by
two elements e1, e2, subject to the two Serre relations

(ad e1)2e2 = 0 and (ad e2)4e1 = 0.

(The picture for n− is similar.)



Example: the root system of type G2

[e2, e1]

[e2, [e2, e1]]e2

e1

[[[e2, e1], e2], [e2, e1]]

[e2, [e2, [e2, e1]]]



Example: the root system of type G2

The picture of the root system shows how

sl(2,C)α1 = 〈e1, f1, h1〉
sl(2,C)α2 = 〈e2, f2, h2〉

act on the Lie algebra g. The irreducible subrepresentations
correspond to strings of roots.

The weight of the root subspace gα with respect to ad h2 is

α(h2) = (c1α1+c2α2)(h2) = c1α1(h2)+c2α2(h2) = −3c1+2c2,

writing α = c1α1 + c2α2.



Example: the root system of type G2

ad e2

−1

12

−3

0

3

1

−1 −2

3

0

−3


