Root systems and semisimple complex Lie algebras

MAT 552

April 29, 2020

Brief review: the classification

Last time, we proved the following theorem.

Theorem

The Dynkin diagram of an irreducible root system is always one of the following diagrams:

Brief review: Dynkin diagrams

Let *R* be an irreducible root system, with basis $\Pi \subseteq R$.

The Dynkin diagram of R is constructed as follows:

- It has one vertex for every simple root $\alpha \in \Pi$.
- Every pair of vertices $\alpha, \beta \in \Pi$ is connected by

$$n_{lpha,eta} \cdot n_{eta,lpha} = 4\cos^2 heta \in \{0, 1, 2, 3\}$$

distinct edges.

 Each multiple edge has an arrow that points towards the shorter root.

We saw last time that the Dynkin diagram determines the root system (up to isomorphism).

Brief review: examples in rank 2

The three irreducible root systems of rank 2:

The classical Lie algebras

The Dynkin diagrams of type A_n , B_n , C_n , and D_n correspond to the classical Lie algebras:

- A_n is the root system of $\mathfrak{sl}(n+1,\mathbb{C})$
- B_n is the root system of $\mathfrak{so}(2n+1,\mathbb{C})$
- C_n is the root system of $\mathfrak{sp}(n,\mathbb{C})$
- D_n is the root system of $\mathfrak{so}(2n,\mathbb{C})$

Some of the diagrams for small n are the same; this reflects "accidental" isomorphisms among some of the Lie algebras.

Example

The Dynkin diagrams of type A_3 , D_3 are the same. The reason is the isomorphism of Lie algebras (both 15-dimensional)

 $\mathfrak{sl}(4,\mathbb{C})\cong\mathfrak{so}(6,\mathbb{C}).$

Example: $\mathfrak{sl}(4,\mathbb{C})\cong\mathfrak{so}(6,\mathbb{C})$

Recall the definitions of the two Lie algebras:

- $\mathfrak{sl}(4,\mathbb{C})$ are 4×4 -matrices x with tr x = 0.
- $\mathfrak{so}(6,\mathbb{C})$ are 6×6 -matrices y with $y + y^t = 0$.

Both are clearly 15-dimensional.

The isomorphism comes from the 6-dimensional $V = \bigwedge^2 \mathbb{C}^4$.

• The isomorphism det: $\wedge^4 \mathbb{C}^4 \to \mathbb{C}$ defines a pairing

$$V \otimes V \to \mathbb{C}, \quad v \otimes w \mapsto \det(v \wedge w).$$

- This is symmetric and nondegenerate.
- The action by $\mathfrak{sl}(4,\mathbb{C})$ defines a morphism of Lie algebras

$$\mathfrak{sl}(4,\mathbb{C}) \to \mathfrak{so}(6,\mathbb{C}).$$

This is injective, hence an isomorphism by dimension.

Let us compute the root system in the example $\mathfrak{so}(2n, \mathbb{C})$. This is the Lie algebra of $2n \times 2n$ -matrices y with $y^t + y = 0$.

The subalgebra of block-diagonal matrices of the form

$$\begin{pmatrix} H_1 & & \\ & H_2 & & \\ & & \ddots & \\ & & & & H_n \end{pmatrix}, \quad H_i = \begin{pmatrix} 0 & h_i \\ -h_i & 0 \end{pmatrix},$$

is a Cartan subalgebra (of dimension n).

An alternative description of $\mathfrak{so}(2n,\mathbb{C})$ is

$$\mathfrak{g} = \Big\{ x \in \mathfrak{gl}(2n,\mathbb{C}) \ \Big| \ Kx + x^t K = 0 \Big\},$$

where K is the block matrix of size $2n \times 2n$ given by

$$K = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$$

The isomorphism takes $x \in \mathfrak{g}$ to the matrix $Kx \in \mathfrak{so}(2n, \mathbb{C})$ (which is skew-symmetric since $(Kx)^t = x^t K = -Kx$).

In this description, the Cartan subalgebra is

$$\mathfrak{h} = \Big\{ \operatorname{diag}(h_1, \ldots, h_n, -h_1, \ldots, -h_n) \ \Big| \ h_1, \ldots, h_n \in \mathbb{C} \Big\}.$$

The diagonal entries give us linear functionals

$$e_i \colon \mathfrak{h} \to \mathbb{C}, \quad \operatorname{diag}(h_1, \ldots, h_n, -h_1, \ldots, h_n) \mapsto h_i.$$

In this basis, the Killing form is a multiple of the bilinear form

$$(e_i, e_j) = \delta_{i,j}.$$

Recall the following matrices:

$$E_{i,j} = \begin{pmatrix} 1 & & \\ \uparrow & & \\ j-\text{th column} \end{pmatrix}^{i-\text{th row}}$$

The root subspaces are easily computed:

$$\mathfrak{g}_{e_i-e_j} = \mathbb{C}(E_{i,j} - E_{j+n,i+n})$$

$$\mathfrak{g}_{e_i+e_j} = \mathbb{C}(E_{i,j+n} - E_{j,i+n})$$

$$\mathfrak{g}_{-e_i-e_j} = \mathbb{C}(E_{i+n,j} - E_{j+n,i})$$

For instance, if $h = diag(h_1, \ldots, h_n, -h_1, \ldots, h_n)$, then

$$[h, E_{i,j} - E_{j+n,i+n}] = (h_i - h_j)E_{i,j} - (-h_j + h_i)E_{j+n,i+n}$$

= $(h_i - h_j)(E_{i,j} - E_{j+n,i+n})$
= $(e_i(h) - e_j(h)) \cdot (E_{i,j} - E_{j+n,i+n}).$

The root system is therefore

$$R = \Big\{ \pm e_i \pm e_j \mid i \neq j \Big\},\,$$

with signs chosen independently. There are 2n(n-1) roots.

A natural choice of polarization is

$$R_+ = \Big\{ e_i \pm e_j \Big| i < j \Big\}.$$

The set of simple roots is $\Pi = \{\alpha_1, \ldots, \alpha_n\}$:

$$\alpha_1 = e_1 - e_2$$

$$\alpha_2 = e_2 - e_3$$

$$\vdots$$

$$\alpha_{n-1} = e_{n-1} - e_n$$

$$\alpha_n = e_{n-1} + e_n$$

This gives us the picture of the Dynkin diagram:

Indeed, for $1 \le i < j \le n - 1$, we have

$$(\alpha_i, \alpha_j) = (e_i - e_{i+1}, e_j - e_{j+1}) = \begin{cases} -1 & \text{if } j = i+1, \\ 0 & \text{otherwise.} \end{cases}$$

The branching at α_{n-2} comes from the fact that

$$(\alpha_{n-2}, \alpha_n) = (e_{n-2} - e_{n-1}, e_{n-1} + e_n) = -1$$

 $(\alpha_{n-1}, \alpha_n) = (e_{n-1} - e_n, e_{n-1} + e_n) = 0.$

Brief review: root decomposition

Goal: Classify (semi-)simple complex Lie algebras

Recall how we got from Lie algebras to Dynkin diagrams:

- Let \mathfrak{g} be a semisimple complex Lie algebra.
- Choose a Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$.
- It determines the root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{lpha \in R} \mathfrak{g}_{lpha}$$

The subspaces

$$\mathfrak{g}_{lpha} = \left\{ x \in \mathfrak{g} \ \Big| \ [h, x] = lpha(h) x ext{ for all } h \in \mathfrak{h}
ight\}$$

are the root root subspaces (with $\mathfrak{g}_0 = \mathfrak{h}$).

• The set $R \subseteq \mathfrak{h}^*$ is the root system of \mathfrak{g} .

Brief review: root decomposition

We have classified the possible root systems. The question is to what extent the root system R determines the Lie algebra g.

Recall the following facts about the root subspaces:

- 1. For each root $\alpha \in R$, one has dim $\mathfrak{g}_{\alpha} = 1$.
- 2. If $\alpha, \beta \in R$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- 3. For $\alpha \in R$, there is a distinguished element $h_{\alpha} \in \mathfrak{h}$ with

4. For $\alpha \in R$, the subspace

$$\mathfrak{sl}(2,\mathbb{C})_lpha=\mathfrak{g}_lpha\oplus\mathbb{C}h_lpha\oplus\mathfrak{g}_{-lpha}$$

is a subalgebra of \mathfrak{g} isomorphic to $\mathfrak{sl}(2,\mathbb{C})$.

Let \mathfrak{g} be a semisimple complex Lie algebra. Key data:

- ► a non-degenerate invariant symmetric bilinear form (-, -), for example the Killing form
- a Cartan subalgebra h
- the root system $R \subseteq \mathfrak{h}^*$
- a polarization $R = R_+ \sqcup R_-$
- the set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\}$

Theorem 1

As a vector space, $\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+$, and the two subspaces

$$\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in R_{\pm}} \mathfrak{g}_{\alpha}$$

are subalgebras of \mathfrak{g} .

Theorem 1

As a vector space, $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, and the two subspaces

$$\mathfrak{n}_{\pm} = \bigoplus_{lpha \in \mathcal{R}_{\pm}} \mathfrak{g}_{lpha}$$

are subalgebras of \mathfrak{g} .

Proof:

- The first part is just the root decomposition.
- We have $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$.
- If $\alpha \in R_+$ and $\beta \in R_+$, then $\alpha + \beta \in R_+$.
- Therefore n_+ is a subalgebra.
- ▶ Similarly for n_.

For each simple root $\alpha_i \in \Pi$, set $h_i = h_{\alpha_i} \in \mathfrak{h}$. Then

$$\mathfrak{g}_{-lpha_i}\oplus\mathbb{C}h_i\oplus\mathfrak{g}_{lpha_i}$$

is a subalgebra isomorphic to $\mathfrak{sl}(2,\mathbb{C})$. Choosing $e_i \in \mathfrak{g}_{\alpha_i}$ and $f_i \in \mathfrak{g}_{-\alpha_i}$ so that $(e_i, f_i) = 2/(\alpha_i, \alpha_i)$, we get the relations

$$[h_i, e_i] = 2e_i, \quad [h_i, f_i] = -2f_i, \quad [e_i, f_i] = h_i.$$

Theorem 2

As a Lie algebra, \mathfrak{g} is generated by $\{e_i, f_i, h_i\}_{i=1,...,r}$. In fact:

- 1. The elements e_1, \ldots, e_n generate \mathfrak{n}_+ .
- 2. The elements f_1, \ldots, f_n generate \mathfrak{n}_- .
- 3. The elements h_1, \ldots, h_n are a basis of \mathfrak{h} .

Theorem 2

As a Lie algebra, \mathfrak{g} is generated by $\{e_i, f_i, h_i\}_{i=1,...,r}$. In fact:

- 1. The elements e_1, \ldots, e_n generate \mathfrak{n}_+ .
- 2. The elements f_1, \ldots, f_n generate \mathfrak{n}_- .
- 3. The elements h_1, \ldots, h_n are a basis of \mathfrak{h} .

Proof:

- (3) holds because Π is a basis for \mathfrak{h}^* .
- Since dim $\mathfrak{g}_{\alpha} = 1$, we have $\mathfrak{g}_{\alpha_i} = \mathbb{C} e_i$.
- ▶ For any two roots $\alpha, \beta \in R$, we have $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- Now (1) follows, because every positive root can be written as a finite sum of simple roots.
- A similar argument proves (2).

For two simple roots $\alpha_i, \alpha_j \in \Pi$, we have the integer

$$a_{i,j} = n_{\alpha_j,\alpha_i} = \alpha_j(h_i) \in \mathbb{Z}.$$

We have $a_{i,i} = 2$, and $a_{i,j} \in \{0, -1, -2, -3\}$ if $i \neq j$.

Theorem 3

The elements $\{e_i, f_i, h_i\}_{i=1,...,n}$ satisfy the following relations: 1. $[h_i, h_j] = 0$ 2. $[h_i, e_j] = a_{i,j}e_j$ and $[h_i, f_j] = -a_{i,j}f_j$ 3. $[e_i, f_j] = \delta_{i,j}h_i$ 4. $(ad e_i)^{1-a_{i,j}}e_i = 0$ and $(ad f_i)^{1-a_{i,j}}f_i = 0$, for $i \neq j$

The relations in the theorem are known as the Serre relations.

Theorem 3

The elements $\{e_i, f_i, h_i\}_{i=1,...,n}$ satisfy the following relations: 1. $[h_i, h_j] = 0$ 2. $[h_i, e_j] = a_{i,j}e_j$ and $[h_i, f_j] = -a_{i,j}f_j$

Proof:

- (1) is clear: the Cartan subalgebra \mathfrak{h} is commutative.
- ▶ Since $e_j \in \mathfrak{g}_{\alpha_i}$, we have

$$[h_i, e_j] = \alpha_j(h_i)e_j = a_{i,j}e_j.$$

• Similarly for $f_j \in \mathfrak{g}_{-\alpha_j}$, and so (2) holds.

Theorem 3

The elements $\{e_i, f_i, h_i\}_{i=1,...,n}$ satisfy the following relations: 3. $[e_i, f_j] = \delta_{i,j}h_i$

Proof:

• (3) holds when i = j, because

$$[e_i, f_i] = (e_i, f_i)H_{\alpha_i} = \frac{2}{(\alpha_i, \alpha_i)}H_{\alpha_i} = h_{\alpha_i} = h_i.$$

- When $i \neq j$, we have $[e_i, f_j] \in \mathfrak{g}_{\alpha_i \alpha_j}$.
- But $\mathfrak{g}_{\alpha_i-\alpha_j} = \{0\}$ because $\alpha_i \alpha_j \notin R$.
- ► Otherwise, either \(\alpha_i \alpha_j \in R_+\) or \(\alpha_j \alpha_i \in R_+\), and both contradict \(\alpha_i\) and \(\alpha_j\) being simple.
- So (3) holds in general.

Theorem 3

The elements $\{e_i, f_i, h_i\}_{i=1,...,n}$ satisfy the following relations: 4. $(ad e_i)^{1-a_{i,j}}e_j = 0$ and $(ad f_i)^{1-a_{i,j}}f_j = 0$, for $i \neq j$

Proof:

► To prove (4), consider the subspace

$$\bigoplus_{k\in\mathbb{Z}}\mathfrak{g}_{-\alpha_j+k\alpha_i}\subseteq\mathfrak{g}$$

as a representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha_i} = \langle e_i, f_i, h_i \rangle$.

- ▶ By (3), ad $e_i f_j = 0$, so f_j is a highest-weight vector.
- By (2), ad $h_i f_j = -a_{i,j}f_j$, so f_j has weight $w = -a_{i,j}$.
- ► Thus (ad f_i)^{1-a_{i,j}} f_j = 0, because -w 2 is not a weight in an irreducible representation of highest weight w.
- The other half is proved similarly.

In fact, one can prove the following theorem.

Theorem

Let *R* be an irreducible root system of rank *n* with polarization $R = R_+ \sqcup R_-$ and simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\}$.

Let $\mathfrak{g}(R)$ be the complex Lie algebra with 3n generators $\{e_i, f_i, h_i\}_{i=1,...,n}$, subject to the Serre relations: 1. $[h_i, h_j] = 0$ 2. $[h_i, e_j] = a_{i,j}e_j$ and $[h_i, f_j] = -a_{i,j}f_j$ 3. $[e_i, f_j] = \delta_{i,j}h_i$ 4. $(\operatorname{ad} e_i)^{1-a_{i,j}}e_j = 0$ and $(\operatorname{ad} f_i)^{1-a_{i,j}}f_j = 0$, for $i \neq j$ Then $\mathfrak{g}(R)$ is a finite-dimensional simple Lie algebra whose root system is the given root system R.

Corollary

Simple finite-dimensional complex Lie algebras are classified by the Dynkin diagrams A_n , B_n , C_n , D_n , E_6 , E_7 , E_8 , F_4 , and G_2 .

Let us consider the example of G_2 . The integers $a_{i,j}$ are:

$$a_{1,1} = a_{2,2} = 2, \quad a_{1,2} = -1, \quad a_{2,1} = -3.$$

The corresponding Lie algebra has dimension 14. In

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+},$$

we have dim $\mathfrak{h} = 2$ and dim $\mathfrak{n}_{\pm} = 6$.

The theorem tells us that n_+ is generated (as a Lie algebra) by two elements e_1 , e_2 , subject to the two Serre relations

$$(ad e_1)^2 e_2 = 0$$
 and $(ad e_2)^4 e_1 = 0$.

(The picture for n_{-} is similar.)

The picture of the root system shows how

$$\mathfrak{sl}(2,\mathbb{C})_{lpha_1} = \langle e_1, f_1, h_1
angle \ \mathfrak{sl}(2,\mathbb{C})_{lpha_2} = \langle e_2, f_2, h_2
angle$$

act on the Lie algebra \mathfrak{g} . The irreducible subrepresentations correspond to strings of roots.

The weight of the root subspace \mathfrak{g}_{α} with respect to ad h_2 is

$$\alpha(h_2) = (c_1\alpha_1 + c_2\alpha_2)(h_2) = c_1\alpha_1(h_2) + c_2\alpha_2(h_2) = -3c_1 + 2c_2,$$

writing $\alpha = c_1\alpha_1 + c_2\alpha_2.$

