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Brief review: the classification
Last time, we proved the following theorem.

The Dynkin diagram of an irreducible root system is always
one of the following diagrams:

A, O—O— oo —0O0——0 Eg O_O_i_o_o
(n>1)

B, O—0O— - —(=0 Er O_O_i_o_o_o
(n=2)

€, O—O OO B o—o—i—o—o—o—o

D, O—0— - —O<§ F, O—C>0—0 G, =0
(n>4)



Brief review: Dynkin diagrams

Let R be an irreducible root system, with basis 1 C R.

The Dynkin diagram of R is constructed as follows:
» |t has one vertex for every simple root o € 1.

» Every pair of vertices o, € I is connected by
Nag - Npo = 4cos’ € {0,1,2,3}

distinct edges.

» Each multiple edge has an arrow that points
towards the shorter root.

We saw last time that the Dynkin diagram determines the root
system (up to isomorphism).



Brief review: examples in rank 2

The three irreducible root systems of rank 2:

A2 B2 G2

Dynkin diagram: Dynkin diagram: Dynkin diagram:
o—=O =0 =0



The classical Lie algebras

The Dynkin diagrams of type A,, B,, C,, and D, correspond
to the classical Lie algebras:

» A, is the root system of sl(n+ 1,C)
» B, is the root system of so(2n+ 1, C)
» C, is the root system of sp(n, C)

» D, is the root system of so(2n, C)

Some of the diagrams for small n are the same; this reflects
“accidental” isomorphisms among some of the Lie algebras.

Example

The Dynkin diagrams of type Az, D3 are the same. The reason
is the isomorphism of Lie algebras (both 15-dimensional)

sl(4,C) = s0(6,C).



Example: sl(4,C) = s0(6,C)
Recall the definitions of the two Lie algebras:
» 5l(4,C) are 4 x 4-matrices x with trx = 0.
» 50(6,C) are 6 x 6-matrices y with y + y* = 0.

Both are clearly 15-dimensional.

The isomorphism comes from the 6-dimensional V = A% C*.
» The isomorphism det: A*C* — C defines a pairing

VeV —-C, vewrdet(vAw).

» This is symmetric and nondegenerate.

» The action by s[(4, C) defines a morphism of Lie algebras
sl(4,C) — s0(6,C).

» This is injective, hence an isomorphism by dimension.



Example: so0(2n,C)

Let us compute the root system in the example so(2n, C).
This is the Lie algebra of 2n x 2n-matrices y with y* +y = 0.

The subalgebra of block-diagonal matrices of the form

H, 0 h
) Hi:(-h,' 0)7

H,

H,

is a Cartan subalgebra (of dimension n).



Example: so0(2n,C)
An alternative description of so(2n,C) is
g={x€gl(2n,C) | Kx +x'K =0},
where K is the block matrix of size 2n x 2n given by
0 I,
(0 %)

The isomorphism takes x € g to the matrix Kx € so(2n,C)
(which is skew-symmetric since (Kx)' = x'K = —Kx).

In this description, the Cartan subalgebra is

h= {diag(hl, hn —hy, o —hy)

...,hnec}.



Example: so0(2n,C)
The diagonal entries give us linear functionals
e:bh—C, diag(hy,...,h,,—hy,... hy)— h;.
In this basis, the Killing form is a multiple of the bilinear form

(e,-, ej) = 5,'7J'.

Recall the following matrices:

1 i-th row

|

j-th column

E,"J':



Example: so0(2n,C)
The root subspaces are easily computed:
> fei—e — (C(Eu - Ej+n,i+n)
> Heite — C(EiJ+n - Ej,,-+n)
> Je—e = C(Ei+n,j - Ej+n,i)

For instance, if h = diag(hy, ..., hy, —h1,..., h,), then
[h, Eij = Ejpnisn] = (hi = hy)Eij = (—=hj + hi) Ejn it
- (hi - hj)(Ei,j - Ej+n,i+n)
= (h) = (M) - (Bis = Eyenisa)
The root system is therefore
R:{:I:e,-:l:ej ‘ l%_]},

with signs chosen independently. There are 2n(n — 1) roots.



Example: so(2n, C)

A natural choice of polarization is
Ri={e+e|i<j}
The set of simple roots is M = {aq, ..., a,}:
;=€ — &

Oy = € — €3

Qp—1 = €p—1 — &y

Qp, = €p_11+ €,



Example: so0(2n,C)

This gives us the picture of the Dynkin diagram:

Indeed, for 1 < i< j<n-—1, we have

( )= ( ) -1 ifj=i+1,
A, Q) = \€ — €iy1,€ — € = i

! A s 0 otherwise.
The branching at «,,_» comes from the fact that

(CYn—2, O~/n) = (en—2 —€p-1,6p-1F en) =-1

(an—lu an) - (en—l — €p, Ep_1 + en) = 0.



Brief review: root decomposition
Goal: Classify (semi-)simple complex Lie algebras

Recall how we got from Lie algebras to Dynkin diagrams:

v

Let g be a semisimple complex Lie algebra.

v

Choose a Cartan subalgebra h C g.

v

It determines the root decomposition

g=b P g

aER

v

The subspaces
go={xcg|[hx]=a(h)xforalhch}

are the root root subspaces (with go = b).
The set R C b* is the root system of g.

v



Brief review: root decomposition

We have classified the possible root systems. The question is
to what extent the root system R determines the Lie algebra g.
Recall the following facts about the root subspaces:

1. For each root a € R, one has dimg, = 1.

2. If a, 5 € R, then [ga, 93] = Ga+5-
3. For a € R, there is a distinguished element h, € h with

for all 5 € h*.

4. For a € R, the subspace
5[(27 C)a = Ya D Choé D g-a

is a subalgebra of g isomorphic to sl(2, C).



Example: the root system of type G

0%)

ea; + 3

a1+ 20[2 20[1 aF 30&2

o1 + Qi

Q7




The Serre relations

Let g be a semisimple complex Lie algebra. Key data:

» a non-degenerate invariant symmetric bilinear form
(=, —), for example the Killing form

v

a Cartan subalgebra b
the root system R C h*
» a polarization R = R, LU R_

v

v

the set of simple roots 1 = {1, ..., a,}

As a vector space, g =n_ @ h dn,, and the two subspaces

ng = 6}) Jo

aERL

are subalgebras of g.



The Serre relations

As a vector space, g =n_ @ hdn,, and the two subspaces

n.= P g

aERL

are subalgebras of g.

Proof:

v

The first part is just the root decomposition.
We have [ga, 95] € gats.
If o € Ry and S € R, then a+ 3 € Ry.

Therefore n is a subalgebra.

v

v

v

v

Similarly for n_. O]



The Serre relations
For each simple root «; € I, set h; = h,, € h. Then
g—oc,- ) Chl S%) goc,-

is a subalgebra isomorphic to s[(2,C). Choosing e; € g,, and
fi € g_q, so that (e, f;) = 2/(c, a;), we get the relations

[h,‘, e,-] = 26,', [h,‘, f;] = —Qﬁ, [e,-, f;] = h,‘.

Theorem 2

As a Lie algebra, g is generated by {e;, f;, hj}i—1__,. In fact:
1. The elements ey, ..., e, generate n.
2. The elements fi,.. ., f, generate n_.

3. The elements hy, ..., h, are a basis of h.



The Serre relations

As a Lie algebra, g is generated by {e;, f;, hj}i—1__,. In fact:

1. The elements ey, ..., e, generate n.

2. The elements fi, ..., f, generate n_.

3. The elements hq, ..., h, are a basis of b.
Proof:

» (3) holds because I is a basis for h*.
» Since dimg, = 1, we have g,, = Ce;.
» For any two roots «, 5 € R, we have [ga, 85] = Ga-+s-

» Now (1) follows, because every positive root can be
written as a finite sum of simple roots.

» A similar argument proves (2). O



The Serre relations
For two simple roots «;, «; € 1, we have the integer
djj = naj,a,, = Oéj(h,‘) €.

We have a;; =2, and a;; € {0, —1,—2, =3} if i #j.

Theorem 3

The elements {e;, f;, h;}i—1__, satisfy the following relations:
1. [hi,h] =0
2. [hi, e = a;ijej and [h;, fj] = —a; ;f;
3. e, fi] = dihi

4. (ade)'~ie; =0 and (ad ;)12 f;, = 0, for i # j

The relations in the theorem are known as the Serre relations.



The Serre relations

The elements {e;, f;, h;}i—1._, satisfy the following relations:
1. [h;, hj] =0
2. [h,‘, ej] = a,-JeJ- and [h,‘7 6] = —a,"ij"

-----

Proof:
» (1) is clear: the Cartan subalgebra b is commutative.

» Since ¢ € go,, We have
[hi, &] = aj(hi)e; = aije;.

» Similarly for f; € g_o,, and so (2) holds.



The Serre relations

The elements {e;, f;, hj}i—1.._, satisfy the following relations:
3. [e,~, fJ] = 5,~th

.....

Proof:

» (3) holds when i = j, because

2

(v, i)

[ei7 f;] = (ef7 f})Hai = Ha = ha = hi'

i i

v

When i # j, we have [e;, f]] € ga,—q;-
But ga,—o, = {0} because a; — a; ¢ R.

Otherwise, either a; — o € Ry or aj — a; € Ry, and
both contradict «; and «; being simple.

v

v

v

So (3) holds in general.



The Serre relations

The elements {e;, f;, h;}i—1._, satisfy the following relations:
4. (ade)'~ie; =0 and (ad ;)12 f;, = 0, for i # j

Proof:
» To prove (4), consider the subspace
D 9-a+ka: €
ke,
as a representation of sl(2,C),, = (e;, f;, h;).
» By (3), ade.f; =0, so f; is a highest-weight vector.
» By (2), ad h;.f; = —a; jf;, so f; has weight w = —a; ;.
» Thus (ad £;)}~%f; = 0, because —w — 2 is not a weight
in an irreducible representation of highest weight w.
» The other half is proved similarly. O]



The Serre relations

In fact, one can prove the following theorem.

Theorem

Let R be an irreducible root system of rank n with polarization
R = R, UR_ and simple roots Il = {as, ..., a,}.

Let g(R) be the complex Lie algebra with 3n generators
{ei, f;, hi}i—1,...n, subject to the Serre relations:

].. [h,‘, hj] — 0
2. [hi; ej] = a;;€ and [h,, J] al,‘j
3. [e;, fi] = dijhi

4. (ade)'~ie; =0 and (ad ;)12 f, = 0, for i # j
Then g(R) is a finite-dimensional simple Lie algebra whose
root system is the given root system R.



The Serre relations

Corollary

Simple finite-dimensional complex Lie algebras are classified by
the Dynkin diagrams A,, B,, C,, D,, Es, E7, Eg, F4, and G,.

TG g Sp— —0—0 Eg Q—Q—E—Q—Q
(n>1)

B, O—0O— -ereeeee —O0=0 E; Q—Q—E—Q—Q—Q
(n>2)

C OO rrrreeee g==9) Eg O—O—E—O—O—O—O

D, O—0O— - ‘<D<.é P, O—CO>0—"0 a6, =0
(n>4)



Example: the root system of type G

0%)

ea; + 3

a1+ 20[2 20[1 aF 30&2

o1 + Qi

Q7




Example: the root system of type G

Let us consider the example of G,. The integers a;; are:
g =ap=2 a=-—1, a;=-3
The corresponding Lie algebra has dimension 14. In
g=n_Shdn,,

we have dimfh =2 and dimn, = 6.

The theorem tells us that n is generated (as a Lie algebra) by
two elements e, e, subject to the two Serre relations

(ade;)?e; =0 and (adey)’e; = 0.

(The picture for n_ is similar.)



Example: the root system of type G

€2

L g [927 [62, [627 61]]]

[627 [e2’ el]] [[[627 el]> e2]’ [627 el]]




Example: the root system of type G

The picture of the root system shows how

5[(27(:)011 - <€1, fla h1>
5[(2a (C)OQ - <eZ7 f27 h2>

act on the Lie algebra g. The irreducible subrepresentations
correspond to strings of roots.

The weight of the root subspace g, with respect to ad h; is
Oé(hz) = (C1041+C2062)(h2) = C1061(h2)+C2062(h2) = —3C1+2C2,

writing o = cia1 + Gas.



Example: the root system of type G
34




