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Brief review: abstract root systems
E is a finite dimensional real vector space.
(−,−) is a positive definite inner product on E .

A (reduced) root system is a subset R ⊆ E \ {0} such that:
1. R is finite and spans E .
2. If α ∈ R and cα ∈ R , then c = ±1.
3. For every α, β ∈ R , one has

nβ,α =
2(α, β)

(α, α)
∈ Z.

4. If α, β ∈ R , then also β − nβ,α α ∈ R .

The rank of the root system is dimE . The Weyl group W is
the group generated by the reflections sα, α ∈ R .



Brief review: simple roots

A choice of polarization divides the root system

R = R+ t R−

into positive and negative roots.

A positive root is simple if it is not the sum of two other
positive roots. The set of simple roots is denoted Π.

I Π is a basis of the vector space E .
I Any two bases are related by an element of W .
I For simple roots α, β ∈ Π, one has (α, β) ≤ 0.



Example: simple roots in G2

t

α + β

α + 2ββ

α

2α + 3β

α + 3β



Reconstructing R from Π

Last time, we showed that the entire root system R can be
reconstructed from the set of simple roots Π:

I The Weyl group W is generated by simple reflections,
which are the reflections sα with α ∈ Π.

I One has R = W (Π).

Recall that R is called reducible if

R = R ′ t R ′′ with R ′ ⊥ R ′′.

This is equivalent to having

Π = Π′ t Π′′ with Π′ ⊥ Π′′.

If there is no such decomposition, then R is irreducible.



Coxeter graphs and Dynkin diagrams
Goal: Classify irreducible root systems.

Let α, β ∈ Π be two simple roots with ‖α‖ ≥ ‖β‖. We know
that (α, β) ≤ 0, and of course β 6= −α. The relation

nα,β · nβ,α = 4 cos2 θ,

leaves only four possible values for the angle θ:

4 cos2 θ nβ,α nα,β ‖α‖/‖β‖ θ
0 0 0 any π/2
1 −1 −1 1 2π/3
2 −1 −2

√
2 3π/4

3 −1 −3
√
3 5π/6

Everything is determined by the integer −nα,β ∈ {0, 1, 2, 3},
together with the fact that ‖α‖ ≥ ‖β‖.



Coxeter graphs and Dynkin diagrams
Let R be an irreducible root system.

We can encode the information about the simple roots into a
graph; that way, it is easier to see what is going on.

The Coxeter graph of R is actually a “multigraph”:
I It has one vertex for every simple root of R .
I Every pair of vertices α, β ∈ Π is connected by

nα,β · nβ,α = 4 cos2 θ ∈ {0, 1, 2, 3}

distinct edges.

The Dynkin diagram of R is the Coxeter graph, but with
arrows pointing towards the shorter root attached to the
double and triple edges.



Examples in rank 2

Here are the three irreducible root systems of rank 2:

A2

Dynkin diagram:

B2

Dynkin diagram:
An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
∑n

i=1 vi. It is clear
that v "= 0, since the vectors v1, v2, . . . , vn are linearly independent. Then

0 < 〈v, v〉 =
n∑

i=1

〈vi, vi〉 +
∑

i<j

2 〈vi, vj〉 = n +
∑

i<j

2 〈vi, vj〉 .

If the vertices vi and vj are connected, then 2 〈vi, vj〉 ∈
{
−1,−

√
2,−

√
3
}
.

In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i "= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
an orthonormal set and we can express c as follows:

c =

k∑

i=0

〈c, vi〉 vi.

Since c is a unit vector, 〈c, c〉 =
∑k

i=0 〈c, vi〉2 = 1. But 〈c, v0〉 "= 0, thus

k∑

i=1

4 〈c, vi〉2 < 4. (4)
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Dynkin diagrams vs. root systems

The Dynkin diagram only depends on the root system R , but
not on the choice of basis Π ⊆ R .

I Any two bases are related by an element of W .

The Dynkin of an irreducible root system is connected.

I Suppose the Dynkin diagram is not connected.
I Then Π = Π′ t Π′′, in such a way that there are no edges

between vertices in Π′ and Π′′.
I By definition of the Dynkin diagram, this means that

(α, β) = 0 for every α ∈ Π′ and every β ∈ Π′′.
I This contradicts the fact that R is irreducible.



Dynkin diagrams vs. root systems

One can reconstruct an irreducible root system from its
Dynkin diagram (up to isomorphism).

I Since R is irreducible, the Dynkin diagram is connected.
I So any α, β ∈ Π are joined by a sequence of edges.
I Hence the Dynkin diagram determines the inner products

(α, β) for all α, β ∈ Π, up to a common scale factor.
I This information determines E and (−,−).
I The Weyl group W is generated by simple reflections.
I Therefore R = W (Π) is determined (up to rescaling).



The classification theorem
Theorem
The Dynkin diagram of an irreducible root system is always
one of the following diagrams:

An
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Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.
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∑n
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There are four infinite families and five exceptional types.



Admissible diagrams
It is enough to classify the Coxeter graphs; we can then get
the Dynkin diagrams by adding arrows in the right places.

This means that we can forget about the lengths of vectors for
now. The following piece of terminology is useful:

Definition
We say that a linearly independent set of unit vectors
v1, . . . , vn ∈ E is an admissible configuration if
1. (vi , vj) ≤ 0 for every i 6= j ,
2. 4(vi , vj)

2 ∈ {0, 1, 2, 3} for every i 6= j .
The resulting Coxeter graph is called an admissible diagram.

Any subset of an admissible configuration is again admissible.
Any subdiagram of an admissible diagram is itself admissible.



Proof of the classification theorem
Step 1: A connected admissible diagram is a tree.

I Let v1, . . . , vn be an admissible configuration.
I Define v = v1 + · · ·+ vn; clearly v 6= 0.
I Therefore (v , v) =

∑
i ,j

(vi , vi) = n +
∑
i<j

2(vi , vj) > 0.

I If vi and vj are connected by an edge, we must have
2(vi , vj) ∈ {−1,−

√
2,−
√
3}, hence −2(vi , vj) ≥ 1.

I The diagram can have at most n − 1 edges, because

n >
∑
i<j
−2(vi , vj) ≥ (number of edges).

I Being connected, the diagram must have exactly n − 1
edges (ignoring multiplicity), hence must be a tree.



Proof of the classification theorem
Step 2: Each vertex meets ≤ 3 edges (with multiplicity).

I Let v be a vertex.
I Let v1, . . . , vd be the vertices connected to v .

vv1

v2

v3

I Since the Dynkin diagram has no cycles (by Step 1),
there can be no edge between vi and vj for i 6= j .

I Therefore (vi , vj) = 0 for i 6= j .
I This says that v1, . . . , vd are orthonormal.
I Since v is not in the span of v1, . . . , vd , we have

v 6=
d∑

i=1
(v , vi)vi .



Proof of the classification theorem

Step 2: Each vertex meets ≤ 3 edges (with multiplicity).

I Since v is not in the span of v1, . . . , vd , we have

v 6=
d∑

i=1
(v , vi)vi .

I Because v is a unit vector, we get

4 = 4(v , v) >
d∑

i=1
4(v , vi)

2.

I But 4(v , vi)
2 is the number of edges connecting v and vi .

I So the number of edges starting at v is less than 4.



Proof of the classification theorem

Step 3: The only connected admissible diagram with a triple
edge is the exceptional diagram of type G2:
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Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6
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E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.
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3
}
.

In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
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orthonormal set. Since the simple roots are linearly independent, c can
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normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
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I This is clear from Step 2.

Note
From now on, we can restrict our attention to admissible
diagrams with single and double edges.



Proof of the classification theorem

Step 4: A simple chain v1, . . . , vk in an admissible diagram
can always be replaced by the single vertex v = v1 + · · ·+ vk .
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The first claim is that v is a unit vector:
I We have (v , v) = k +

∑
i<j

2(vi , vj).

I Since there are no cycles (by Step 1), we have must
(vi , vj) = 0 for i < j , except when j = i + 1.

I Consecutive vertices are connected by a single edge, and
therefore 2(vi , vi+1) = −1 for i = 1, . . . , k − 1.

I This gives (v , v) = k − (k − 1) = 1.



Proof of the classification theorem
Step 4: A simple chain v1, . . . , vk in an admissible diagram
can always be replaced by the single vertex v = v1 + · · ·+ vk .

An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
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i=1 vi. It is clear
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In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i "= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
an orthonormal set and we can express c as follows:

c =
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〈c, vi〉 vi.

Since c is a unit vector, 〈c, c〉 =
∑k

i=0 〈c, vi〉2 = 1. But 〈c, v0〉 "= 0, thus
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i=1

4 〈c, vi〉2 < 4. (4)
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The second claim is that the new diagram is still admissible:
I Since there are no cycles, any vertex u not in the chain is

connected to at most one vertex in the chain.
I If (u, vj) 6= 0, say, then

(u, v) =
k∑

i=1
(u, vi) = (u, vj).

I In the new diagram, u therefore connects to v in the
same way as it originally connected to vj .

I Thus the new diagram is still admissible.



Proof of the classification theorem

Step 5: A connected admissible diagram cannot contain any
of the following subdiagrams:

Figure 12: Collapsing simple chains to obtain forbidden subdiagrams.

The quantity 4 〈c, vi〉2 is the number of edges between c and vi, thus from
(4) it follows that the number of edges originating at c is less than 4.

4. The only connected admissible diagram containing a triple edge is G2 that
is shown in Fig. 11. This follows from the previous step. From now on
we will consider only diagrams with single and double edges.

5. Any simple chain v1, v2, . . . , vk in a connected admissible diagram can be
replaced by a single vector v =

∑k
i=1 vi.

Definition. A simple chain is a non-repeating sequence of vertices such
that every two consecutive vertices are connected with a single edge.

We must show that v is a unit vector and the obtained diagram is admis-
sible and connected. We have:

〈v, v〉 = k +
∑

i<j

2 〈vi, vj〉 .

There are no cycles, thus 〈vi, vj〉 = 0 for all pairs i < j, except j = i + 1.
For two consecutive vertices in the chain we have 2 〈vi, vi+1〉 = −1, thus

∑

i<j

2 〈vi, vj〉 =

k−1∑

i=1

2 〈vi, vi+1〉 = −(k − 1)

and 〈v, v〉 = k − (k − 1) = 1, hence v is a unit vector.

Since there are no cycles, an arbitrary vertex u that is not in the chain,
can be connected to at most one vertex (let it be vj) in the chain. Then

〈u, v〉 =

k∑

i=1

〈u, vi〉 = 〈u, vj〉 .

It means, the whole chain is replaced by a single vertex v and any vertex u
not in the chain remains connected to v in the same way it was connected
to vj . Therefore the obtained diagram is also admissible and connected.

9

I By Step 4, such a subdiagram can be collapsed.
I This makes a vertex of degree 4, contradicting Step 2.



Proof of the classification theorem

Step 6: There are only three possible types of connected
admissible diagrams (without triple edges):

cu1

u1

v1

v1

w1

u2

u2

v2

v2

w2

up−1

vq−1

wr−1

up vq

T1

T2

T3

Figure 13: Three possible types of connected admissible diagrams.

6. A connected admissible diagram has none of subdiagrams shown in Fig. 12.
In each case the subdiagram contains a simple chain. According to Step 5
it can be collapsed to a single vertex. But according to Step 3 the obtained
subdiagram is not valid, since it has a vertex of degree four. This is a
contradiction with Step 1.

7. It means that a connected admissible diagram can contain at most one
double edge and at most one branching, but not both of them simulta-
neously. If we neglect the diagram G2 with a triple edge, we can make
the following conclusion. There are only three possible types of connected
admissible diagrams (see Fig. 13):

T1: a simple chain,

T2: a diagram with a double edge,

T3: a diagram with branching.

8. The admissible diagram of type T1 corresponds to the Dynkin diagram An

in Fig. 11, where n ≥ 1.

9. The only admissible diagrams of type T2 are Bn = Cn, and F4. Define
u =

∑p
i=1 i · ui. Since 2 〈ui, ui+1〉 = −1 for 1 ≤ i ≤ p − 1, we get

〈u, u〉 =

p∑

i=1

i2 〈ui, ui〉 +
∑

i<j

ij · 2 〈ui, uj〉

=

p∑

i=1

i2 +

p−1∑

i=1

i(i + 1) · 2 〈ui, ui+1〉

=

p∑

i=1

i2 −
p−1∑

i=1

i(i + 1) = p2 −
p−1∑

i=1

i

= p2 − p(p − 1)

2
=

p(p + 1)

2
.

(5)

In a similar way we define v =
∑q

j=1 j · vj and get 〈v, v〉 = q(q + 1)/2.
Finally, 〈u, v〉 = pq 〈up, vq〉, because the double edge is the only edge
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I By Step 5, there can be at most one double edge and at
most one branching, but not both at the same time.



Proof of the classification theorem

Step 6: The admissible diagram of type T1 corresponds to
the Dynkin diagram An in the theorem (with n ≥ 1).
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6. A connected admissible diagram has none of subdiagrams shown in Fig. 12.
In each case the subdiagram contains a simple chain. According to Step 5
it can be collapsed to a single vertex. But according to Step 3 the obtained
subdiagram is not valid, since it has a vertex of degree four. This is a
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neously. If we neglect the diagram G2 with a triple edge, we can make
the following conclusion. There are only three possible types of connected
admissible diagrams (see Fig. 13):

T1: a simple chain,

T2: a diagram with a double edge,
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Concretely, this means that there are only two options:
I p arbitrary and q = 1 (or vice versa)
I p = q = 2
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I Define u =
p∑

i=1
i · ui and v =

q∑
j=1

j · vj .

I A short calculation shows that

(u, u) =
p(p + 1)

2 and (v , v) =
q(q + 1)

2 .

I The double edge is the only edge joining ui and vj , so

(u, v)2 = p2q2(up, vq)2 =
p2q2

2 .
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I The Cauchy-Schwarz inequality reads

(u, v)2 < (u, u)(v , v),

because u and v are clearly linearly independent.

I Therefore p2q2

2 <
p(p + 1)

2
q(q + 1)

2 .
I This simplifies to (p − 1)(q − 1) < 2.
I So either p = 1, or q = 1, or p = q = 2.
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I By a similar method as in Step 7, one shows that

1
p +

1
q +

1
r > 1.

I Without loss of generality p ≥ q ≥ r ≥ 2.
I The inequality forces r = 2, and q ∈ {2, 3}.
I If q = 2, then p ≥ 2 is arbitrary =⇒ Dn.
I If q = 3, then p ∈ {3, 4, 5} =⇒ E6, E7, E8.


