Simple roots and the Weyl group

MAT 552

April 22, 2020

Brief review: abstract root systems

- *E* is a finite dimensional real vector space. (-, -) is a positive definite inner product on *E*.
- A (reduced) root system is a subset $R \subseteq E \setminus \{0\}$ such that:
 - 1. R is finite and spans E.
 - 2. If $\alpha \in R$ and $c\alpha \in R$, then $c = \pm 1$.
 - 3. For every $\alpha, \beta \in R$, one has

$$n_{eta,lpha}=rac{2(lpha,eta)}{(lpha,lpha)}\in\mathbb{Z}.$$

4. If $\alpha, \beta \in R$, then also $\beta - n_{\beta,\alpha} \alpha \in R$.

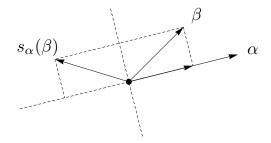
The rank of the root system is dim *E*.

Brief review: reflections

Recall the geometric meaning of (4). Let

$$s_{\alpha} \colon E \to E, \quad s_{\alpha}(x) = x - \frac{2(\alpha, x)}{(\alpha, \alpha)}\alpha,$$

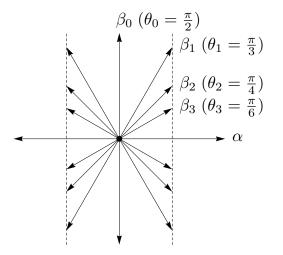
be the reflection in the hyperplane orthogonal to $\alpha \in R$.



Then (4) is saying that R is closed under s_{α} .

Brief review: angles and relative lengths

The condition $n_{\beta,\alpha} = 2(\alpha,\beta)/(\alpha,\alpha) \in \mathbb{Z}$ constrains the angle between roots, as well as the relative lengths of roots.



Brief review: Weyl group

Definition

The Weyl group of a root system $R \subseteq E$ is the subgroup $W \subseteq GL(E)$ generated by all the reflections s_{α} , for $\alpha \in R$.

The Weyl group is the symmetry group of the root system – not literally, but morally.

Lemma

- 1. The Weyl group is a finite subgroup of the orthogonal group O(E), and R is invariant under the action of W.
- 2. For any $w \in W$ and any $\alpha \in R$, we have $s_{w(\alpha)} = ws_{\alpha}w^{-1}$.

Polarizations

Goal: Find a "basis" for the root system *R*.

Choose a vector $t \in E$ such that $(\alpha, t) \neq 0$ for every $\alpha \in R$. The choice of t defines a decomposition

$$R = R_+ \sqcup R_-$$

of the root system into positive and negative roots:

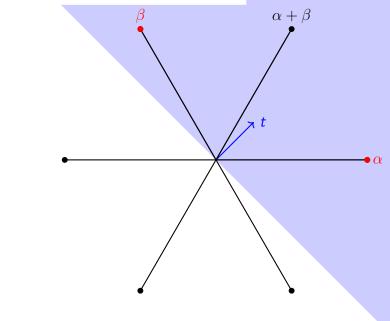
$$R_{+} = \left\{ \alpha \in R \mid (\alpha, t) > 0 \right\}$$
$$R_{-} = \left\{ \alpha \in R \mid (\alpha, t) < 0 \right\}$$

This decomposition is called a polarization.

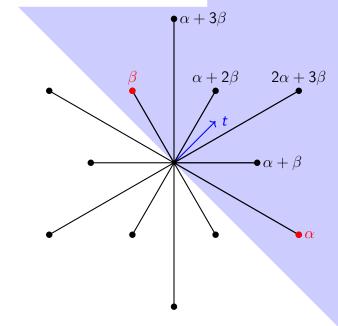
Definition

A positive root $\alpha \in R_+$ is called simple if it is not the sum of two other positive roots. The set of simple roots is denoted Π .

Example: simple roots in A_2



Example: simple roots in G_2



Simple roots

Theorem

The simple roots Π form a basis of the vector space E.

We first prove two small lemmas.

Lemma 1

If $\alpha, \beta \in R$ and $(\alpha, \beta) > 0$, then $\alpha - \beta \in R$ and $\beta - \alpha \in R$.

- Since $(\alpha, \beta) > 0$, we get $n_{\beta,\alpha} \ge 1$ and $n_{\alpha,\beta} \ge 1$.
- ▶ But $n_{\alpha,\beta}n_{\beta,\alpha} = 4\cos^2\theta$, and so $n_{\alpha,\beta} = 1$ or $n_{\beta,\alpha} = 1$.
- If $n_{\alpha,\beta} = 1$, then $s_{\beta}(\alpha) = \alpha n_{\alpha,\beta}\beta = \alpha \beta \in R$.
- If $n_{\beta,\alpha} = 1$, then $s_{\alpha}(\beta) = \beta \alpha \in R$.
- The negative of every root is again a root.

Simple roots

Theorem

The simple roots Π form a basis of the vector space E.

We first prove two small lemmas.

Lemma 2

If $\alpha \neq \beta$ are distinct simple roots, then $(\alpha, \beta) \leq 0$.

- Suppose to the contrary that $(\alpha, \beta) > 0$.
- By Lemma 1, we have $\alpha \beta \in R$ and $\beta \alpha \in R$.
- Therefore either $\alpha \beta \in R_+$ or $\beta \alpha \in R_+$.
- If $\alpha \beta \in R_+$, then $\alpha = (\alpha \beta) + \beta$ contradicts $\alpha \in \Pi$.
- Same story if $\beta \alpha \in R_+$.

Simple roots

Theorem

The simple roots Π form a basis of the vector space E.

Step 1: The simple roots span *E*.

- Every positive root is a sum of simple roots (obvious).
- ▶ By definition, $R = R_+ \sqcup R_-$ spans E, and $R_- = -R_+$.

Step 2: The simple roots are linearly independent.

- Let $\alpha_1, \ldots, \alpha_n \in \Pi$ be the simple roots.
- Since $\alpha_i \in R_+$, we have $(\alpha_i, t) > 0$ for all *i*.
- ▶ By Lemma 2, we have $(\alpha_i, \alpha_j) \leq 0$ for $i \neq j$.
- ▶ By HW #7.3, this implies $\alpha_1, \ldots, \alpha_n$ linearly independent.

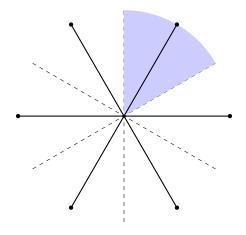
We may say that Π is a basis of the root system R.

Weyl chambers

For each root $\alpha \in R$, we have the orthogonal hyperplane

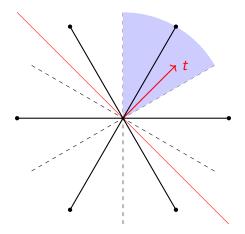
$$L_{\alpha} = \Big\{ x \in E \mid (\alpha, x) = 0 \Big\}.$$

They divide *E* into disjoint open cones called Weyl chambers.



Weyl chambers and bases

How does the set of simple roots depend on t?



As long as t stays in one Weyl chamber, the positive roots R_+ and hence the simple roots Π are unchanged.

Weyl chambers and bases

We have a bijection between bases and Weyl chambers: Any Weyl chamber $C \subseteq E$ determines a polarization with

$$R_+ = \left\{ \alpha \in R \mid (\alpha, x) > 0 \text{ for all } x \in C \right\},$$

and hence a set of simple roots $\Pi \subseteq R$.

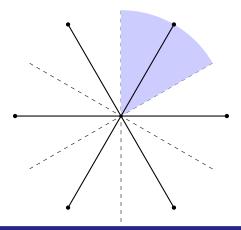
Conversely, a basis $\Pi \subseteq R$ picks out a positive Weyl chamber

$$C_{+} = \Big\{ x \in E \mid (\alpha, x) > 0 \text{ for all } \alpha \in \Pi \Big\}.$$

These two constructions are clearly inverse to each other.

Weyl chambers and bases

It is easy to see that the Weyl group W acts transitively on the set of Weyl chambers (by reflections).



Conclusion

Any two bases $\Pi, \Pi' \subseteq R$ are related by an element of W.

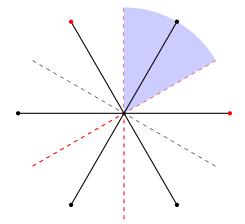
Simple reflections

Goal: Reconstruct *R* from the set of simple roots Π .

Let $\alpha_1, \ldots, \alpha_n \in \Pi$ be the simple roots $(n = \dim E)$. Let

$$s_i = s_{\alpha_i} \in W$$

be the corresponding simple reflections.



Simple reflections

Theorem

- 1. We have $R = W(\Pi)$.
- 2. The simple reflections s_1, \ldots, s_n generate W.

This allows us to reconstruct R from Π :

- The set Π determines the simple reflections s_1, \ldots, s_n .
- $W \subseteq O(E)$ is the subgroup generated by s_1, \ldots, s_n .
- We now recover the entire root system as $R = W(\Pi)$.

Conclusion (for next time)

We only need to classify the possible sets of simple roots!

Example: simple reflections in A_{n-1}

Recall that for the root system of $\mathfrak{sl}(n,\mathbb{C})$, we have

$$E = \left\{ x \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0 \right\},$$

$$R = \left\{ e_i - e_j \mid i \neq j \right\}.$$

A natural choice of polarization is $R_+ = \{ e_i - e_j \mid i < j \}$. The resulting set of simple roots is

$$\Pi = \Big\{ e_1 - e_2, e_2 - e_3, \dots, e_{n-1} - e_n \Big\}.$$

The simple reflections are the transpositions

$$(1,2)$$
 $(2,3)$... $(n-1,n)$.

These do generate the full symmetric group $W = S_n$.

Simple reflections

Theorem

- 1. We have $R = W(\Pi)$.
- 2. The simple reflections s_1, \ldots, s_n generate W.
 - Let R' ⊆ R be the subset generated by applying any number of simple reflections to the roots in Π.
- Any β ∈ R' can be written in the form β = w(α_j) for some α_j ∈ Π and some w = s_{i1} · · · s_{iℓ} ∈ W.
- By a result from last time,

$$s_eta = s_{\mathsf{w}(lpha_j)} = \mathsf{w} s_j \mathsf{w}^{-1} = s_{i_1} \cdots s_{i_\ell} s_j s_{i_\ell} \cdots s_{i_1}$$

is a product of simple reflections, hence $s_{\beta}(R') = R'$.

► This proves that R' is again a root system, whose Weyl group W' is the subgroup of W generated by s₁,..., s_n.

Simple reflections

Theorem

- 1. We have $R = W(\Pi)$.
- 2. The simple reflections s_1, \ldots, s_n generate W.
 - For the induced polarization on R', the set of simple roots is still ∏ ⊆ R'.
- Therefore C_+ is still one of the Weyl chambers of R'.
- Since W' acts transitively on Weyl chambers, it follows that R and R' have the same Weyl chambers.
- Therefore each hyperplane L_α with α ∈ R must equal L_β for some β ∈ R'.
- But L_{α} determines $\pm \alpha$.
- Therefore R' = R and W' = W.

Weyl group of G_2

Quiz question: What is the Weyl group of G_2 ?

