Simple roots and the Weyl group

MAT 552

April 22, 2020



Brief review: abstract root systems

E is a finite dimensional real vector space.

(—, —) is a positive definite inner product on E.

A (reduced) root system is a subset R C E \ {0} such that:
1. R is finite and spans E.
2. Ifae R and ca € R, then ¢ = +1.
3. For every a, 8 € R, one has

4. If o, € R, then also f — ng,a € R.

The rank of the root system is dim E.



Brief review: reflections
Recall the geometric meaning of (4). Let

2(a, x)

St E—= E, su(x)=x— )

Q,

be the reflection in the hyperplane orthogonal to o € R.

Then (4) is saying that R is closed under s,.



Brief review: angles and relative lengths

The condition ng, = 2(«, 3)/(«, &) € Z constrains the angle
between roots, as well as the relative lengths of roots.

Bo (B0 = %)
B (6= 3)
B (0= %)
%)

By (63 =



Brief review: Weyl group

Definition
The Weyl group of a root system R C E is the subgroup
W C GL(E) generated by all the reflections s,, for & € R.

The Weyl group is the symmetry group of the root system —
not literally, but morally.

Lemma

1. The Weyl group is a finite subgroup of the orthogonal
group O(E), and R is invariant under the action of W.

2. Foranyw € W and any a € R, we have s,,(o) = ws,w L.



Polarizations
Goal: Find a “basis” for the root system R.

Choose a vector t € E such that (a, t) # 0 for every a € R.
The choice of t defines a decomposition

R=R,UR_
of the root system into positive and negative roots:
Ri={acR ] )>0}
R.={acR|(at)<0}

This decomposition is called a polarization.

Definition

A positive root o € Ry is called simple if it is not the sum of
two other positive roots. The set of simple roots is denoted I1.



Example: simple roots in A




Example: simple roots in G
ea + 30

p a+ 28 200+ 30




Simple roots

The simple roots 1 form a basis of the vector space E.

We first prove two small lemmas.

If «, € Rand (o, ) >0, thena— € Rand f—a €R.

» Since (o, ) > 0, we get ng, > 1 and n, g > 1.

» But n, gng. =4cos?d, and so n, 3 =1o0r ng, = 1.

» If npg =1, then sg(a) =a—nysf=a—pF €R.

» If ngo =1, then s, () =0 —a €R.

The negative of every root is again a root. O

v



Simple roots

The simple roots I1 form a basis of the vector space E.

We first prove two small lemmas.

If « # /3 are distinct simple roots, then (a, 3) < 0.

v

Suppose to the contrary that (a, 3) > 0.

» By Lemma 1, we havea — S € Rand f —a € R.
Therefore either a — € R, or f —a € R,.

If « — 8 € Ry, then a = (o — ) + 3 contradicts v € T1.
Same story if § —a € R,. ]

v
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Simple roots

The simple roots 1 form a basis of the vector space E.

Step 1: The simple roots span E.
» Every positive root is a sum of simple roots (obvious).
» By definition, R =R, LUR_spans E, and R_ = —R,.

Step 2: The simple roots are linearly independent.
» Let aq,...,a, € Il be the simple roots.
» Since a; € Ry, we have («a, t) > 0 for all i.
» By Lemma 2, we have («a;, o) < 0 for i # j.
» By HW #7.3, this implies aq, .. ., a, linearly independent.

We may say that [1 is a basis of the root system R.



Weyl chambers

For each root o € R, we have the orthogonal hyperplane
L, = {XE E ‘ (a,x)zO}.

They divide E into disjoint open cones called Weyl chambers.




Weyl chambers and bases

How does the set of simple roots depend on t?

As long as t stays in one Weyl chamber, the positive roots R,
and hence the simple roots Il are unchanged.



Weyl chambers and bases

We have a bijection between bases and Weyl chambers:

Any Weyl chamber C C E determines a polarization with
R+:{aER’(a,x)>0fora||x€C},

and hence a set of simple roots 1 C R.

Conversely, a basis [1 C R picks out a positive Weyl chamber

C.={x€E|(a,x)>0foralacn}

These two constructions are clearly inverse to each other.



Weyl chambers and bases

It is easy to see that the Weyl group W acts transitively on
the set of Weyl chambers (by reflections).

Conclusion

Any two bases 1, 1" C R are related by an element of W.




Simple reflections
Goal: Reconstruct R from the set of simple roots 1.
Let g, ..., , € I be the simple roots (n = dim E). Let
Si=5y, €W

be the corresponding simple reflections.




Simple reflections

1. We have R = W(IN).
2. The simple reflections sy, . .. s, generate W.

This allows us to reconstruct R from [1:
» The set 1 determines the simple reflections sy, ..., s,.
» W C O(E) is the subgroup generated by sy, ..., s,.
» We now recover the entire root system as R = W(I).

Conclusion (for next time)

We only need to classify the possible sets of simple roots!



Example: simple reflections in A,_1

Recall that for the root system of sl(n,C), we have

E:{XGR” x1+---+x,,:0},
R:{e,-—ej)i;éj}.

A natural choice of polarization is R, = {e,- — € ‘ i <j}.
The resulting set of simple roots is

= {61—62,62—63,...,6,,,1—6,,}.
The simple reflections are the transpositions
(1,2) (2,3) ... (n—1,n).

These do generate the full symmetric group W = S,,.



Simple reflections

1. We have R = W(IN).
2. The simple reflections s, ... ,s, generate W.

» Let R' C R be the subset generated by applying any
number of simple reflections to the roots in 1.

» Any 8 € R’ can be written in the form 5 = w(q;) for
some o € [ and some w =5, ---5, € W.

» By a result from last time,
— — -1 _
Sg = Sw(aj) = ws;w = Siy **SipSjSi, Sy

is a product of simple reflections, hence sz(R’) = R'.

» This proves that R’ is again a root system, whose Weyl
group W’ is the subgroup of W generated by si, ..., s,.



Simple reflections

1.
2.

We have R = W(IN).
The simple reflections sy, . .., s, generate W.

For the induced polarization on R’, the set of simple roots
isstill M C R'.
Therefore C, is still one of the Weyl chambers of R'.

Since W’ acts transitively on Weyl chambers, it follows
that R and R’ have the same Weyl chambers.

Therefore each hyperplane L, with & € R must equal Lg
for some 5 € R'.

But L, determines +c.
Therefore R" = R and W = W. O



Weyl group of G,

Quiz question: What is the Weyl group of G,?




