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Brief review: abstract root systems

E is a finite dimensional real vector space.
(−,−) is a positive definite inner product on E .

A (reduced) root system is a subset R ⊆ E \ {0} such that:
1. R is finite and spans E .
2. If α ∈ R and cα ∈ R , then c = ±1.
3. For every α, β ∈ R , one has

nβ,α =
2(α, β)

(α, α)
∈ Z.

4. If α, β ∈ R , then also β − nβ,α α ∈ R .

The rank of the root system is dimE .



Brief review: reflections
Recall the geometric meaning of (4). Let

sα : E → E , sα(x) = x − 2(α, x)

(α, α)
α,

be the reflection in the hyperplane orthogonal to α ∈ R .
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1 Introduction

An irreducible root system is a finite set of vectors in Euclidean space satisfying
certain properties. The goal of this essay is to classify all irreducible root sys-
tems. I mostly follow the books given in references, however some information
is from other sources, such as Wikipedia, PlanetMath, and MathWorld.

2 Root systems

Definition. Let E ∼= Rn be a vector space with an inner product 〈·, ·〉. A subset
R ⊂ E \ {0} is called root system, if R has the following properties:

(R1) R is finite and spans E,

(R2) if α ∈ R, then −α ∈ R and ±α are the only multiples of α in R,

(R3) R is invariant under the reflection in the hyperplane orthogonal to any
α ∈ R (see Fig. 1), i.e., for all α,β ∈ R:

sα(β) = β − 2 projα β ∈ R, (1)

where projα β is the projection of β on α:

projα β = α
〈β,α〉
〈α,α〉 , (2)

α

β

sα(β)

α 〈β,α〉
〈α,α〉 = projα β

Figure 1: The reflection sα(β) of β in the hyperplane orthogonal to α.
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Then (4) is saying that R is closed under sα.



Brief review: angles and relative lengths
The condition nβ,α = 2(α, β)/(α, α) ∈ Z constrains the angle
between roots, as well as the relative lengths of roots.

α

β0 (θ0 = π
2 )

β1 (θ1 = π
3 )

β2 (θ2 = π
4 )

β3 (θ3 = π
6 )

Figure 2: The possible directions for β, when α is fixed.

(R4) R is crystallographic, i.e., for all α,β ∈ R:

nβα = 2
〈β,α〉
〈α,α〉 ∈ Z. (3)

The elements of R are called roots and the dimension of E is called the rank of
the root system.

Definition. The root system R is called decomposable if there is a proper
decomposition R = R1 ∪ R2 such that ∀α1 ∈ R1,∀α2 ∈ R2 : 〈α1,α2〉 = 0.
Otherwise it is called indecomposable or irreducible.

The condition −α ∈ R in property (R2) is not needed, because it follows
from (R4), since sα(α) = −α. We can interpret the property (R4) geometrically
as follows – the projection of β on α is an integer or half-integer multiple of α,
since

projα β =
1

2
nβαα.

In fact, this is the most restrictive property, because

nβα = 2
〈β,α〉
〈α,α〉 = 2

‖β‖ ‖α‖ cos θ

‖α‖2 = 2
‖β‖
‖α‖ cos θ ∈ Z,

where θ is the angle between α and β. Since both nβα and nαβ are integers:

nβα · nαβ = 4 cos2 θ ∈ Z.

More precisely, 4 cos2 θ ∈ {0, 1, 2, 3, 4}. If 4 cos2 θ = 4, then θ ∈ {0,π}, which
is just the property (R2). The other cases are summarized in Table 1 and the
corresponding vectors are shown in Fig. 2.

Let us consider root systems of small rank and see what are the possible
configurations that we can get (the examples are taken from [1] and [2]).

2.1 Root systems of rank 1

If we choose any non-zero vector α ∈ R, then R = {α,−α} is a root system.
Since any other non-zero vector is a multiple of α, property (R2) forbids us to
add more vectors to our root system. Therefore in rank 1 there is only one
possible root system – it is called A1 (see Fig. 3).
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Brief review: Weyl group

Definition
The Weyl group of a root system R ⊆ E is the subgroup
W ⊆ GL(E ) generated by all the reflections sα, for α ∈ R .

The Weyl group is the symmetry group of the root system –
not literally, but morally.

Lemma
1. The Weyl group is a finite subgroup of the orthogonal

group O(E ), and R is invariant under the action of W .
2. For any w ∈ W and any α ∈ R, we have sw(α) = wsαw−1.



Polarizations
Goal: Find a “basis” for the root system R .

Choose a vector t ∈ E such that (α, t) 6= 0 for every α ∈ R .
The choice of t defines a decomposition

R = R+ t R−

of the root system into positive and negative roots:

R+ =
{
α ∈ R

∣∣∣ (α, t) > 0
}

R− =
{
α ∈ R

∣∣∣ (α, t) < 0
}

This decomposition is called a polarization.

Definition
A positive root α ∈ R+ is called simple if it is not the sum of
two other positive roots. The set of simple roots is denoted Π.



Example: simple roots in A2

t

α

α + ββ



Example: simple roots in G2

t

α + β

α + 2ββ

α

2α + 3β

α + 3β



Simple roots

Theorem
The simple roots Π form a basis of the vector space E .

We first prove two small lemmas.

Lemma 1
If α, β ∈ R and (α, β) > 0, then α− β ∈ R and β − α ∈ R .

I Since (α, β) > 0, we get nβ,α ≥ 1 and nα,β ≥ 1.
I But nα,βnβ,α = 4 cos2 θ, and so nα,β = 1 or nβ,α = 1.
I If nα,β = 1, then sβ(α) = α− nα,ββ = α− β ∈ R .
I If nβ,α = 1, then sα(β) = β − α ∈ R .
I The negative of every root is again a root.



Simple roots

Theorem
The simple roots Π form a basis of the vector space E .

We first prove two small lemmas.

Lemma 2
If α 6= β are distinct simple roots, then (α, β) ≤ 0.

I Suppose to the contrary that (α, β) > 0.
I By Lemma 1, we have α− β ∈ R and β − α ∈ R .
I Therefore either α− β ∈ R+ or β − α ∈ R+.
I If α− β ∈ R+, then α = (α− β) + β contradicts α ∈ Π.
I Same story if β − α ∈ R+.



Simple roots

Theorem
The simple roots Π form a basis of the vector space E .

Step 1: The simple roots span E .
I Every positive root is a sum of simple roots (obvious).
I By definition, R = R+ t R− spans E , and R− = −R+.

Step 2: The simple roots are linearly independent.
I Let α1, . . . , αn ∈ Π be the simple roots.
I Since αi ∈ R+, we have (αi , t) > 0 for all i .
I By Lemma 2, we have (αi , αj) ≤ 0 for i 6= j .
I By HW #7.3, this implies α1, . . . , αn linearly independent.

We may say that Π is a basis of the root system R .



Weyl chambers
For each root α ∈ R , we have the orthogonal hyperplane

Lα =
{
x ∈ E

∣∣∣ (α, x) = 0
}
.

They divide E into disjoint open cones called Weyl chambers.



Weyl chambers and bases
How does the set of simple roots depend on t?

t

As long as t stays in one Weyl chamber, the positive roots R+

and hence the simple roots Π are unchanged.



Weyl chambers and bases

We have a bijection between bases and Weyl chambers:

Any Weyl chamber C ⊆ E determines a polarization with

R+ =
{
α ∈ R

∣∣∣ (α, x) > 0 for all x ∈ C
}
,

and hence a set of simple roots Π ⊆ R .

Conversely, a basis Π ⊆ R picks out a positive Weyl chamber

C+ =
{
x ∈ E

∣∣∣ (α, x) > 0 for all α ∈ Π
}
.

These two constructions are clearly inverse to each other.



Weyl chambers and bases
It is easy to see that the Weyl group W acts transitively on
the set of Weyl chambers (by reflections).

Conclusion
Any two bases Π,Π′ ⊆ R are related by an element of W .



Simple reflections
Goal: Reconstruct R from the set of simple roots Π.

Let α1, . . . , αn ∈ Π be the simple roots (n = dimE ). Let
si = sαi ∈ W

be the corresponding simple reflections.



Simple reflections

Theorem
1. We have R = W (Π).
2. The simple reflections s1, . . . , sn generate W .

This allows us to reconstruct R from Π:
I The set Π determines the simple reflections s1, . . . , sn.
I W ⊆ O(E ) is the subgroup generated by s1, . . . , sn.
I We now recover the entire root system as R = W (Π).

Conclusion (for next time)
We only need to classify the possible sets of simple roots!



Example: simple reflections in An−1

Recall that for the root system of sl(n,C), we have

E =
{
x ∈ Rn

∣∣∣ x1 + · · ·+ xn = 0
}
,

R =
{
ei − ej

∣∣∣ i 6= j
}
.

A natural choice of polarization is R+ =
{
ei − ej

∣∣∣ i < j
}
.

The resulting set of simple roots is

Π =
{
e1 − e2, e2 − e3, . . . , en−1 − en

}
.

The simple reflections are the transpositions

(1, 2) (2, 3) . . . (n − 1, n).

These do generate the full symmetric group W = Sn.



Simple reflections
Theorem
1. We have R = W (Π).
2. The simple reflections s1, . . . , sn generate W .

I Let R ′ ⊆ R be the subset generated by applying any
number of simple reflections to the roots in Π.

I Any β ∈ R ′ can be written in the form β = w(αj) for
some αj ∈ Π and some w = si1 · · · si` ∈ W .

I By a result from last time,

sβ = sw(αj ) = wsjw−1 = si1 · · · si`sjsi` · · · si1

is a product of simple reflections, hence sβ(R ′) = R ′.
I This proves that R ′ is again a root system, whose Weyl

group W ′ is the subgroup of W generated by s1, . . . , sn.



Simple reflections

Theorem
1. We have R = W (Π).
2. The simple reflections s1, . . . , sn generate W .

I For the induced polarization on R ′, the set of simple roots
is still Π ⊆ R ′.

I Therefore C+ is still one of the Weyl chambers of R ′.
I Since W ′ acts transitively on Weyl chambers, it follows

that R and R ′ have the same Weyl chambers.
I Therefore each hyperplane Lα with α ∈ R must equal Lβ

for some β ∈ R ′.
I But Lα determines ±α.
I Therefore R ′ = R and W ′ = W .



Weyl group of G2
Quiz question: What is the Weyl group of G2?


