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Brief review

Last time, we studied the root decomposition

g = h⊕
⊕
α∈R

gα

in a semisimple complex Lie algebra g.

Recall that R ⊆ h∗ is the root system of g, and

gα =
{
x ∈ g

∣∣∣ [h, x ] = α(h)x for all h ∈ h
}

are the root root subspaces (with g0 = h).



Brief review
Concerning the root subspaces

gα =
{
x ∈ g

∣∣∣ [h, x ] = α(h)x for all h ∈ h
}
,

we proved the following:
1. For each root α ∈ R , one has dim gα = 1.
2. If α, β ∈ R , then [gα, gβ] = gα+β.
3. For α ∈ R , there is a distinguished element hα ∈ h with

β(hα) =
2(α, β)
(α, α)

for all β ∈ h∗.

4. For α ∈ R , the subspace

gα ⊕ Chα ⊕ g−α

is a Lie subalgebra of g isomorphic to sl(2,C).



Brief review
Concerning the root system R ⊆ h∗, we proved the following:
1. One has h∗ = E ⊕ iE , where E ⊆ h∗ denotes the real

subspace spanned by the root system R .
2. The bilinear form (−,−) is positive definite on E .
3. For every α, β ∈ R , one has

β(hα) =
2(α, β)
(α, α)

∈ Z.

4. For α ∈ R , define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− λ(hα)α = λ− 2(α, λ)
(α, α)

α.

If β ∈ R , then also sα(β) ∈ R .
5. The only multiples of α ∈ R that are also roots are ±α.



Abstract root systems

Let E be a finite dimensional real vector space.
Let (−,−) be a positive definite inner product on E .

A subset R ⊆ E \ {0} is called a (reduced) root system if
1. R is finite and spans E .
2. If α ∈ R and cα ∈ R , then c = ±1.
3. For every α, β ∈ R , one has

nβ,α =
2(α, β)
(α, α)

∈ Z.

4. If α, β ∈ R , then also β − nβ,α α ∈ R .
The number dimE is called the rank of the root system.



Reflections
The geometric meaning of (4) is the following. Let

sα : E → E , sα(x) = x − 2(α, x)
(α, α)

α,

be the reflection in the hyperplane orthogonal to α ∈ R .
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1 Introduction

An irreducible root system is a finite set of vectors in Euclidean space satisfying
certain properties. The goal of this essay is to classify all irreducible root sys-
tems. I mostly follow the books given in references, however some information
is from other sources, such as Wikipedia, PlanetMath, and MathWorld.

2 Root systems

Definition. Let E ∼= Rn be a vector space with an inner product 〈·, ·〉. A subset
R ⊂ E \ {0} is called root system, if R has the following properties:

(R1) R is finite and spans E,

(R2) if α ∈ R, then −α ∈ R and ±α are the only multiples of α in R,

(R3) R is invariant under the reflection in the hyperplane orthogonal to any
α ∈ R (see Fig. 1), i.e., for all α, β ∈ R:

sα(β) = β − 2 projα β ∈ R, (1)

where projα β is the projection of β on α:

projα β = α
〈β, α〉
〈α, α〉 , (2)

α

β

sα(β)

α 〈β,α〉
〈α,α〉 = projα β

Figure 1: The reflection sα(β) of β in the hyperplane orthogonal to α.
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Then (4) is saying that R is closed under sα.



The root system An−1

Recall our computation of the root system of sl(n,C):

E = Rn/R(1, 1, . . . , 1) ∼=
{
x ∈ Rn

∣∣∣ x1 + · · ·+ xn = 0
}
,

with (−,−) induced by the standard inner product on Rn.

The set of roots is

R =
{
ei − ej

∣∣∣ i 6= j
}
.

It consists of n(n − 1) vectors, each of length
√
2.

The reflection corresponding to ei − ej swaps the i-th and j-th
coordinate of a vector.

This root system is called An−1.



Angles and lengths

The most restrictive condition in the definition is that

nβ,α =
2(α, β)
(α, α)

∈ Z.

Let θ ∈ [0, π] be the angle between α and β. Then

nβ,α =
2‖α‖‖β‖ cos θ
‖α‖2 =

2‖β‖ cos θ
‖α‖

,

and therefore 4 cos2 θ = nβ,αnα,β ∈ Z.

The only possibilities are 4 cos2 θ ∈ {0, 1, 2, 3, 4}.



Angles and lengths

We can list all possibilities, assuming that α is longer than β:

4 cos2 θ nβ,α nα,β ‖α‖/‖β‖ θ
0 0 0 any π/2
1 1 1 1 π/3
1 −1 −1 1 2π/3
2 1 2

√
2 π/4

2 −1 −2
√
2 3π/4

3 1 3
√
3 π/6

3 −1 −3
√
3 5π/6

4 2 2 1 0
4 -2 -2 1 π

Remember that ±α are the only possible multiples of α.



Angles and lengths
Here is the same information in pictorial form:

α

β0 (θ0 = π
2 )

β1 (θ1 = π
3 )

β2 (θ2 = π
4 )

β3 (θ3 = π
6 )

Figure 2: The possible directions for β, when α is fixed.

(R4) R is crystallographic, i.e., for all α, β ∈ R:

nβα = 2
〈β, α〉
〈α, α〉 ∈ Z. (3)

The elements of R are called roots and the dimension of E is called the rank of
the root system.

Definition. The root system R is called decomposable if there is a proper
decomposition R = R1 ∪ R2 such that ∀α1 ∈ R1,∀α2 ∈ R2 : 〈α1, α2〉 = 0.
Otherwise it is called indecomposable or irreducible.

The condition −α ∈ R in property (R2) is not needed, because it follows
from (R4), since sα(α) = −α. We can interpret the property (R4) geometrically
as follows – the projection of β on α is an integer or half-integer multiple of α,
since

projα β =
1

2
nβαα.

In fact, this is the most restrictive property, because

nβα = 2
〈β, α〉
〈α, α〉 = 2

‖β‖ ‖α‖ cos θ

‖α‖2 = 2
‖β‖
‖α‖ cos θ ∈ Z,

where θ is the angle between α and β. Since both nβα and nαβ are integers:

nβα · nαβ = 4 cos2 θ ∈ Z.

More precisely, 4 cos2 θ ∈ {0, 1, 2, 3, 4}. If 4 cos2 θ = 4, then θ ∈ {0, π}, which
is just the property (R2). The other cases are summarized in Table 1 and the
corresponding vectors are shown in Fig. 2.

Let us consider root systems of small rank and see what are the possible
configurations that we can get (the examples are taken from [1] and [2]).

2.1 Root systems of rank 1

If we choose any non-zero vector α ∈ R, then R = {α,−α} is a root system.
Since any other non-zero vector is a multiple of α, property (R2) forbids us to
add more vectors to our root system. Therefore in rank 1 there is only one
possible root system – it is called A1 (see Fig. 3).

2



Examples in rank 1

Every root system of rank 1 looks like this:

4 cos2 θ nβα nαβ ‖α‖ / ‖β‖ cos θ θ

3 +1 +3
√

3 +
√

3/2 π/6

−1 −3
√

3 −
√

3/2 5π/6

2 +1 +2
√

2 +
√

2/2 π/4

−1 −2
√

2 −
√

2/2 3π/4
1 +1 +1 1 +1/2 π/3

−1 −1 1 −1/2 2π/3
0 0 0 any 0 π/2

Table 1: Possible values of 4 cos2 θ and the corresponding angles θ. We assume
that α is longer than β.

Figure 3: The root system A1.

2.2 Root systems of rank 2

In rank 2 there is more freedom, because we can use any angle θ given in Table 1.
The simplest root system corresponds to θ = π/2. It is called A1 × A1, because
it is a direct sum of two rank 1 root systems A1 (see Fig. 4). Therefore it is
decomposable and the ratio of lengths of vertical and horizontal roots can be
arbitrary.

When θ = π/3, the root system consists of 6 vectors that correspond to the
vertices of a regular hexagon. This root system is called A2 and it is shown in
Fig. 5 (the purpose of the dashed lines is to indicate the lengths of projections
as in [3, pp. 120]).

If θ = π/4, the root system consists of 8 vectors. They correspond to the
vertices and to the midpoints of the edges of a regular square (see Fig. 6). The
ratio of lengths of these roots is

√
2. This root system is called B2.

Finally, if θ = π/6, the root system consists of 12 vectors. They correspond
to the vertices of two regular hexagons that have different sizes and are rotated
away from each other by an angle π/6 (see Fig. 7). The ratio of lengths of these
vectors is

√
3. This is an “exceptional” root system and is called G2.

It is not hard to see, that there are no other root systems of rank 2, because
in two dimensions the angle θ determines the root system completely, i.e., once

Figure 4: The root system A1 ×A1. Figure 5: The root system A2.
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The only roots are ±α (but the length of α is arbitrary).

This is the root system A1, up to rescaling.



Examples in rank 2
In rank 2, the root system is almost completely determined by
the angle θ between adjacent roots:

αβ

sα(β) γ = −sα(β)

sγ(α)

−sγ(α)

θ

In fact, the angle between any two adjacent roots must be θ.



Examples in rank 2
In rank 2, the root system is almost completely determined by
the angle θ between adjacent roots.

If θ = π/2, we get A1 × A1:

4 cos2 θ nβα nαβ ‖α‖ / ‖β‖ cos θ θ

3 +1 +3
√

3 +
√

3/2 π/6

−1 −3
√

3 −
√

3/2 5π/6

2 +1 +2
√

2 +
√

2/2 π/4

−1 −2
√

2 −
√

2/2 3π/4
1 +1 +1 1 +1/2 π/3

−1 −1 1 −1/2 2π/3
0 0 0 any 0 π/2

Table 1: Possible values of 4 cos2 θ and the corresponding angles θ. We assume
that α is longer than β.

Figure 3: The root system A1.
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The simplest root system corresponds to θ = π/2. It is called A1 × A1, because
it is a direct sum of two rank 1 root systems A1 (see Fig. 4). Therefore it is
decomposable and the ratio of lengths of vertical and horizontal roots can be
arbitrary.

When θ = π/3, the root system consists of 6 vectors that correspond to the
vertices of a regular hexagon. This root system is called A2 and it is shown in
Fig. 5 (the purpose of the dashed lines is to indicate the lengths of projections
as in [3, pp. 120]).

If θ = π/4, the root system consists of 8 vectors. They correspond to the
vertices and to the midpoints of the edges of a regular square (see Fig. 6). The
ratio of lengths of these roots is

√
2. This root system is called B2.

Finally, if θ = π/6, the root system consists of 12 vectors. They correspond
to the vertices of two regular hexagons that have different sizes and are rotated
away from each other by an angle π/6 (see Fig. 7). The ratio of lengths of these
vectors is

√
3. This is an “exceptional” root system and is called G2.

It is not hard to see, that there are no other root systems of rank 2, because
in two dimensions the angle θ determines the root system completely, i.e., once

Figure 4: The root system A1 ×A1. Figure 5: The root system A2.
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The two lengths are arbitrary.

If θ = π/3, we get A2:
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√
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The simplest root system corresponds to θ = π/2. It is called A1 × A1, because
it is a direct sum of two rank 1 root systems A1 (see Fig. 4). Therefore it is
decomposable and the ratio of lengths of vertical and horizontal roots can be
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When θ = π/3, the root system consists of 6 vectors that correspond to the
vertices of a regular hexagon. This root system is called A2 and it is shown in
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ratio of lengths of these roots is

√
2. This root system is called B2.

Finally, if θ = π/6, the root system consists of 12 vectors. They correspond
to the vertices of two regular hexagons that have different sizes and are rotated
away from each other by an angle π/6 (see Fig. 7). The ratio of lengths of these
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Figure 4: The root system A1 ×A1. Figure 5: The root system A2.
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Ratio of lengths is 1.



Examples in rank 2
If θ = π/4, we get B2:

Figure 6: The root system B2. Figure 7: The root system G2.

Figure 8: The root system A3. Figure 9: The root system B3.

the angle is chosen, the ratio of lengths of two consecutive roots is determined
(except for the case θ = π/2), hence the root system itself.

2.3 Root systems of rank 3

In rank 3 there are more decomposable root systems than in rank 2, because we
can use any root system of a lower rank to build one with a higher rank. The
decomposable root systems are: A1 ×A2, A1 ×B2, A1 ×G2, and A1 ×A1 ×A1.
But there are also three irreducible root systems.

The smallest irreducible root system of rank 3 consists of 12 points and
is called A3 (see Fig. 8). These roots correspond to the vertices of a regular
cuboctahedron (the intersection of a cube and an octahedron). One can think of
cuboctahedron as a cube with corners cut off. Then the roots correspond to the
midpoints of the edges of the cube. It means, they have the same length.

We can extend this root system by adding six vectors that are
√

2 times
shorter and correspond to the midpoints of the quadrangular faces of the cuboc-
tahedron or simply to the faces of the cube (see Fig. 9). The obtained root
system has 18 vectors and is called B3.

It turns out that we can extend A3 in another way. We use the same six
vectors, but this time we take them to be

√
2 times longer than the ones already

in A3 (see Fig. 10). This gives us a different kind of root system that also
consists of 18 vectors and is called C3. It looks different, because the convex
hull of the roots is an octahedron. But one can still see the cuboctahedron
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Ratio of lengths is
√
2.
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Ratio of lengths is
√
3.

Quiz question
G2 is the root system of a Lie algebra g. How big is dim g?



Examples in rank 3

In rank 3, there are three new irreducible examples (which are
not products of root systems of lower rank).

The root system A3:
Figure 6: The root system B2. Figure 7: The root system G2.

Figure 8: The root system A3. Figure 9: The root system B3.
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Examples in rank 3

In rank 3, there are three new irreducible examples (which are
not products of root systems of lower rank).

The root system C3:

Figure 10: The root system C3.

behind it (consider the dashed lines in Fig. 10, that join the midpoints of the
edges of the octahedron).

The root systems A3, B3, and C3 are the only irreducible root systems of
rank 3 (see [1, pp. 323] and [2, pp. 163, 262]). Since the root systems of rank 4
will not be easy to visualize, let us proceed to the classification of root systems
of any rank.

3 Classification of root systems

The proof of the classification theorem can be found in several textbooks, e.g.,
[1, pp. 325], [4, pp. 186], [5, pp. 130], [6, pp. 57], and [7, pp. 201]. I will follow
the proofs given in [5] and [6].

3.1 Simple roots

For each root system one can choose a special subset (though it is not unique)
of roots called simple roots or fundamental system. It plays a very important
role in the classification of irreducible root systems.

Consider a root system R. For each root there is a unique hyperplane that
contains the origin and is orthogonal to this root. Since a root system is finite,
the union of all such hyperplanes can not be the whole space. Thus one can find
a vector d, such that ∀α ∈ R : 〈α, d〉 %= 0. Then we can break the root system
into two disjoint parts R = R+(d) ∪ R−(d), where R+(d) = {α ∈ R| 〈α, d〉 > 0}
and R−(d) = −R+(d).

Definition. A root α is called positive if α ∈ R+(d) and negative if α ∈ R−(d).

Definition. A positive root α ∈ R+(d) is called simple if it is not a sum of two
other positive roots.

Definition. The set of all simple roots of a root system R is called basis or
fundamental system of R.
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Isomorphisms
We are interested in the numbers nβ,α, more than in the
lengths of individual roots.

Definition
Two root systems R1 ⊆ E1 and R2 ⊆ E2 are isomorphic if there
is a vector space isomorphism

ϕ : E1 → E2

such that ϕ(R1) = R2 and nϕ(β),ϕ(α) = nβ,α for all α, β ∈ R1.

Isomorphisms do not need to preserve the inner product.

Example
The root systems R and cR (with c > 0) are isomorphic.



Reducible and irreducible root systems

Example
If R1 ⊆ E1 and R2 ⊆ E2 are root systems, then

R1 × {0} ∪ {0} × R2 ⊆ E1 ⊕ E2

is another root system, denoted R1 × R2. (The inner product
on E1 ⊕ E2 is the one where E1 and E2 are perpendicular.)

A root system R is reducible if it can be written as a product
of two smaller root systems in a nontrivial way. Equivalently,

R = R1 t R2

with R1 ⊥ R2. If this is not possible, R is called irreducible.



Weyl group

Definition
The Weyl group of a root system R ⊆ E is the subgroup
W ⊆ GL(E ) generated by all the reflections sα, for α ∈ R .

One can think of they Weyl group as being a sort of
“automorphism group” of the root system.

Example
Let R be the root system of type An−1.

I The reflection corresponding to ei − ej swaps the i-th and
j-th coordinate of each vector.

I In coordinates, it is the transposition (i j).
I The symmetric group is generated by transpositions.
I Therefore W ∼= Sn in this case.



Weyl group

Lemma
1. The Weyl group is a finite subgroup of the orthogonal

group O(E ), and R is invariant under the action of W .
2. For any w ∈ W and any α ∈ R, we have sw(α) = wsαw−1.

I Every reflection sα is an orthogonal transformation.
I Therefore W ⊆ O(E ).
I By the axioms, sα(R) = R , hence w(R) = R for w ∈ W .
I If w ∈ W leaves every α ∈ R invariant, then w = id

(because R spans the vector space E ).
I Since R is a finite set, W must be a finite group.



Weyl group
Lemma
1. The Weyl group is a finite subgroup of the orthogonal

group O(E ), and R is invariant under the action of W .
2. For any w ∈ W and any α ∈ R, we have sw(α) = wsαw−1.

I For w ∈ W and α ∈ R , consider ϕ = wsαw−1.
I Let Lα be the hyperplane orthogonal to α.
I Since w ∈ O(E ), we have w(Lα) = Lw(α).
I Clearly ϕ acts as the identity on Lw(α).
I Also ϕ(w(α)) = w(sα(α)) = −w(α).
I Therefore ϕ is the reflection in the hyperplane Lw(α).

Quiz question
Do isomorphic root sytems have isomorphic Weyl groups?


