More about root decompositions

MAT 552

April 15, 2020

Brief review

Like last time, \mathfrak{g} is always a semisimple complex Lie algebra.

We fix a Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$:

- h is commutative
- every $h \in \mathfrak{h}$ is a semisimple element of \mathfrak{g}
- \mathfrak{h} is maximal with these properties

This gives us the root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}.$$

Here $R \subseteq \mathfrak{h}^*$ is the root system of \mathfrak{g} , and

$$\mathfrak{g}_{lpha}=ig\{x\in\mathfrak{g}\ \Big|\ [h,x]=lpha(h)x ext{ for all } h\in\mathfrak{h}ig\}$$

are the root subspaces. Recall that $\mathfrak{g}_0 = \mathcal{C}(\mathfrak{h}) = \mathfrak{h}$.

Brief review

Fix a nondegenerate symmetric invariant bilinear form (-, -) on \mathfrak{g} , for example the Killing form K.

Last time, we showed that the root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in R}\mathfrak{g}_lpha$$

has the following properties:

1.
$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}.$$

2. If $\alpha + \beta \neq 0$, then \mathfrak{g}_{α} and \mathfrak{g}_{β} are orthogonal under (-, -).

- 3. (-,-) induces nondegenerate pairings $\mathfrak{g}_{\alpha} \otimes \mathfrak{g}_{-\alpha} \to \mathbb{C}$.
- 4. The restriction of (-, -) to \mathfrak{h} is nondegenerate.

The induced pairing on \mathfrak{h}^*

Today, we are going to study the root decomposition in more detail. Our main tool is the representation theory of $\mathfrak{sl}(2,\mathbb{C})$.

First, some notation. We know that (-, -) restricts to a nondegenerate pairing on \mathfrak{h} . This gives us an isomorphism

$$\mathfrak{h}
ightarrow \mathfrak{h}^*, \quad h \mapsto (h, -).$$

For a linear functional $\alpha \in \mathfrak{h}^*$, we denote by $H_{\alpha} \in \mathfrak{h}$ the corresponding element of the Cartan subalgebra. Thus

$$(H_{\alpha}, h) = \alpha(h)$$
 for all $h \in \mathfrak{h}$.

We also get an induced pairing (-,-) on \mathfrak{h}^* ; concretely,

$$(\alpha,\beta) = (H_{\alpha},H_{\beta}) = \alpha(H_{\beta}) = \beta(H_{\alpha}).$$

Lemma

Let
$$e \in \mathfrak{g}_{\alpha}$$
 and $f \in \mathfrak{g}_{-\alpha}$ be arbitrary. Then $[e, f] = (e, f)H_{\alpha}$.

Recall that $H_{\alpha} \in \mathfrak{h}$ is the unique element with

$$(H_{\alpha}, h) = \alpha(h)$$
 for all $h \in \mathfrak{h}$.

Since (-,-) is invariant, we have for arbitrary $h \in \mathfrak{h}$ that

$$([e, f], h) = -(f, [e, h]) = (f, [h, e]).$$

Now $e \in \mathfrak{g}_{\alpha}$ means that $[h, e] = \alpha(h)e = (H_{\alpha}, h)e$. Thus

$$([e, f], h) = (H_{\alpha}, h)(f, e) = ((e, f)H_{\alpha}, h).$$

Since (-,-) is nondegenerate, we get the result.

Recall that $H_{\alpha} \in \mathfrak{h}$ is the unique element with

$$(H_{\alpha},h) = \alpha(h)$$
 for all $h \in \mathfrak{h}$.

The induced pairing between \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ is nondegenerate, so we can choose $e \in \mathfrak{g}_{\alpha}$ and $f \in \mathfrak{g}_{-\alpha}$ with $(e, f) \neq 0$. Then

$$[e, f] = (e, f)H_{\alpha}$$

$$[H_{\alpha}, e] = \alpha(H_{\alpha})e = (\alpha, \alpha)e$$

$$[H_{\alpha}, f] = -\alpha(H_{\alpha})f = -(\alpha, \alpha)f$$

This almost looks like the relations in $\mathfrak{sl}(2,\mathbb{C})$...

We could rescale them if we knew that $(\alpha, \alpha) \neq 0$.

Lemma

For any root
$$\alpha \in R$$
, we have $(\alpha, \alpha) = (H_{\alpha}, H_{\alpha}) \neq 0$.

- Suppose to the contrary that $(\alpha, \alpha) = 0$.
- Then $\alpha(H_{\alpha}) = (H_{\alpha}, H_{\alpha}) = (\alpha, \alpha) = 0.$
- Choose $e \in \mathfrak{g}_{\alpha}$ and $f \in \mathfrak{g}_{-\alpha}$ with $(e, f) \neq 0$.
- Set $h = [e, f] = (e, f)H_{\alpha}$ (by the lemma).
- We have $[h, e] = \alpha(h)e = 0$ and $[h, f] = -\alpha(h)f = 0$.
- Therefore $\langle e, f, h \rangle \subseteq \mathfrak{g}$ is a solvable Lie subalgebra.
- ► By Lie's theorem, ad e, ad f, ad h are upper triangular in a suitable basis of g.
- This makes ad h = [ad e, ad f] nilpotent.
- But ad h is semisimple (because $h \in \mathfrak{h}$), and so h = 0.
- This contradicts $(e, f) \neq 0$.

Let $\alpha \in R$ be any root. Since $(\alpha, \alpha) \neq 0$, we can define

$$h_{\alpha}=rac{2}{(lpha,lpha)}H_{lpha}\in\mathfrak{h}.$$

Note that $\alpha(h_{\alpha}) = 2$, because $\alpha(H_{\alpha}) = (\alpha, \alpha)$. Choose $e_{\alpha} \in \mathfrak{g}_{\alpha}$ and $f_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $(e_{\alpha}, f_{\alpha})(\alpha, \alpha) = 2$. Then

$$\begin{split} [e_{\alpha}, f_{\alpha}] &= (e_{\alpha}, f_{\alpha})H_{\alpha} = (e_{\alpha}, f_{\alpha})\frac{(\alpha, \alpha)}{2}h_{\alpha} = h_{\alpha}, \\ [h_{\alpha}, e_{\alpha}] &= \alpha(h_{\alpha})e_{\alpha} = 2e_{\alpha}, \\ [h_{\alpha}, f_{\alpha}] &= -\alpha(h_{\alpha})f_{\alpha} = -2f_{\alpha}. \end{split}$$

These relations justify defining $\mathfrak{sl}(2,\mathbb{C})_{\alpha} = \langle e_{\alpha}, f_{\alpha}, h_{\alpha} \rangle \subseteq \mathfrak{g}$. This is a Lie subalgebra of \mathfrak{g} , isomorphic to $\mathfrak{sl}(2,\mathbb{C})$.

Brief review: irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$

Recall that an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ looks like

$$V = \mathbb{C} v_0 \oplus \mathbb{C} v_1 \oplus \cdots \oplus \mathbb{C} v_n.$$

Pictorially (with the weights in red):

The weight spaces $V[n-2k] = \mathbb{C}v_k$ are all one-dimensional.

Lemma

For any root $\alpha \in R$, the subspace

$$V=\mathbb{C}h_lpha\oplus igoplus_{k\in\mathbb{Z},\,k
eq 0}\mathfrak{g}_{klpha}\subseteq \mathfrak{g}$$

is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha} = \langle e_{\alpha}, f_{\alpha}, h_{\alpha} \rangle$.

- We have ad $e_{\alpha}.\mathfrak{g}_{k\alpha} \subseteq \mathfrak{g}_{(k+1)\alpha}$ and ad $e_{\alpha}.\mathfrak{g}_{-\alpha} \subseteq \mathbb{C}h_{\alpha}.$
- Likewise ad $f_{\alpha}.\mathfrak{g}_{k\alpha} \subseteq \mathfrak{g}_{(k-1)\alpha}$ and ad $f_{\alpha}.\mathfrak{g}_{\alpha} \subseteq \mathbb{C}h_{\alpha}$.
- ► Therefore V is a representation of sl(2, C)_α.
- Since $\alpha(h_{\alpha}) = 2$, all eigenvalues of ad h_{α} are even:

$$V[2k] = \mathfrak{g}_{klpha}$$
 and $V[0] = \mathbb{C}h_lpha$

• As dim V[0] = 1, the representation is irreducible.

Main theorem about semisimple Lie algebras

We can now prove the main theorem about the structure of semisimple complex Lie algebras.

Let ${\mathfrak g}$ be a semisimple complex Lie algebra, with Cartan subalgebra ${\mathfrak h}$ and root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in R}\mathfrak{g}_lpha.$$

Let (-, -) be a nondegenerate symmetric invariant bilinear form on \mathfrak{g} ; it induces nondegenerate pairings on \mathfrak{h} and \mathfrak{h}^* . For every root $\alpha \in R$, we have a unique element $H_{\alpha} \in \mathfrak{h}$ with

$$(H_{\alpha},h) = \alpha(h)$$
 for all $h \in \mathfrak{h}$.

We defined
$$h_{\alpha} = \frac{2}{(\alpha, \alpha)} H_{\alpha} \in \mathfrak{h}.$$

Main theorem about semisimple Lie algebras

Theorem

- 1. The root system R spans \mathfrak{h}^* as a vector space.
- 2. For each root $\alpha \in R$, we have dim $\mathfrak{g}_{\alpha} = 1$.
- 3. For any $\alpha, \beta \in R$, we have $\beta(h_{\alpha}) = 2(\alpha, \beta)/(\alpha, \alpha) \in \mathbb{Z}$.
- 4. For $\alpha \in R$, define the reflection operator $s_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^*$ by

$$s_{lpha}(\lambda) = \lambda - \lambda(h_{lpha}) lpha = \lambda - rac{2(lpha,\lambda)}{(lpha,lpha)} lpha.$$

Then if $\beta \in R$, we also have $s_{\alpha}(\beta) \in R$.

The only multiples of α ∈ R that are also roots are ±α.
 If α, β ∈ R and α + β ∈ R, then [g_α, g_β] = g_{α+β}.

Example: the root system of $\mathfrak{sl}(3,\mathbb{C})$

Here is the root system of $\mathfrak{sl}(3,\mathbb{C})$ from last time:

- **1.** The root system *R* spans \mathfrak{h}^* as a vector space.
 - Let $h \in \mathfrak{h}$ be such that $\alpha(h) = 0$ for every root $\alpha \in R$.
 - The root decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha},$$

implies that ad h = 0.

- But ad: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ is injective, and so h = 0.
- This proves that R spans the dual vector space \mathfrak{h}^* .

- **2.** For each root $\alpha \in R$, we have dim $\mathfrak{g}_{\alpha} = 1$.
 - We proved that the subspace

$$V=\mathbb{C}h_lpha\oplus igoplus_{k\in\mathbb{Z},\,k
eq 0}\mathfrak{g}_{klpha}\subseteq \mathfrak{g}$$

is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha}$.

- Each weight subspace $V[2k] = \mathfrak{g}_{k\alpha}$ is one-dimensional.
- In particular, dim $\mathfrak{g}_{\alpha} = \dim V[2] = 1$.

3. For any $\alpha, \beta \in R$, we have $\beta(h_{\alpha}) = 2(\alpha, \beta)/(\alpha, \alpha) \in \mathbb{Z}$.

- ► Consider g as a representation of sl(2, C)_α.
- With respect to ad h_{α} , the subspace \mathfrak{g}_{β} has weight

$$\beta(h_{\alpha}) = \frac{2}{(\alpha, \alpha)}\beta(H_{\alpha}) = \frac{2}{(\alpha, \alpha)}(\alpha, \beta) = \frac{2(\alpha, \beta)}{(\alpha, \alpha)}.$$

▶ But we know that the weights in any finite-dimensional representation of sl(2, C) are integers.

4. For $\alpha \in R$, define the reflection operator $s_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^*$ by

$$s_{lpha}(\lambda) = \lambda - \lambda(h_{lpha}) lpha = \lambda - rac{2(lpha,\lambda)}{(lpha,lpha)} lpha.$$

Then if $\beta \in R$, we also have $s_{\alpha}(\beta) \in R$.

- Suppose that $n = \beta(h_{\alpha}) \ge 0$.
- The subspace g_β has weight n with respect to the representation of sl(2, C)_α on g.
- ► The operator (ad f_α)ⁿ gives an isomorphism between the subspace of weight n and the subspace of weight -n.
- ▶ Thus $x \in \mathfrak{g}_{\beta}$ nonzero implies $(\operatorname{ad} f_{\alpha})^n x \in \mathfrak{g}_{\beta-n\alpha}$ nonzero.
- Consequently, $\beta n\alpha = s_{\alpha}(\beta) \in R$.
- The proof in the other case $n \le 0$ is similar.

- **5.** The only multiples of $\alpha \in R$ that are also roots are $\pm \alpha$.
 - Suppose that $\beta = c\alpha \in R$ for some $c \in \mathbb{C}$.
 - We know from Part 3 that

$$rac{2(lpha,eta)}{(lpha,lpha)}=2c \quad ext{and} \quad rac{2(lpha,eta)}{(eta,eta))}=rac{2}{c}$$

are both integers. Therefore $c \in \{\pm 1, \pm 2, \pm \frac{1}{2}\}$.

- We can assume $c \in \{\pm 1, \pm 2\}$, by swapping α and β .
- We proved that the subspace

$$V = \mathbb{C}h_{lpha} \oplus igoplus_{k \in \mathbb{Z}, \ k
eq 0} \mathfrak{g}_{k lpha} \subseteq \mathfrak{g}$$

is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha} = \langle e_{\alpha}, f_{\alpha}, h_{\alpha} \rangle$.

- But V contains $\mathfrak{sl}(2,\mathbb{C})_{\alpha}$, and so $V = \mathfrak{sl}(2,\mathbb{C})_{\alpha}$.
- ► Therefore $\mathfrak{g}_{2\alpha} = \mathfrak{g}_{-2\alpha} = 0$, hence $c \in {\pm 1}$.

6. If $\alpha, \beta \in R$ and $\alpha + \beta \in R$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.

- We already know that $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}$.
- We also know that $\mathfrak{g}_{\alpha} = \mathbb{C} e_{\alpha}$ for every root $\alpha \in R$.
- Therefore it is enough to show that

$$\mathfrak{g}_{lpha+eta}
eq 0 \implies [e_{lpha},e_{eta}]
eq 0.$$

For dimension reasons, the subspace

$$\bigoplus_{k\in\mathbb{Z}}\mathfrak{g}_{\beta+k\alpha}$$

is again an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})_{\alpha}$.

• Therefore ad e_{α} : $\mathfrak{g}_{\beta} \to \mathfrak{g}_{\beta+\alpha}$ is an isomorphism.

Positivity of the Killing form

Theorem

Let $\mathfrak{h}_{\mathbb{R}} \subseteq \mathfrak{h}$ be the real vector space spanned by $\{h_{\alpha}\}_{\alpha \in \mathbb{R}}$.

1. One has
$$\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} \oplus i\mathfrak{h}_{\mathbb{R}}$$
.

2. The Killing form is positive definite on $\mathfrak{h}_{\mathbb{R}}$.

Step 1: The Killing form is real valued on $\mathfrak{h}_{\mathbb{R}}$.

Because of the root decomposition, we have

$$\mathcal{K}(h_lpha,h_eta)= {
m tr}_\mathfrak{g}({
m ad}\ h_lpha\circ {
m ad}\ h_eta) = \sum_{\gamma\in \mathcal{R}} \gamma(h_lpha)\gamma(h_eta).$$

- ▶ But $\gamma(h_{\alpha}), \gamma(h_{\beta}) \in \mathbb{Z}$, and therefore $K(h_{\alpha}, h_{\beta}) \in \mathbb{Z}$.
- Since K is bilinear, it only takes real values on $\mathfrak{h}_{\mathbb{R}}$.

Positivity of the Killing form

Theorem

Let $\mathfrak{h}_{\mathbb{R}} \subseteq \mathfrak{h}$ be the real vector space spanned by $\{h_{\alpha}\}_{\alpha \in \mathbb{R}}$.

- 1. One has $\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} \oplus i\mathfrak{h}_{\mathbb{R}}$.
- 2. The Killing form is positive definite on $\mathfrak{h}_{\mathbb{R}}$.

Step 2: The Killing form is positive definite on $\mathfrak{h}_{\mathbb{R}}$.

• Let
$$h = \sum c_{\alpha} h_{\alpha} \in \mathfrak{h}_{\mathbb{R}}.$$

- Then $\gamma(h) = \sum c_{\alpha} \gamma(h_{\alpha}) \in \mathbb{R}$ for every $\gamma \in R$.
- Again because of the root decomposition,

$$\mathcal{K}(h,h) = \operatorname{tr}_\mathfrak{g}(\operatorname{ad} h \circ \operatorname{ad} h) = \sum_{\gamma \in \mathcal{R}} \gamma(h)^2 \geq 0.$$

Since R spans \mathfrak{h}^* , we conclude that K is positive definite.

Positivity of the Killing form

Theorem

Let $\mathfrak{h}_{\mathbb{R}} \subseteq \mathfrak{h}$ be the real vector space spanned by $\{h_{\alpha}\}_{\alpha \in \mathbb{R}}$.

1. One has $\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} \oplus i\mathfrak{h}_{\mathbb{R}}$.

2. The Killing form is positive definite on $\mathfrak{h}_{\mathbb{R}}$.

Step 3: One has $\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} \oplus i\mathfrak{h}_{\mathbb{R}}$.

- We know that the elements h_{α} span \mathfrak{h} .
- Therefore $\mathfrak{h} = \mathfrak{h}_{\mathbb{R}} + i\mathfrak{h}_{\mathbb{R}}$.
- From Step 2, K is positive definite on $\mathfrak{h}_{\mathbb{R}}$.
- Therefore *K* is negative definite on $i\mathfrak{h}_{\mathbb{R}}$.
- This gives $\mathfrak{h}_{\mathbb{R}} \cap i\mathfrak{h}_{\mathbb{R}} = \{0\}$, hence the result.