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Brief review
Like last time, g is always a semisimple complex Lie algebra.

We fix a Cartan subalgebra h ⊆ g:
I h is commutative
I every h ∈ h is a semisimple element of g
I h is maximal with these properties

This gives us the root decomposition

g = h⊕
⊕
α∈R

gα.

Here R ⊆ h∗ is the root system of g, and

gα =
{
x ∈ g

∣∣∣ [h, x ] = α(h)x for all h ∈ h
}

are the root subspaces. Recall that g0 = C(h) = h.



Brief review

Fix a nondegenerate symmetric invariant bilinear form (−,−)
on g, for example the Killing form K .

Last time, we showed that the root decomposition

g = h⊕
⊕
α∈R

gα

has the following properties:
1. [gα, gβ] ⊆ gα+β.
2. If α+β 6= 0, then gα and gβ are orthogonal under (−,−).
3. (−,−) induces nondegenerate pairings gα ⊗ g−α → C.
4. The restriction of (−,−) to h is nondegenerate.



The induced pairing on h∗

Today, we are going to study the root decomposition in more
detail. Our main tool is the representation theory of sl(2,C).

First, some notation. We know that (−,−) restricts to a
nondegenerate pairing on h. This gives us an isomorphism

h→ h∗, h 7→ (h,−).

For a linear functional α ∈ h∗, we denote by Hα ∈ h the
corresponding element of the Cartan subalgebra. Thus

(Hα, h) = α(h) for all h ∈ h.

We also get an induced pairing (−,−) on h∗; concretely,

(α, β) = (Hα,Hβ) = α(Hβ) = β(Hα).



Finding representations of sl(2,C)
Lemma
Let e ∈ gα and f ∈ g−α be arbitrary. Then [e, f ] = (e, f )Hα.

Recall that Hα ∈ h is the unique element with

(Hα, h) = α(h) for all h ∈ h.

Since (−,−) is invariant, we have for arbitrary h ∈ h that

([e, f ], h) = −(f , [e, h]) = (f , [h, e]).

Now e ∈ gα means that [h, e] = α(h)e = (Hα, h)e. Thus

([e, f ], h) = (Hα, h)(f , e) =
(
(e, f )Hα, h

)
.

Since (−,−) is nondegenerate, we get the result.



Finding representations of sl(2,C)

Recall that Hα ∈ h is the unique element with

(Hα, h) = α(h) for all h ∈ h.

The induced pairing between gα and g−α is nondegenerate, so
we can choose e ∈ gα and f ∈ g−α with (e, f ) 6= 0. Then

[e, f ] = (e, f )Hα
[Hα, e] = α(Hα)e = (α, α)e
[Hα, f ] = −α(Hα)f = −(α, α)f

This almost looks like the relations in sl(2,C). . .

We could rescale them if we knew that (α, α) 6= 0.



Finding representations of sl(2,C)
Lemma
For any root α ∈ R, we have (α, α) = (Hα,Hα) 6= 0.

I Suppose to the contrary that (α, α) = 0.
I Then α(Hα) = (Hα,Hα) = (α, α) = 0.
I Choose e ∈ gα and f ∈ g−α with (e, f ) 6= 0.
I Set h = [e, f ] = (e, f )Hα (by the lemma).
I We have [h, e] = α(h)e = 0 and [h, f ] = −α(h)f = 0.
I Therefore 〈e, f , h〉 ⊆ g is a solvable Lie subalgebra.
I By Lie’s theorem, ad e, ad f , ad h are upper triangular in

a suitable basis of g.
I This makes ad h = [ad e, ad f ] nilpotent.
I But ad h is semisimple (because h ∈ h), and so h = 0.
I This contradicts (e, f ) 6= 0.



Finding representations of sl(2,C)
Let α ∈ R be any root. Since (α, α) 6= 0, we can define

hα =
2

(α, α)
Hα ∈ h.

Note that α(hα) = 2, because α(Hα) = (α, α).
Choose eα ∈ gα and fα ∈ g−α such that (eα, fα)(α, α) = 2.
Then

[eα, fα] = (eα, fα)Hα = (eα, fα)
(α, α)

2 hα = hα,

[hα, eα] = α(hα)eα = 2eα,
[hα, fα] = −α(hα)fα = −2fα.

These relations justify defining sl(2,C)α = 〈eα, fα, hα〉 ⊆ g.
This is a Lie subalgebra of g, isomorphic to sl(2,C).



Brief review: irreducible representations of sl(2,C)

Recall that an irreducible representation of sl(2,C) looks like

V = Cv0 ⊕ Cv1 ⊕ · · · ⊕ Cvn.

Pictorially (with the weights in red):
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The weight spaces V [n − 2k] = Cvk are all one-dimensional.



Finding representations of sl(2,C)
Lemma
For any root α ∈ R, the subspace

V = Chα ⊕
⊕

k∈Z, k 6=0
gkα ⊆ g

is an irreducible representation of sl(2,C)α = 〈eα, fα, hα〉.

I We have ad eα.gkα ⊆ g(k+1)α and ad eα.g−α ⊆ Chα.
I Likewise ad fα.gkα ⊆ g(k−1)α and ad fα.gα ⊆ Chα.
I Therefore V is a representation of sl(2,C)α.
I Since α(hα) = 2, all eigenvalues of ad hα are even:

V [2k] = gkα and V [0] = Chα

I As dimV [0] = 1, the representation is irreducible.



Main theorem about semisimple Lie algebras
We can now prove the main theorem about the structure of
semisimple complex Lie algebras.

Let g be a semisimple complex Lie algebra, with Cartan
subalgebra h and root decomposition

g = h⊕
⊕
α∈R

gα.

Let (−,−) be a nondegenerate symmetric invariant bilinear
form on g; it induces nondegenerate pairings on h and h∗.
For every root α ∈ R , we have a unique element Hα ∈ h with

(Hα, h) = α(h) for all h ∈ h.

We defined hα =
2

(α, α)
Hα ∈ h.



Main theorem about semisimple Lie algebras

Theorem
1. The root system R spans h∗ as a vector space.
2. For each root α ∈ R, we have dim gα = 1.
3. For any α, β ∈ R, we have β(hα) = 2(α, β)/(α, α) ∈ Z.
4. For α ∈ R, define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− λ(hα)α = λ− 2(α, λ)
(α, α)

α.

Then if β ∈ R, we also have sα(β) ∈ R.
5. The only multiples of α ∈ R that are also roots are ±α.
6. If α, β ∈ R and α + β ∈ R, then [gα, gβ] = gα+β.



Example: the root system of sl(3,C)
Here is the root system of sl(3,C) from last time:

e1 − e2e2 − e1

e1 − e3e2 − e3

e3 − e2e3 − e1



Proof of the main theorem, Part 1

1. The root system R spans h∗ as a vector space.

I Let h ∈ h be such that α(h) = 0 for every root α ∈ R .
I The root decomposition

g = h⊕
⊕
α∈R

gα,

implies that ad h = 0.
I But ad : g→ End(g) is injective, and so h = 0.
I This proves that R spans the dual vector space h∗.



Proof of the main theorem, Part 2

2. For each root α ∈ R , we have dim gα = 1.

I We proved that the subspace

V = Chα ⊕
⊕

k∈Z, k 6=0
gkα ⊆ g

is an irreducible representation of sl(2,C)α.
I Each weight subspace V [2k] = gkα is one-dimensional.
I In particular, dim gα = dimV [2] = 1.



Proof of the main theorem, Part 3

3. For any α, β ∈ R , we have β(hα) = 2(α, β)/(α, α) ∈ Z.

I Consider g as a representation of sl(2,C)α.
I With respect to ad hα, the subspace gβ has weight

β(hα) =
2

(α, α)
β(Hα) =

2
(α, α)

(α, β) =
2(α, β)
(α, α)

.

I But we know that the weights in any finite-dimensional
representation of sl(2,C) are integers.



Proof of the main theorem, Part 4
4. For α ∈ R , define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− λ(hα)α = λ− 2(α, λ)
(α, α)

α.

Then if β ∈ R , we also have sα(β) ∈ R .

I Suppose that n = β(hα) ≥ 0.
I The subspace gβ has weight n with respect to the

representation of sl(2,C)α on g.
I The operator (ad fα)n gives an isomorphism between the

subspace of weight n and the subspace of weight −n.
I Thus x ∈ gβ nonzero implies (ad fα)nx ∈ gβ−nα nonzero.
I Consequently, β − nα = sα(β) ∈ R .
I The proof in the other case n ≤ 0 is similar.



Proof of the main theorem, Part 5
5. The only multiples of α ∈ R that are also roots are ±α.

I Suppose that β = cα ∈ R for some c ∈ C.
I We know from Part 3 that

2(α, β)
(α, α)

= 2c and 2(α, β)
(β, β))

=
2
c

are both integers. Therefore c ∈ {±1,±2,±1
2}.

I We can assume c ∈ {±1,±2}, by swapping α and β.
I We proved that the subspace

V = Chα ⊕
⊕

k∈Z, k 6=0
gkα ⊆ g

is an irreducible representation of sl(2,C)α = 〈eα, fα, hα〉.
I But V contains sl(2,C)α, and so V = sl(2,C)α.
I Therefore g2α = g−2α = 0, hence c ∈ {±1}.



Proof of the main theorem, Part 6
6. If α, β ∈ R and α + β ∈ R , then [gα, gβ] = gα+β.

I We already know that [gα, gβ] ⊆ gα+β.
I We also know that gα = Ceα for every root α ∈ R .
I Therefore it is enough to show that

gα+β 6= 0 =⇒ [eα, eβ] 6= 0.

I For dimension reasons, the subspace⊕
k∈Z

gβ+kα

is again an irreducible representation of sl(2,C)α.
I Therefore ad eα : gβ → gβ+α is an isomorphism.



Positivity of the Killing form

Theorem
Let hR ⊆ h be the real vector space spanned by {hα}α∈R .
1. One has h = hR ⊕ ihR.
2. The Killing form is positive definite on hR.

Step 1: The Killing form is real valued on hR.
I Because of the root decomposition, we have

K (hα, hβ) = trg(ad hα ◦ ad hβ) =
∑
γ∈R

γ(hα)γ(hβ).

I But γ(hα), γ(hβ) ∈ Z, and therefore K (hα, hβ) ∈ Z.
I Since K is bilinear, it only takes real values on hR.



Positivity of the Killing form

Theorem
Let hR ⊆ h be the real vector space spanned by {hα}α∈R .
1. One has h = hR ⊕ ihR.
2. The Killing form is positive definite on hR.

Step 2: The Killing form is positive definite on hR.
I Let h =

∑ cαhα ∈ hR.
I Then γ(h) = ∑ cαγ(hα) ∈ R for every γ ∈ R .
I Again because of the root decomposition,

K (h, h) = trg(ad h ◦ ad h) =
∑
γ∈R

γ(h)2 ≥ 0.

I Since R spans h∗, we conclude that K is positive definite.



Positivity of the Killing form

Theorem
Let hR ⊆ h be the real vector space spanned by {hα}α∈R .
1. One has h = hR ⊕ ihR.
2. The Killing form is positive definite on hR.

Step 3: One has h = hR ⊕ ihR.
I We know that the elements hα span h.
I Therefore h = hR + ihR.
I From Step 2, K is positive definite on hR.
I Therefore K is negative definite on ihR.
I This gives hR ∩ ihR = {0}, hence the result.


