Cartan subalgebras and root decomposition

MAT 552

April 13, 2020

Brief review

Today, \mathfrak{g} is always a semisimple complex Lie algebra.

Last time, we defined semisimple and nilpotent elements:

- $x \in \mathfrak{g}$ is semisimple if $\operatorname{ad} x \in \operatorname{End}(\mathfrak{g})$ is semisimple.
- $x \in \mathfrak{g}$ is nilpotent if $\operatorname{ad} x \in \operatorname{End}(\mathfrak{g})$ is nilpotent.

For semisimple \mathfrak{g} , we proved that every $x \in \mathfrak{g}$ decomposes as

$$x = x_s + x_n$$

with x_s semisimple and x_n nilpotent. This decomposition is unique, and is called the (generalized) Jordan decomposition.

Example

In $\mathfrak{sl}(2,\mathbb{C})$, the element *h* is semisimple, and *e*, *f* are nilpotent.

Definition

A subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ is called toral if it is commutative and every element $h \in \mathfrak{h}$ is semisimple in \mathfrak{g} .

Example

Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, and let \mathfrak{h} be the subalgebra of diagonal matrices with trace 0. Then \mathfrak{h} is a toral subalgebra.

$$\begin{pmatrix} h_1 & & & \\ & h_2 & & \\ & & \ddots & \\ & & & h_n \end{pmatrix} \xrightarrow{exp} \begin{pmatrix} e^{h_1} & & & \\ & e^{h_2} & & \\ & & \ddots & \\ & & & e^{h_n} \end{pmatrix}$$

Here $\exp(\mathfrak{h}) \subseteq SL(n, \mathbb{C})$ is the subgroup of diagonal matrices. It is an algebraic torus (= a product of copies of \mathbb{C}^*).

Definition

A subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ is called toral if it is commutative and every element $h \in \mathfrak{h}$ is semisimple in \mathfrak{g} .

From linear algebra, we know that commuting semisimple elements can be diagonalized simultaneously:

- Suppose $x \in \mathfrak{g}$ is a common eigenvector for ad h, $h \in \mathfrak{h}$.
- Then ad $h.x = \alpha(h)x$, where $\alpha(h) \in \mathbb{C}$ is the eigenvalue.
- $\alpha \colon \mathfrak{h} \to \mathbb{C}$ is a linear functional, so $\alpha \in \mathfrak{h}^*$.

This gives us an eigenspace decomposition

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha},$$

where $\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} \mid \text{ad } h.x = \alpha(h)x \text{ for } h \in \mathfrak{h} \}.$

Theorem

Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a toral subalgebra, and $\mathfrak{g} = \bigoplus \mathfrak{g}_{\alpha}$. Then

- 1. \mathfrak{g}_0 is the centralizer $C(\mathfrak{h})$.
- 2. $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}.$
- 3. If $x \in \mathfrak{g}_0$, then $x_s \in \mathfrak{g}_0$ and $x_n \in \mathfrak{g}_0$.
- 4. If $\alpha + \beta \neq 0$, then \mathfrak{g}_{α} and \mathfrak{g}_{β} are orthogonal with respect to the Killing form K.

 $\alpha \in \mathfrak{h}^*$

- 5. *K* induces nondegenerate pairings $\mathfrak{g}_{\alpha} \otimes \mathfrak{g}_{-\alpha} \to \mathbb{C}$.
- 6. The restriction of K to \mathfrak{g}_0 is nondegenerate.
- 7. \mathfrak{g}_0 is a reductive Lie algebra.

Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a toral subalgebra, and $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$. Proof that $[g_{\alpha}, g_{\beta}] \subseteq g_{\alpha+\beta}$:

▶ Take $x \in \mathfrak{g}_{\alpha}$, $y \in \mathfrak{g}_{\beta}$, $h \in \mathfrak{h}$. Then

ad
$$h.[x, y] = [h, [x, y]]$$

= $[[h, x], y] + [x, [h, y]]$
= $[\alpha(h)x, y] + [x, \beta(h)y]$
= $(\alpha(h) + \beta(h))[x, y].$

• This says that $[x, y] \in \mathfrak{g}_{\alpha+\beta}$.

Proof that $x \in \mathfrak{g}_0$ implies $x_s, x_n \in \mathfrak{g}_0$:

- We have [h, x] = 0 for all $h \in \mathfrak{h}$.
- Therefore $[h, x_s] = 0$, hence $x_s \in \mathfrak{g}_0$ and $x_n = x x_s \in \mathfrak{g}_0$.

Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a toral subalgebra, and $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$.

Proof that $K(\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta})=0$ if $\alpha+\beta\neq 0$:

• Take
$$x \in \mathfrak{g}_{\alpha}$$
, $y \in \mathfrak{g}_{\beta}$, $h \in \mathfrak{h}$.

▶ Since *K* is invariant, we have

$$0 = \mathcal{K}([h, x], y) + \mathcal{K}(x, [h, y])$$

= $\mathcal{K}(\alpha(h)x, y) + \mathcal{K}(x, \beta(h)y)$
= $(\alpha(h) + \beta(h))\mathcal{K}(x, y).$

• If $\alpha + \beta \neq 0$, this forces K(x, y) = 0.

Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a toral subalgebra, and $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$.

Proof that \mathfrak{g}_0 is reductive:

- K is nondegenerate (because \mathfrak{g} is semisimple).
- We already know that $K(\mathfrak{g}_0,\mathfrak{g}_\alpha)=0$ unless $\alpha=0$.
- Therefore $K : \mathfrak{g}_0 \otimes \mathfrak{g}_0 \to \mathbb{C}$ must be nondegenerate.
- Consider \mathfrak{g} as a representation of \mathfrak{g}_0 .
- Since K(x, y) = tr_g(ad x ∘ ad y), the trace pairing of this representation is nondegenerate.
- ▶ By an earlier theorem, this implies that g_0 is reductive.

Find as many commuting semisimple elements as possible.

Definition

A Cartan subalgebra of a semisimple complex Lie algebra $\mathfrak g$ is a toral subalgebra $\mathfrak h\subseteq\mathfrak g$ such that

$$C(\mathfrak{h}) = \left\{ x \in \mathfrak{g} \mid [x, h] = 0 \text{ for all } h \in \mathfrak{h} \right\} = \mathfrak{h}.$$

Basic facts:

- 1. Every maximal toral subalgebra is a Cartan subalgebra. In particular, Cartan subalgebras always exist.
- 2. All Cartan subalgebras are conjugate (under the adjoint action of the corresponding Lie group).
- 3. If $h \in \mathfrak{g}$ is a semisimple element with distinct eigenvalues, then C(h) is a Cartan subalgebra.

Example

Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, and let \mathfrak{h} be the subalgebra of diagonal matrices with trace 0. Then \mathfrak{h} is a Cartan subalgebra.

- Every $h \in \mathfrak{h}$ is semisimple.
- h is commutative, hence toral.
- Pick $h \in \mathfrak{h}$ with *n* distinct eigenvalues.
- If [h, x] = 0 for some x ∈ sl(n, C), then every eigenvector of h is also an eigenvector of x, so x is also diagonal.
- Therefore

$$\mathfrak{h} \subseteq C(\mathfrak{h}) \subseteq C(h) = \mathfrak{h},$$

and so \mathfrak{h} is a Cartan subalgebra.

Theorem

Every maximal toral subalgebra is a Cartan subalgebra.

Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a toral subalgebra that is not contained in any larger toral subalgebra. We need to show that $C(\mathfrak{h}) = \mathfrak{h}$.

As above, let

$$\mathfrak{g}=igoplus_{lpha\in\mathfrak{h}^*}\mathfrak{g}_lpha$$

be the decomposition into eigenspaces. We shall argue that $\mathfrak{g}_0 = C(\mathfrak{h})$ is toral; by maximality, this implies $C(\mathfrak{h}) = \mathfrak{h}$.

We first argue that $\mathfrak{g}_0 = \mathcal{C}(\mathfrak{h})$ is commutative:

- Let $x \in \mathfrak{g}_0$, with Jordan decomposition $x = x_s + x_n$.
- We already know that $x_s, x_n \in \mathfrak{g}_0$.
- Since x_s is semisimple, and [h, x_s] = 0 for all h ∈ 𝔥, the subalgebra 𝔥 ⊕ ℂx_s is still toral.
- By maximality of \mathfrak{h} , we must have $x_s \in \mathfrak{h}$.
- In particular, ad $x_s|_{\mathfrak{g}_0} = 0$.
- It follows that $\operatorname{ad} x|_{\mathfrak{g}_0} = \operatorname{ad} x_n|_{\mathfrak{g}_0}$ is nilpotent.
- By Engel's theorem, \mathfrak{g}_0 is a nilpotent Lie algebra.
- Since g_0 is also reductive, it must be commutative.

Next, we argue that $\mathfrak{g}_0 = C(\mathfrak{h})$ is toral:

- We already know that \mathfrak{g}_0 is commutative.
- It remains to show that every $x \in \mathfrak{g}_0$ is semisimple.
- Consider the Jordan decomposition $x = x_s + x_n$.
- For any y ∈ g₀, the product ad x_n ∘ ad y is nilpotent (because ad x_n is nilpotent and g₀ is commutative).
- Therefore $K(x_n, y) = \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x_n \circ \operatorname{ad} y) = 0.$
- ► We showed earlier that the restriction of K to g₀ is nondegenerate; therefore x_n = 0.
- It follows that $x = x_s$ is semisimple.

We now conclude by maximality of \mathfrak{h} that $C(\mathfrak{h}) = \mathfrak{h}$.

Basic facts:

- 1. Every maximal toral subalgebra is a Cartan subalgebra. In particular, Cartan subalgebras always exist.
- 2. All Cartan subalgebras are conjugate (under the adjoint action of the corresponding Lie group).
- 3. If $h \in \mathfrak{g}$ is a semisimple element with distinct eigenvalues, then C(h) is a Cartan subalgebra.

In particular, all Cartan subalgebras have the same dimension. This dimension is called the rank of $\mathfrak{g}.$

Example

The rank of $\mathfrak{sl}(n,\mathbb{C})$ is n-1.

Root decomposition

Let \mathfrak{g} be a complex semisimple Lie algebra, and $\mathfrak{h}\subseteq\mathfrak{g}$ a Cartan subalgebra. The eigenspace decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in R}\mathfrak{g}_lpha$$

is called the root decomposition. The eigenspaces

$$\mathfrak{g}_{lpha} = \Big\{ x \in \mathfrak{g} \ \Big| \ [h, x] = lpha(h) x ext{ for all } h \in \mathfrak{h} \Big\},$$

for nonzero $\alpha \in \mathfrak{h}^*$ are called the root subspaces. The set

$${\it R} = \left\{ \, lpha \in \mathfrak{h}^{*} \, \left| \, \, lpha
eq \mathsf{0} \, \, \mathsf{and} \, \, \mathfrak{g}_{lpha}
eq \mathsf{0} \,
ight\}$$

is called the root system of $\mathfrak{g}.$ (Recall that $\mathfrak{g}_0=\mathfrak{h}.)$

Root decomposition

Let \mathfrak{g} be a complex semisimple Lie algebra, and $\mathfrak{h} \subseteq \mathfrak{g}$ a Cartan subalgebra. The root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in \mathsf{R}}\mathfrak{g}_lpha$$

has the following properties, proved earlier today:

- 1. $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subseteq\mathfrak{g}_{\alpha+\beta}.$
- 2. If $\alpha + \beta \neq 0$, then \mathfrak{g}_{α} and \mathfrak{g}_{β} are orthogonal with respect to the Killing form K.
- 3. For any α , the Killing form K induces a nondegenerate pairing $\mathfrak{g}_{\alpha} \otimes \mathfrak{g}_{-\alpha} \to \mathbb{C}$.
- 4. In particular, the restriction of K to \mathfrak{h} is nondegenerate.

Example: $\mathfrak{sl}(n,\mathbb{C})$

Let us work out the example $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, with \mathfrak{h} being the subalgebra of diagonal matrices of trace 0.

The *i*-th diagonal entry gives a linear functional

$$e_i \colon \mathfrak{h} \to \mathbb{C}, \quad \begin{pmatrix} h_1 & & & \\ & h_2 & & \\ & & \ddots & \\ & & & h_n \end{pmatrix} \mapsto h_i,$$

and clearly $e_1 + \cdots + e_n = 0$.

Therefore

$$\mathfrak{h}^*\cong \mathbb{C}e_1\oplus\cdots\oplus\mathbb{C}e_nig/\mathbb{C}(e_1+\cdots+e_n).$$

Example: $\mathfrak{sl}(n,\mathbb{C})$

Recall the following matrices:

We have

$$[h, E_{i,j}] = (h_i - h_j)E_{i,j} = (e_i(h) - e_j(h)) \cdot E_{i,j},$$

and so the root subspaces are exactly $\mathfrak{g}_{e_i-e_j} = \mathbb{C} E_{i,j}$.

The root system is
$$R = \left\{ \left. e_i - e_j \right| \ i
eq j
ight\} \subseteq \mathfrak{h}^*.$$

Example:
$$\mathfrak{sl}(n,\mathbb{C})$$

Here is a picture of the root system for n = 3:

Example: $\mathfrak{sl}(n,\mathbb{C})$

We can use the root decomposition to show that $\mathfrak{sl}(n, \mathbb{C})$ is a simple Lie algebra. (We did this earlier for n = 2.)

Let *I* be a nonzero ideal. *I* is stable under the action of ad *h*, $h \in \mathfrak{h}$, and therefore generated by eigenvectors. Several cases: 1. If $h \in I$ for some $h \in \mathfrak{h}$, then

$$[h, E_{i,j}] = (e_i(h) - e_j(h)) \cdot E_{i,j}$$

implies that $E_{i,j} \in I$ for some $i \neq j$.

2. If $E_{i,j} \in I$ for some $i \neq j$, then

$$[E_{i,j}, E_{k,\ell}] = \delta_{j,k} E_{i,\ell} - \delta_{i,\ell} E_{k,j}$$

implies that $E_{i,j} \in I$ for all $i \neq j$.

3. Then $E_{i,i} - E_{j,j} \in I$ for all $i \neq j$, and so $I = \mathfrak{sl}(n, \mathbb{C})$.

Example: $\mathfrak{sl}(n,\mathbb{C})$

We can use this to show that $K(x, y) = 2n \operatorname{tr}(xy)$. (HW 4)

Since $\mathfrak{sl}(n, \mathbb{C})$ is simple, any two invariant bilinear forms are proportional. The Killing form must therefore be a multiple of the trace pairing. To find the constant, we compute K on \mathfrak{h} .

If $h \in \mathfrak{h}$, then

$$(ad h)(E_{i,j}) = [h, E_{i,j}] = (h_i - h_j)E_{i,j},$$

and therefore

$$(\operatorname{ad} h \circ \operatorname{ad} h')(E_{i,j}) = (h_i - h_j)(h'_i - h'_j)E_{i,j}.$$

This gives

$$K(h, h') = \sum_{i \neq j} (h_i - h_j)(h'_i - h'_j) = 2n \sum_i h_i h'_i = 2n \operatorname{tr}(hh').$$