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Brief review

Today, g is always a semisimple complex Lie algebra.

Last time, we defined semisimple and nilpotent elements:
I x ∈ g is semisimple if ad x ∈ End(g) is semisimple.
I x ∈ g is nilpotent if ad x ∈ End(g) is nilpotent.

For semisimple g, we proved that every x ∈ g decomposes as

x = xs + xn

with xs semisimple and xn nilpotent. This decomposition is
unique, and is called the (generalized) Jordan decomposition.

Example
In sl(2,C), the element h is semisimple, and e, f are nilpotent.



Toral subalgebras
Definition
A subalgebra h ⊆ g is called toral if it is commutative and
every element h ∈ h is semisimple in g.

Example
Let g = sl(n,C), and let h be the subalgebra of diagonal
matrices with trace 0. Then h is a toral subalgebra.
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h2
. . .

hn




eh1

eh2

. . .
ehn

exp

Here exp(h) ⊆ SL(n,C) is the subgroup of diagonal matrices.
It is an algebraic torus (= a product of copies of C∗).



Toral subalgebras
Definition
A subalgebra h ⊆ g is called toral if it is commutative and
every element h ∈ h is semisimple in g.

From linear algebra, we know that commuting semisimple
elements can be diagonalized simultaneously:

I Suppose x ∈ g is a common eigenvector for ad h, h ∈ h.
I Then ad h.x = α(h)x , where α(h) ∈ C is the eigenvalue.
I α : h→ C is a linear functional, so α ∈ h∗.

This gives us an eigenspace decomposition

g =
⊕
α∈h∗

gα,

where gα =
{

x ∈ g
∣∣∣ ad h.x = α(h)x for h ∈ h

}
.



Toral subalgebras

Theorem
Let h ⊆ g be a toral subalgebra, and g =

⊕
α∈h∗

gα. Then
1. g0 is the centralizer C(h).
2. [gα, gβ] ⊆ gα+β.
3. If x ∈ g0, then xs ∈ g0 and xn ∈ g0.
4. If α + β 6= 0, then gα and gβ are orthogonal with respect

to the Killing form K.
5. K induces nondegenerate pairings gα ⊗ g−α → C.
6. The restriction of K to g0 is nondegenerate.
7. g0 is a reductive Lie algebra.



Toral subalgebras
Let h ⊆ g be a toral subalgebra, and g =

⊕
α∈h∗

gα.

Proof that [gα, gβ] ⊆ gα+β:
I Take x ∈ gα, y ∈ gβ, h ∈ h. Then

ad h.[x , y ] = [h, [x , y ]]
= [[h, x ], y ] + [x , [h, y ]]
= [α(h)x , y ] + [x , β(h)y ]
= (α(h) + β(h))[x , y ].

I This says that [x , y ] ∈ gα+β.
Proof that x ∈ g0 implies xs , xn ∈ g0:

I We have [h, x ] = 0 for all h ∈ h.
I Therefore [h, xs ] = 0, hence xs ∈ g0 and xn = x − xs ∈ g0.



Toral subalgebras

Let h ⊆ g be a toral subalgebra, and g =
⊕
α∈h∗

gα.

Proof that K (gα, gβ) = 0 if α + β 6= 0:
I Take x ∈ gα, y ∈ gβ, h ∈ h.
I Since K is invariant, we have

0 = K ([h, x ], y) + K (x , [h, y ])
= K (α(h)x , y) + K (x , β(h)y)
= (α(h) + β(h))K (x , y).

I If α + β 6= 0, this forces K (x , y) = 0.



Toral subalgebras

Let h ⊆ g be a toral subalgebra, and g =
⊕
α∈h∗

gα.

Proof that g0 is reductive:
I K is nondegenerate (because g is semisimple).
I We already know that K (g0, gα) = 0 unless α = 0.
I Therefore K : g0 ⊗ g0 → C must be nondegenerate.
I Consider g as a representation of g0.
I Since K (x , y) = trg(ad x ◦ ad y), the trace pairing of this

representation is nondegenerate.
I By an earlier theorem, this implies that g0 is reductive.



Cartan subalgebras
Find as many commuting semisimple elements as possible.

Definition
A Cartan subalgebra of a semisimple complex Lie algebra g is
a toral subalgebra h ⊆ g such that

C(h) =
{

x ∈ g
∣∣∣ [x , h] = 0 for all h ∈ h

}
= h.

Basic facts:
1. Every maximal toral subalgebra is a Cartan subalgebra. In

particular, Cartan subalgebras always exist.
2. All Cartan subalgebras are conjugate (under the adjoint

action of the corresponding Lie group).
3. If h ∈ g is a semisimple element with distinct eigenvalues,

then C(h) is a Cartan subalgebra.



Cartan subalgebras

Example
Let g = sl(n,C), and let h be the subalgebra of diagonal
matrices with trace 0. Then h is a Cartan subalgebra.

I Every h ∈ h is semisimple.
I h is commutative, hence toral.
I Pick h ∈ h with n distinct eigenvalues.
I If [h, x ] = 0 for some x ∈ sl(n,C), then every eigenvector

of h is also an eigenvector of x , so x is also diagonal.
I Therefore

h ⊆ C(h) ⊆ C(h) = h,

and so h is a Cartan subalgebra.



Cartan subalgebras

Theorem
Every maximal toral subalgebra is a Cartan subalgebra.

Let h ⊆ g be a toral subalgebra that is not contained in any
larger toral subalgebra. We need to show that C(h) = h.

As above, let
g =

⊕
α∈h∗

gα

be the decomposition into eigenspaces. We shall argue that
g0 = C(h) is toral; by maximality, this implies C(h) = h.



Cartan subalgebras

We first argue that g0 = C(h) is commutative:
I Let x ∈ g0, with Jordan decomposition x = xs + xn.
I We already know that xs , xn ∈ g0.
I Since xs is semisimple, and [h, xs ] = 0 for all h ∈ h, the

subalgebra h⊕ Cxs is still toral.
I By maximality of h, we must have xs ∈ h.
I In particular, ad xs |g0 = 0.
I It follows that ad x |g0 = ad xn|g0 is nilpotent.
I By Engel’s theorem, g0 is a nilpotent Lie algebra.
I Since g0 is also reductive, it must be commutative.



Cartan subalgebras

Next, we argue that g0 = C(h) is toral:
I We already know that g0 is commutative.
I It remains to show that every x ∈ g0 is semisimple.
I Consider the Jordan decomposition x = xs + xn.
I For any y ∈ g0, the product ad xn ◦ ad y is nilpotent

(because ad xn is nilpotent and g0 is commutative).
I Therefore K (xn, y) = trg(ad xn ◦ ad y) = 0.
I We showed earlier that the restriction of K to g0 is

nondegenerate; therefore xn = 0.
I It follows that x = xs is semisimple.

We now conclude by maximality of h that C(h) = h.



Cartan subalgebras

Basic facts:
1. Every maximal toral subalgebra is a Cartan subalgebra. In

particular, Cartan subalgebras always exist.
2. All Cartan subalgebras are conjugate (under the adjoint

action of the corresponding Lie group).
3. If h ∈ g is a semisimple element with distinct eigenvalues,

then C(h) is a Cartan subalgebra.

In particular, all Cartan subalgebras have the same dimension.
This dimension is called the rank of g.

Example
The rank of sl(n,C) is n − 1.



Root decomposition

Let g be a complex semisimple Lie algebra, and h ⊆ g a
Cartan subalgebra. The eigenspace decomposition

g = h⊕
⊕
α∈R

gα

is called the root decomposition. The eigenspaces

gα =
{

x ∈ g
∣∣∣ [h, x ] = α(h)x for all h ∈ h

}
,

for nonzero α ∈ h∗ are called the root subspaces. The set

R =
{
α ∈ h∗

∣∣∣ α 6= 0 and gα 6= 0
}

is called the root system of g. (Recall that g0 = h.)



Root decomposition

Let g be a complex semisimple Lie algebra, and h ⊆ g a
Cartan subalgebra. The root decomposition

g = h⊕
⊕
α∈R

gα

has the following properties, proved earlier today:
1. [gα, gβ] ⊆ gα+β.
2. If α + β 6= 0, then gα and gβ are orthogonal with respect

to the Killing form K .
3. For any α, the Killing form K induces a nondegenerate

pairing gα ⊗ g−α → C.
4. In particular, the restriction of K to h is nondegenerate.



Example: sl(n,C)
Let us work out the example g = sl(n,C), with h being the
subalgebra of diagonal matrices of trace 0.

The i-th diagonal entry gives a linear functional

ei : h→ C,


h1

h2
. . .

hn

 7→ hi ,

and clearly e1 + · · ·+ en = 0.

Therefore

h∗ ∼= Ce1 ⊕ · · · ⊕ Cen
/
C(e1 + · · ·+ en).



Example: sl(n,C)

Recall the following matrices:

Ei ,j =

 1

 i-th row

j-th column
We have

[h,Ei ,j ] = (hi − hj)Ei ,j = (ei(h)− ej(h)) · Ei ,j ,

and so the root subspaces are exactly gei−ej = CEi ,j .

The root system is R =
{

ei − ej
∣∣∣ i 6= j

}
⊆ h∗.



Example: sl(n,C)
Here is a picture of the root system for n = 3:

e1 − e2e2 − e1

e1 − e3e2 − e3

e3 − e2e3 − e1



Example: sl(n,C)
We can use the root decomposition to show that sl(n,C) is a
simple Lie algebra. (We did this earlier for n = 2.)

Let I be a nonzero ideal. I is stable under the action of ad h,
h ∈ h, and therefore generated by eigenvectors. Several cases:
1. If h ∈ I for some h ∈ h, then

[h,Ei ,j ] = (ei(h)− ej(h)) · Ei ,j

implies that Ei ,j ∈ I for some i 6= j .
2. If Ei ,j ∈ I for some i 6= j , then

[Ei ,j ,Ek,`] = δj,kEi ,` − δi ,`Ek,j

implies that Ei ,j ∈ I for all i 6= j .
3. Then Ei ,i − Ej,j ∈ I for all i 6= j , and so I = sl(n,C).



Example: sl(n,C)
We can use this to show that K (x , y) = 2n tr(xy). (HW4)

Since sl(n,C) is simple, any two invariant bilinear forms are
proportional. The Killing form must therefore be a multiple of
the trace pairing. To find the constant, we compute K on h.

If h ∈ h, then

(ad h)(Ei ,j) = [h,Ei ,j ] = (hi − hj)Ei ,j ,

and therefore

(ad h ◦ ad h′)(Ei ,j) = (hi − hj)(h′i − h′j)Ei ,j .

This gives

K (h, h′) =
∑
i 6=j

(hi − hj)(h′i − h′j) = 2n
∑

i
hih′i = 2n tr(hh′).


