MATH 545—HOMEWORK 8

- 1. Curvature. The purpose of this exercise is to prove two assertions from class.
 - (a) Let L be a holomorphic line bundle with Hermitian metric h. Show that the dual line bundle inherits a Hermitian metric, whose curvature form is given by $\Theta_{L^{-1}} = -\Theta_L$.
 - (b) Let (L_1, h_1) and (L_2, h_2) be holomorphic line bundles with Hermitian metrics. Show that $L = L_1 \otimes L_2$ inherits a Hermitian metric, whose curvature form is given by $\Theta_L = \Theta_{L_1} + \Theta_{L_2}$.

2. The zero section of a line bundle. Let $\pi: L \to M$ be a holomorphic line bundle on M, and denote by $D \subseteq L$ the image of the zero section, a complex submanifold of codimension one. Prove that the line bundle $\mathscr{O}_L(-D)$ is isomorphic to π^*L^{-1} . (*Hint:* Show that a local trivialization $\phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{C}$ of L induces a local trivialization of $\mathscr{O}_L(-D)$ on the open set $V_{\alpha} = \pi^{-1}(U_{\alpha})$, and compare the transition functions.)

3. Embeddings into projective space. Consider the holomorphic mapping $\varphi \colon \mathbb{P}^1 \to \mathbb{P}^k$ defined by the line bundle $\mathscr{O}_{\mathbb{P}^1}(k)$; using the monomials of degree k as a basis, it is given by the formula $[z_0, z_1] \mapsto [z_0^k, z_0^{k-1}z_1, \ldots, z_0z_1^{k-1}, z_1^k]$. Prove that the image is a complex submanifold of \mathbb{P}^k , and that φ is a biholomorphism between \mathbb{P}^1 and the image.

4. Holomorphic sections. Let L be a holomorphic line bundle on a compact manifold M. Prove that any global holomorphic section of L is $\bar{\partial}$ -harmonic.

5. Serre duality. The goal of this exercise is to prove the Serre duality theorem for holomorphic line bundles on a compact complex manifold: $H^q(M, \Omega^p_M \otimes L)$ and $H^{n-q}(M, \Omega^{n-p}_M \otimes L^{-1})$ are dual vector spaces.

- (a) Fix a Hermitian metric on L, and give the dual line bundle L^{-1} the induced metric. Reduce the theorem to showing that the harmonic spaces $\mathcal{H}^{p,q}(M,L)$ and $\mathcal{H}^{n-p,n-q}(M,L^{-1})$ are dual vector spaces.
- (b) Show that a Hermitian inner product h on a complex vector space V induces a conjugate-linear isomorphism $V \to \operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ by the rule $v \mapsto h(v, -)$.
- (c) Locally, any section of $A^{p,q}(M,L)$ can be written in the form $\alpha \otimes s$, with $\alpha \in A^{p,q}(U)$ and $s \in A(U,L)$ holomorphic. Show that $\sharp(\alpha \otimes s) = (*\overline{\alpha}) \otimes h(s,-)$ does not depend on the choice of α and s, and is a well-defined conjugate-linear operator from $A^{p,q}(M,L)$ to $A^{n-p,n-q}(M,L^{-1})$.
- (d) Show that the rule $(\alpha \otimes s) \wedge (\beta \otimes \phi) = \phi(s)(\alpha \wedge \beta)$ gives a well-defined bilinear mapping $\wedge : A^{p,q}(M,L) \times A^{n-p,n-q}(M,L^{-1}) \to A^{n,n}(M)$.
- (e) In class, we introduced a Hermitian inner product on the space $A^{p,q}(M, L)$. Show that it satisfies $(\alpha, \beta)_L = \int_M \alpha \wedge \sharp \beta$.
- (f) Prove the formula $\bar{\partial}^* = -\#\bar{\partial}\#$ for the adjoint of $\bar{\partial}$, and deduce that # commutes with the Laplace operator $\overline{\Box}$. Deduce the Serre duality theorem.

Due on Thursday, November 21.