MATH 545—HOMEWORK 6

1. The Levi-Cività connection. Let \mathbb{S}^2 be the two-sphere, consisting of all points $(x, y, z) \in \mathbb{R}^3$ with $x^2 + y^2 + z^2 = 1$. As a submanifold of \mathbb{R}^3 , it inherits a Riemannian metric g.

- (a) Let H be the plane z = -1, with coordinates x_1, x_2 . Stereographic projection from the point (0, 0, 1) to H defines a natural coordinate chart on \mathbb{S}^2 . Compute the coefficients $g_{i,j}$ for the metric in these coordinates.
- (b) In the same chart, compute the Levi-Cività connection ∇ ; in other words, find formulas for the $\Gamma_{i,j}^k$.
- (c) Tangent vectors to \mathbb{S}^2 are just vectors in \mathbb{R}^3 . Can you find an interpretation for $\nabla_{\mathcal{E}} \eta$ in terms of vectors in \mathbb{R}^3 ?
- (d) Since $H \simeq \mathbb{C}$, we get a complex structure on \mathbb{S}^2 by setting $J\partial/\partial x_1 = \partial/\partial x_2$ and $J\partial/\partial x_2 = -\partial/\partial x_1$. Describe the action of J in terms of vectors in \mathbb{R}^3 .

2. Kähler metrics. Let M be a Riemann surface, and h a Hermitian metric on it. Show that h is a Kähler metric.

3. Complex tori. Recall that a complex torus is a quotient $M = \mathbb{C}^n / \Gamma$, where Γ is a lattice in \mathbb{C}^n , that is, a discrete subgroup of rank 2n.

- (a) Show that the standard metric on \mathbb{C}^n induces a Hermitian metric on M.
- (b) Prove that this metric is Kähler.

4. Riemann surfaces. Let M be a compact Riemann surface, and let h be a Hermitian metric on it. As usual, $g = \operatorname{Re} h$ will denote the induced Riemannian metric on the underlying two-manifold.

- (a) Let z = x + iy be a holomorphic coordinate on an open subset $U \subseteq M$. Show that $\phi = h(\partial/\partial z, \partial/\partial z)$ is a real-valued smooth function on U, and that $vol(g) = \phi \cdot dx \wedge dy$.
- (b) Prove that *dx = dy, *dy = -dx, and therefore *dz = -idz and $*d\overline{z} = id\overline{z}$. Conclude that the *-operator preserves the space $H^0(M, \Omega^1_M)$ of holomorphic one-forms on M.
- (c) Show that any $\omega \in H^0(M, \Omega^1_M)$ satisfies $d\omega = 0$.
- (d) Conclude that $\Delta \omega = 0$, which means that ω is harmonic for the given metric.

Due on Thursday, October 31.