MATH 554—HOMEWORK 3

1. Quotients. Let X be a complex manifold, and $\Gamma \subseteq Aut(X)$ a properly discontinuous group of automorphisms without fixed points.

- (a) Show that $R = \{ (x, y) \in X \times X \mid x \sim y \}$ is a closed subset of $X \times X$.
- (b) Deduce that X/Γ is Hausdorff and has a countable basis. (Hint: The Hausdorff property is equivalent to (a) because $q: X \to X/\Gamma$ is open.)
- (c) Show that every point has an open neighborhood $U \subseteq X$ with the property that $\gamma(U) \cap U = \emptyset$ for $\gamma \in \Gamma$, $\gamma \neq id$.
- (d) Deduce that every point of X has an open neighborhood U with the following two properties: U is biholomorphic to an open subset of Cⁿ; and U is mapped homeomorphically to its image q(U) in the quotient.
- (e) Conclude that X/Γ is a complex manifold, and that q is holomorphic and locally biholomorphic.

2. Singular locus. Let $Z \subseteq D$ be an analytic subset of an open set $D \subseteq \mathbb{C}^n$, and suppose that $0 \in Z$, but that Z does not contain any open neighborhood of 0.

- (a) Prove the following lemma: If $I \subseteq \mathcal{O}_n$ is a nonzero ideal such that $\partial f/\partial z_j \in I$ for every $f \in I$ and every $j = 1, \ldots, n$, then $I = \mathcal{O}_n$. (Hint: Consider the smallest $d \geq 0$ for which there exists $f \in I$ regular of degree d.)
- (b) Now let $k \ge 0$ be the largest integer such that there exist $f_1, \ldots, f_k \in I(Z)$ with the property that at least one $k \times k$ -minor g of the matrix J(f) does not belong to I(Z). Prove that $k \ge 1$.
- (c) After shrinking D, we may assume that $f_1, \ldots, f_k \in \mathcal{O}(D)$, and define $D' = D \setminus Z(g)$. Show that $Z' = Z(f_1) \cap \cdots \cap Z(f_k) \cap D'$ is a submanifold of D', and that $Z \cap D'$ is a union of connected components of Z'.
- (d) Conclude that the singular locus Z^s is contained in an analytic set strictly smaller than Z.
- 3. Plane curves.
 - (a) Let $F \in \mathbb{C}[z_0, z_1, z_2]$ be a homogeneous polynomial of degree $d \ge 1$, and let $Z(F) = \{ [z] \in \mathbb{P}^2 \mid F(z) = 0 \}$. Show that Z(F) is a one-dimensional complex submanifold of \mathbb{P}^2 , if and only if, at least one of the partial derivatives $\partial F/\partial z_j$ is nonzero at every point of \mathbb{P}^2 .
 - (b) Determine all $a, b \in \mathbb{C}$ for which the equation $z_0 z_2^2 z_1^3 a z_0^2 z_1 b z_0^3 = 0$ defines a submanifold of \mathbb{P}^2 .
- **4.** Blow-ups. Recall that we constructed $\operatorname{Bl}_0 \mathbb{C}^n$ as a subset of $\mathbb{C}^n \times \mathbb{P}^{n-1}$.
 - (a) Show that the second projection $q: \operatorname{Bl}_0 \mathbb{C}^n \to \mathbb{P}^{n-1}$ is a holomorphic vector bundle of rank one, and compute its transition functions with respect to the open cover U_1, \ldots, U_n of \mathbb{P}^{n-1} .
 - (b) Prove that the line bundle in (a) does not have nontrivial global sections.

Due on Thursday, September 26.