MATH 545—HOMEWORK 2

1. Irreducibility.

- (a) Let $f \in \mathcal{O}_n$. Show that if one of the partial derivatives $\partial f/\partial z_j(0)$ is nonzero, then f is irreducible in \mathcal{O}_n .
- (b) More generally, let $f_1, \ldots, f_m \in \mathcal{O}_n$, and suppose that the matrix $J(f) = \partial(f_1, \ldots, f_m) / \partial(z_1, \ldots, z_n)$ has rank m when z = 0. Show that the analytic set Z(f) is irreducible in a neighborhood of the origin.

2. Irreducible decomposition. Consider the holomorphic function $f(z_1, z_2) = z_1^2 - z_2^2 - z_2^3$ on \mathbb{C}^2 . Show that f is reducible in the local ring \mathcal{O}_2 , and find the irreducible components of the analytic set Z(f) in a neighborhood of the origin.

3. Inverse mapping theorem. Let $f: D \to \mathbb{C}^n$ be a holomorphic mapping, defined on an open neighborhood of $0 \in \mathbb{C}^n$. Prove that if J(f) is nonsingular at the point 0, then f has a holomorphic inverse near f(0).

4. Products of complex manifolds. Let X and Y be complex manifolds. Prove that their product $X \times Y$ is again a complex manifold, and that $\dim_{(x,y)} X \times Y = \dim_x X + \dim_y Y$.

5. Projective space.

- (a) Compute the transition functions between the standard coordinate charts U_0, U_1, \ldots, U_n on \mathbb{P}^n .
- (b) Prove that $\mathscr{O}_{\mathbb{P}^n}(\mathbb{P}^n) \simeq \mathbb{C}$.

6. Zero locus. Let f, g be holomorphic functions in some neighborhood of $0 \in \mathbb{C}^n$. Suppose that f is irreducible in \mathcal{O}_n , and that g vanishes on Z(f), in the sense that g(z) = 0 for every $z \in Z(f)$. Prove that f divides g in \mathcal{O}_n .

Due on Tuesday, September 17.