MATH 545—HOMEWORK 1

1. Chain rule. Let $D \subseteq \mathbb{C}^n$ and $E \subseteq \mathbb{C}^m$ be open subsets, and let $f: D \to E$ and $g: E \to \mathbb{C}$ be differentiable mappings. Prove the following version of the chain rule,

$$\begin{split} &\frac{\partial(g\circ f)}{\partial\bar{z}_k} = \sum_j \left(\frac{\partial g}{\partial w_j}\frac{\partial f_j}{\partial\bar{z}_k} + \frac{\partial g}{\partial\bar{w}_j}\frac{\partial\bar{f}_j}{\partial\bar{z}_k}\right) \\ &\frac{\partial(g\circ f)}{\partial z_k} = \sum_j \left(\frac{\partial g}{\partial w_j}\frac{\partial f_j}{\partial z_k} + \frac{\partial g}{\partial\bar{w}_j}\frac{\partial\bar{f}_j}{\partial z_k}\right), \end{split}$$

where z_1, \ldots, z_n are the coordinates on D, and w_1, \ldots, w_m the coordinates on E.

2. Zero sets.

(a) Let $f: D \to \mathbb{C}$ be a holomorphic function on $D \subseteq \mathbb{C}$, and assume that $\overline{\Delta}(a;r) \subseteq D$. Using Cauchy's formula, prove Jensen's inequality

$$\log|f(a)| \le \frac{1}{2\pi} \int_0^{2\pi} \log|f(a + re^{i\theta})| d\theta$$

(b) Now let $f: D \to \mathbb{C}$ be a holomorphic function on $D \subseteq \mathbb{C}^n$. Show that for every polydisk $\overline{\Delta}(a; r) \subseteq D$, one has

$$\log|f(a)| \le \frac{1}{\operatorname{vol}(\Delta(a;r))} \int_{\Delta(a;r)} \log|f(z)| dz.$$

(c) Use (b) to prove that if D is connected and $f \in \mathcal{O}(D)$ does not vanish everywhere in D, then its zero set $Z(f) = f^{-1}(0)$ has measure zero.

3. Hartog's lemma. Let $R_j > r_j > 0$ for j = 1, ..., n, and consider the domain $D = \Delta(0; R) \setminus \overline{\Delta}(0; r)$ obtained by removing a smaller closed polydisk from a larger open polydisk. If $n \ge 2$, prove that every holomorphic function $f: D \to \mathbb{C}$ can be uniquely extended to a holomorphic function on the whole polydisk $\Delta(0; R)$. Give an example to show that this statement is not true when n = 1.

4. Riemann's extension theorem. Let $D \subseteq \mathbb{C}^n$ be an open subset and $f \in \mathcal{O}(D)$ a holomorphic function. If $g: D - Z(f) \to \mathbb{C}$ is holomorphic and bounded, prove that it extends uniquely to a holomorphic function on all of D.

5. Hensel's lemma. Let $h(z,t) \in \mathcal{O}_n[t]$ be a monic polynomial of degree d, with coefficients in the ring \mathcal{O}_n . Then h(0,t) is a monic polynomial in t, and can therefore be factored by the fundamental theorem of algebra as

$$h(0,t) = (t-c_1)^{d_1} \cdots (t-c_r)^{d_r}$$

where $d_1 + \cdots + d_r = d$ and the $c_j \in \mathbb{C}$ are distinct. Prove that there are uniquely determined monic polynomials $p_1, \ldots, p_r \in \mathcal{O}_n[t]$, such that $h = p_1 \cdots p_r$ and $p_j(0,t) = (t-c_j)^{d_j}$ for every $j = 1, \ldots, r$.

Due on Tuesday, September 10.