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Class 8. The Poincaré lemma and integration (September 24)

The @̄-Poincaré lemma. The key step in proving de Rham’s theorem is to show
that closed forms are always locally exact. The same result is true for Dolbeault
cohomology, and is the content of the so-called @̄-Poincaré lemma.

Lemma 8.1. Let D ✓ Cn be an open subset, and ! 2 A
p,q+1(D) be a @̄-closed

form with q � 0. Then for any relatively compact open set U with Ū ✓ D, there is
a (p, q)-form  2 A

p,q(U) such that ! = @̄ on U .

As a warm-up, let us prove the @̄-Poincaré lemma in one complex variable.

Lemma 8.2. Let g : C ! C be a smooth function with compact support. Then the
(singular) integral

(8.3) f(z) =
1

2⇡i

Z

C

g(w)

w � z
dw ^ dw̄

converges for every z 2 C, and defines a smooth, compactly supported function with
@f/@z̄ = g.

Proof. Recall the more precise form of Cauchy’s formula: Let D = �(z;R) and
D" = �(z; "). If f is smooth in a neighborhood of the closed disk D, then

(8.4) f(z) =
1

2⇡i

Z

@D

f(w)

w � z
dw +

1

2⇡i

Z

D

@f

@w̄
(w)

dw ^ dw̄

w � z
.

This is proved by letting ↵ = (2⇡i)�1
f(w)dw/(w�z), and applying Stokes’ theorem

Z

D\D"

d↵ =

Z

@D
↵�

Z

@D"

↵.

to obtain the identity

� 1

2⇡i

Z

D\D"

@f

@w̄

dw ^ dw̄

w � z
=

1

2⇡i

Z

@D

f(w)

w � z
dw � 1

2⇡i

Z

@D"

f(w)

w � z
dw.

After setting w = re
i✓+z and computing that dw^dw̄ = 2ir ·d✓^dr, this becomes

� 1

⇡

Z

D\D"

@f

@w̄
(z + re

i✓) · e�i✓
d✓ ^ dr =

Z 2⇡

0
f(z +Re

i✓)
d✓

2⇡
�
Z 2⇡

0
f(z + "e

i✓)
d✓

2⇡

and converges to the asserted formula as "! 0, because the integrands are smooth
functions.

We now prove the lemma. Changing to polar coordinates by again setting w =
re

i✓ + z, the integral in (8.3) becomes

f(z) =
1

⇡

Z

C
g(z + re

i✓) · e�i✓
d✓ ^ dr.

Since g has compact support, it is clear from this expression that f is well-defined
and smooth on C. Interchanging the order of di↵erentiation and integration, and
undoing the change of coordinates, we then have

@f

@z̄
(z) =

1

⇡

Z

C

@g

@w̄
(z + re

i✓) · e�i✓
d✓ ^ dr =

1

2⇡i

Z

C

@g

@w̄
(w)

dw ^ dw̄

w � z
.

Now the support of g is contained in D = �(z;R) for su�ciently large R, and so
we get the result by applying (8.4), noting that the integral over @D is zero. ⇤

We can now prove the higher-dimensional version of the @̄-Poincaré lemma.
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Proof of Lemma 8.1. The proof of the lemma works by induction; the k-th step is to
show that the statement is true when ! does not depend on dz̄k+1, . . . , dz̄n. This is
clearly trivial when k = 0, and gives us the desired result when k = n). Suppose that
the statement has been proved for k�1, and that ! does not involve dz̄k+1, . . . , dz̄n.
Write ! in the form ↵ ^ dz̄k + �, where ↵ 2 A

p,q(Cn) and � 2 A
p,q+1(Cn) do not

depend on dz̄k, . . . , dz̄n. As usual, let ↵ =
P

I,J ↵I,JdzI ^ dz̄J ; then @̄! = 0 implies
that @↵I,J/@z̄j = 0 for every j > k.

Now choose a smooth function ⇢ with compact support inside D that is identi-
cally equal to 1 on an open neighborhood V of Ū . By the above,

'I,J(z) =
1

2⇡i

Z

C
↵I,J(z1, . . . , zk�1, w, zk+1, . . . , zn)

⇢(w)

w � zk
dw ^ dw̄

is a smooth function on D; it satisfies @'I,J/@z̄j = 0 for j > k, and @'I,J/@z̄k =
↵I,J at every point of V . If we now let ' =

P
'I,JdzI ^ dz̄J , then ! � @̄' is

independent of z̄k, . . . , z̄n on V . By induction, we can find  0 2 A
p,q(U) such that

! � @̄' = @̄ 
0, and then  = '+  

0 does the job. ⇤
By writing any (generalized) polydisk as an increasing union of relatively com-

pact polydisks, one can then deduce the following proposition.

Proposition 8.5. Let D =
�
z 2 Cn

�� |zj | < rj

 
, where we allow the possibility

that some or all rj = 1. Then H
p,q(D) = 0 for q � 1.

Integration. Di↵erential forms are connected with integration on manifolds, as
follows. Suppose that M is an oriented manifold, meaning that we have a consistent
choice of orientation on each tangent space TR,pM . It then makes sense to talk
about the orientation of a system of local coordinates: x1, . . . , xn is positively
oriented if the vector fields @/@x1, . . . , @/@xn form a positive basis in each TR,pM .
(A necessary and su�cient condition for being orientable is that the transition
functions h↵,� between local charts are orientation preserving, in the sense that
det JR(h↵,�) > 0.)

Let ! 2 A
n(M) be a smooth n-form with compact support. We can cover the

support of ! by finitely many coordinate charts U↵, and choose a partition of unity
1 =

P
⇢↵ subordinate to the covering. In positively oriented local coordinates

x↵,1, . . . , x↵,n, we have

(⇢↵!)|U↵ = '↵dx↵,1 ^ · · · ^ dx↵,n,

where '↵ are smooth functions with compact support in D↵ ✓ Rn. We then define
the integral of ! over M by the formula

(8.6)

Z

M
! =

X

↵

Z

D↵

'↵dµ,

where µ is Lebesgue measure on Rn. Note that this definition makes sense: by
(7.8), we have

dx↵,1 ^ · · · ^ dx↵,n =
�
det JR(h↵,�) � h�1

↵,�

�
· dx�,1 ^ · · · ^ dx�,n,

and since M is orientable, there is no problem with the choice of sign. It follows
from the usual change of variables formula for integrals that the definition does not
depend on the choice of coordinates.

As in calculus, Stokes’ theorem is valid: if  2 A
n�1(M) has compact sup-

port, then
R
M d = 0. This proves the familiar fact that, on a compact orientable
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n-dimensional manifold, Hn(X,R) ' R, where the isomorphism is given by inte-
gration over M .

An important fact in complex geometry is that any complex manifold M is
automatically orientable. Indeed, the transition functions h↵,� between coordi-
nate charts are now biholomorphic, and we have seen in (7.2) that det JR(h↵,�) =
|J(h↵,�)|2 > 0. We take the natural orientation to be the one given in local coor-
dinates zj = xj + iyj by the ordering

x1, y1, x2, y2, . . . , xn, yn.

We can therefore integrate any compactly supported form ! 2 A
n,n(M), and the

integral
R
M ! is a complex number. Noting that dz^dz̄ = (dx+ idy)^ (dx� idy) =

�2idx ^ dy, we compute that

(dx1 ^ dy1) ^ · · · ^ (dxn ^ dyn) =
i
n

2n
(dz1 ^ dz̄1) ^ · · · ^ (dzn ^ dz̄n);

this takes the place of Lebesgue measure in the definition of the integral above.


