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Class 6. The tangent bundle (September 17)

Last time, we defined vector bundles as continuous maps ⇡ : E ! M that are
locally trivial.

Definition 6.1. A section of a vector bundle ⇡ : E ! M over an open set U ✓ M

is a continuous map s : U ! E with the property that ⇡ � s = idU . We denote the
set of all sections of E over U by the symbol �(U,E).

When E is a smooth (resp., holomorphic) vector bundle, we usually require
sections to be smooth (resp., holomorphic). It is a simple matter to describe sections
in terms of transition functions: Suppose we are given a section s : M ! E. For each
local trivialization �↵ : ⇡�1(U↵) ! U↵ ⇥ Kk, the composition �↵ � s is necessarily
of the form (id, s↵) for a continuous mapping s↵ : U↵ ! Kk, and one checks that

(6.2) g↵,� · s� = s↵ on U↵ \ U� .

Conversely, every collection of mappings s↵ that satisfies these identities describes
a section of E. Since (6.2) is clearly K-linear, it follows that the set �(U,E) is
actually a K-vector space.

Tangent spaces and tangent bundles. On a manifold, the most natural exam-
ple of a vector bundle is the tangent bundle. Before discussing complex manifolds,
we first review the basic properties of the tangent bundle on a smooth manifold.

Let M be a smooth manifold; to simplify the discussion, we assume that M is
connected and let n = dimM . Given any point p 2 M , there is an isomorphism
f : U ! D between a neighborhood of p and an open subset D ✓ Rn; we may
clearly assume that f(p) = 0. By composing the coordinate functions x1, . . . , xn on
Rn with f , we obtain n smooth functions on U ; they form a local coordinate system
around the point p 2 M . Despite the minor ambiguity, we continue to denote the
coordinate functions by x1, . . . , xn 2 AM (U). Note that we have xj(p) = 0 for
every j.

On Rn, we have n vector fields @/@x1, . . . , @/@xn that act as derivations on the
ring of smooth functions on D. By composing with f , we can view them as smooth
vector fields on U ✓ M ; the action on AM (U) is now given by the rule

@

@xj
 =

@( � f�1)

xj
� f

for any smooth function  : U ! R. The values of those vector fields at the point
p give a basis for the real tangent space

TR,pM = R
⇢

@

@x1
, . . . ,

@

@xn

�
.

The tangent bundle TRM is the smooth vector bundle with fibers TR,pM ; its
sections are smooth vector fields. To obtain transition functions for TRM , let us
see how vector fields transform between coordinate charts. To simplify the notation,
let f : U ! D and g : U ! E be two charts with the same domain; we denote the
coordinates on D by x1, . . . , xn, and the coordinates on E by y1, . . . , yn. As usual,
we let h = f � g�1 : E ! D be the di↵eomorphism that compares the two charts.

Now say
nX

j=1

aj(x)
@

@xj
and

nX

k=1

bk(y)
@

@yk
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are smooth vector fields on D and E, respectively, that represent the same vector
field on U . Let  : D ! R be a smooth function; then since  (x) =  

�
h(y)

�
, we

compute with the help of the chain rule that

@

@yk
 =

@( � h)
@yk

� h�1 =
nX

j=1

✓
@hj

@yk
� h�1

◆
· @ 
@xj

.

This means that, as vector fields on D,

@

@yk
=

nX

j=1

@hj

@yk

�
h
�1(x)

� @

@xj
,

and so it follows that the coe�cients in the two coordinate systems are related by
the identity

aj(x) =
nX

k=1

@hj

@yk

�
h
�1(x)

�
· bk

�
h
�1(x)

�
.

If we compose with f : U ! D and note that h�1 = g � f�1, we find that

aj � f =
nX

k=1

✓
@hj

@yk
� g

◆
·
�
bk � g

�

Now if a : U ! Rn and b : U ! Rn represent the same smooth section of the tangent
bundle, then we can read o↵ the transition functions by comparing the formula we
have just derived with (6.2). This leads to the following conclusion.

Definition 6.3. Let M be a (connected) smooth manifold of dimension n. Cover
M by coordinate charts f↵ : U↵ ! D↵, where D↵ ✓ Rn is an open subset with
coordinates x↵ = (x↵,1, . . . , x↵,n), and as usual set h↵,� = f↵ � f�1

� . Then the real
tangent bundle TRM is the smooth vector bundle of rank n defined by the collection
of transition functions

g↵,� = JR(h↵,�) � h�1
� : U↵ \ U� ! GLn(R),

where JR(h↵,�) = @h↵,�/@x� is the matrix of partial derivates of h↵,� .

Holomorphic tangent bundles. Now let M be a complex manifold, and let p 2
M be any point. Again, there is an isomorphism f : U ! D between a neighborhood
of p and an open subset D ✓ Cn, satisfying f(p) = 0; it defines a local holomorphic
coordinate system z1, . . . , zn 2 OM (U) centered at the point p.

We can write zj = xj+iyj , where both xj and yj are smooth real-valued functions
on U . Then (x1, . . . , xn, y1, . . . , yn) gives an isomorphism between U and an open
subset of R2n; this illustrates the obvious fact that M is also a smooth manifold of
real dimension 2n. Consequently, the real tangent space at the point p is now

TR,pM = R
⇢

@

@x1
, . . . ,

@

@xn
,
@

@y1
, . . . ,

@

@yn

�
.

Another useful notion is the complexified tangent space

TC,pM = C
⇢

@

@x1
, . . . ,

@

@xn
,
@

@y1
, . . . ,

@

@yn

�

= C
⇢

@

@z1
, . . . ,

@

@zn
,
@

@z̄1
, . . . ,

@

@z̄n

�
,
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where the alternative basis in the second line is again given by

@

@zj
=

1

2

✓
@

@xj
� i

@

@yj

◆
and

@

@z̄j
=

1

2

✓
@

@xj
+ i

@

@yj

◆
.

Finally, the two subspaces

T
0
pM = C

⇢
@

@z1
, . . . ,

@

@zn

�
and T

00
p M = C

⇢
@

@z̄1
, . . . ,

@

@z̄n

�

of the complexified tangent space are called the holomorphic and antiholomorphic
tangent spaces, respectively.

The holomorphic and antiholomorphic tangent spaces give a direct sum decom-
position

TC,pM = T
0
pM � T

00
p M.

Evidently, @/@z̄j is the complex conjugate of @/@zj , and so complex conjugation
interchanges T 0

pM and T
00
p M . Therefore the map

TR,pM ,! TC,pM ⇣ T
0
pM

is an isomorphism of R-vector spaces; it maps @/@xj to @/@zj and @/@yj to i·@/@zj .
The relationship between the di↵erent tangent spaces is one of the useful features
of calculus on complex manifolds.

Example 6.4. The holomorphic tangent spaces T 0
pM are the fibers of a holomorphic

vector bundle T
0
M , the holomorphic tangent bundle of M .

To describe a set of transition functions for the tanget bundle, we continue to
assume that dimM = n, and cover M by coordinate charts f↵ : U↵ ! D↵, with
D↵ ✓ Cn open. Let

h↵,� = f↵ � f�1
� : f�(U↵ \ U�) ! f↵(U↵ \ U�)

give the transitions between the charts. Then the di↵erential J(h↵,�) can be viewed
as a holomorphic mapping from f�(U↵ \ U�) into GLn(C); by analogy with the
smooth case, we expect the transition functions for T 0

M to be given by the formula

g↵,� = J(h↵,�) � f� ,

where J(h↵,�) = @h↵,�/@z� is now the matrix of all holomorphic partial derivatives.
Let us verify that the compatibility conditions in (5.5) hold. By the chain rule,

g↵,� · g�,� =
�
J(h↵,�) � f�

�
·
�
J(h�,�) � f�

�
=

⇣�
J(h↵,�) � h�,�

�
· J(h�,�)

⌘
� f�

= J(h↵,� � h�,�) � f� = J(h↵,�) � f� = g↵,� ,

and so the g↵,� are the transition functions for a holomorphic vector bundle ⇡ : T 0
M !

M of rank n. The same calculation as in the smooth case shows that sections of
T

0
M are holomorphic vector fields.

Complex submanifolds. Let (X,OX) be a geometric space, and Z ✓ X any
subset. There is a natural way to make Z into a geometric space: First, we give Z

the induced topology. We call a continuous function f : V ! C on an open subset
V ✓ Z distinguished if every point a 2 Z admits an open neighborhood Ua in X,
such that there exists fa 2 OX(Ua) with the property that f(z) = fa(z) for every
z 2 V \ Ua. One can easily check that this defines a geometric structure on Z,
which we denote by OX |Z .
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Now suppose that X is a complex manifold. We are interested in finding con-
ditions under which (Z,OX |Z) is also a complex manifold. The following example
illustrates the situation.

Example 6.5. Consider Ck as a subset of Cn (for n � k), by means of the embedding
(z1, . . . , zk) 7! (z1, . . . , zk, 0, . . . , 0). If f is a holomorphic function on an open subset
V ✓ Ck, then f is distinguished in the above sense, since it obviously extends to a
holomorphic function on V ⇥ Cn�k. Thus we have OCn |Ck = OCk .

The example motivates the following definition.

Definition 6.6. A subset Z of a complex manifold (X,OX) is called smooth if, for
every point a 2 Z, there exists a chart � : U ! D ✓ Cn such that �(U \ Z) is the
intersection of D with a linear subspace of Cn. In that case, we say that (Z,OX |Z)
is a complex submanifold of X.

Calling Z a complex submanifold is justified, because Z is obviously itself a
complex manifold. Indeed, if � : U ! D is a local chart for X as in the definition,
then the restriction of � to U \ Z provides a local chart for Z.


