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Class 4. Complex manifolds (September 10)

Last time, we defined geometric spaces, which consists of a topological space X

(Hausdor↵ and second countable) together with a distinguished class of functions
O. Here is another example:

Example 4.1. Let X be an open set in Rn, and for every open subset U ✓ X,
let A (U) ✓ C(U) be the subring of smooth (meaning, infinitely di↵erentiable)
functions on U . Then (X,A ) is again a geometric space.

Definition 4.2. A morphism f : (X,OX) ! (Y,OY ) of geometric spaces is a con-
tinuous map f : X ! Y , with the following additional property: whenever U ✓ Y

is open, and g 2 OY (U), the composition g � f belongs to OX

�
f
�1(U)

�
.

Example 4.3. Let D ✓ Cn and E ✓ Cm be open subsets. We view (D,O) as a
geometric space, with the distinguished functions being the holomorphic functions;
likewise for E. Then a morphism of geometric spaces f : (D,O) ! (E,O) is the
same as a holomorphic mapping f : D ! E. This is because a continuous map
f : D ! E is holomorphic i↵ it preserves holomorphic functions (by Lemma 1.7).

For a morphism f : (X,OX) ! (Y,OY ), we typically write

f
⇤ : OY (U) ! OX

�
f
�1(U)

�

for the induced ring homomorphisms. We say that f is an isomorphism if it has
an inverse that is also a morphism; this means that f : X ! Y should be a home-
omorphism (of topological spaces), and that each map f

⇤ : OY (U) ! OX

�
f
�1(U)

�

should be an isomorphism of rings.

Example 4.4. If (X,O) is a geometric space, then any open subset U ✓ X inherits
a geometric structure O|U , by setting

�
O|U

�
(V ) = O(V ) for V ✓ U open. With

this definition, the natural inclusion map (U,O|U ) ! (X,O) becomes a morphism.

Complex manifolds. We now define a complex manifold as a geometric space
that is locally isomorphic to an open subset of Cn, with the geometric structure
given by Example 3.9.

Definition 4.5. A complex manifold is a geometric space (X,OX) in which every
point has an open neighborhood U ✓ X, such that (U,OX |U ) ' (D,O) for some
open subset D ✓ Cn and some n 2 N.

The integer n is called the dimension of the complex manifold X at the point x,
and denoted by dimx X. In fact, it is uniquely determined by the rings OX(U), as
U ranges over su�ciently small open neighborhoods of x. Namely, define the local
ring of X at the point x to be

OX,x = lim
U3x

OX(U);

as in the case of On, its elements are germs of holomorphic functions in a neighbor-
hood of x 2 X. A moment’s thought shows that we have OX,x ' On, and therefore
OX,x is a local ring by Theorem 3.1. The integer n can now be recovered from OX,x

by Lemma 2.2, since n = dimC mx/m2
x, where mx is the ideal of functions vanishing

at the point x. In particular, the dimension is preserved under isomorphisms of
complex manifolds, and is therefore a well-defined notion.

It follows that the function x 7! dimx X is locally constant; if X is connected, the
dimension is the same at each point, and the common value is called the dimension
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of the complex manifold X, denoted by dimX. In general, the various connected
components of X need not be of the same dimension, however.

A morphism of complex manifolds is also called a holomorphic mapping ; an iso-
morphism is said to be a biholomorphic mapping or a biholomorphism. Example 4.3
shows that this agrees with our previous definitions for open subsets of Cn.

Charts and atlases. Note that smooth manifolds can be defined in a similar way:
as those geometric spaces that are locally isomorphic to open subsets of Rn (as in
Example 4.1). More commonly, though, smooth manifolds are described by atlases:
a collection of charts (or local models) is given, together with transition functions
that describe how to pass from one chart to another. Since it is also convenient, let
us show how to do the same for complex manifolds.

In the alternative definition, let X be a topological space (again, Hausdor↵ and
with a countable basis). An atlas is a covering of X by open subsets Ui ✓ X,
indexed by i 2 I, together with a set of homeomorphisms �i : Ui ! Di, where Di

is an open subset of some Cn; the requirement is that the transition functions

gi,j = �i � ��1
j : �j(Ui \ Uj) ! �i(Ui \ Uj),

which are homeomorphisms, should actually be biholomorphic mappings. Each
�i : Ui ! Di is then called a coordinate chart for X, and X is considered to be
described by the atlas.

Proposition 4.6. The alternative definition of complex manifolds is equivalent to
Definition 4.5.

Proof. One direction is straightforward: If we are given a complex manifold (X,OX)
in the sense of Definition 4.5, we can certainly find for each x 2 X an open neigh-
borhood Ux, together with an isomorphism of geometric spaces �x : (Ux,OX |Ux) !
(Dx,O), for Dx ✓ Cn open. Then gx,y is an isomorphism between �x(Dx \ Dy)
and �y(Dx \Dy) as geometric spaces, and therefore a biholomorphic map.

For the converse, we assume that the topological space X is given, together with
an atlas of coordinate charts �i : Ui ! Di. To show that X is a complex manifold,
we first have to define a geometric structure: for U ✓ X open, set

OX(U) =
�
f 2 C(U)

�� (f |U\Ui) � ��1
i holomorphic on �i(U \ Ui) for all i 2 I

 
.

The definition makes sense because the transition functions gi,j are biholomorphic.
It is easy to see that OX satisfies all three conditions in Definition 3.8, and so
(X,OX) is a geometric space. It is also a complex manifold, because every point
has an open neighborhood (namely one of the Ui) that is isomorphic to an open
subset of Cn. ⇤

The following class of examples should be familiar to you already.

Example 4.7. Any Riemann surface is a one-dimensional complex manifold; this
follows from Proposition 4.6. In fact, Riemann surfaces are precisely the (connected)
one-dimensional complex manifolds.

Projective space. Projective space Pn is the most important example of a com-
pact complex manifold, and so we spend some time defining it carefully. Basically,
Pn is the set of lines in Cn+1 passing through the origin. Each such line is spanned
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by a nonzero vector (a0, a1, . . . , an) 2 Cn+1, and two vectors a, b span the same line
i↵ a = �b for some � 2 C⇤. We can therefore define

Pn =
�
Cn+1 \ {0}

�
/C⇤

,

and make it into a topological space with quotient topology. Consequently, a subset
U ✓ Pn is open i↵ its preimage q�1(U) under the quotient map q : Cn+1 \{0} ! Pn

is open. It is not hard to see that Pn is Hausdor↵ and compact, and that q is an
open mapping.

The equivalence class of a vector a 2 Cn+1 � {0} is denoted by [a]; thus points
of Pn can be described through their homogeneous coordinates [a0, a1, . . . , an].

We would like to make Pn into a complex manifold, in such a way that the
quotient map q is holomorphic. This means that if f is holomorphic on U ✓ Pn,
then g = f � q should be holomorphic on q

�1(U), and invariant under scaling the
coordinates. We therefore define

OPn(U) =
�
f 2 C(U)

�� g = f � q is holomorphic on q
�1(U), and

g(�a) = g(a) for a 2 Cn+1 \ {0} and � 2 C⇤  
.

This definition is clearly local, and satisfies the conditions in Definition 3.8. It
remains to show that the geometric space (Pn

,OPn) is actually a complex manifold.
For this, we note that Pn is covered by the open subsets

Ui =
�
[a] 2 Pn

�� ai 6= 0
 
.

To simplify the notation, we consider only the case i = 0. The map

�0 : U0 ! Cn
, [a] 7!

�
a1/a0, . . . , an/a0

�

is a homeomorphism; its inverse is given by sending z 2 Cn to the point with
homogeneous coordinates [1, z1, . . . , zn].

We claim that �0 is an isomorphism between the geometric spaces (U0,OPn |U0)
and (Cn

,O). Since it is a homeomorphism, we only need to show that �0 induces
an isomorphism between O(D) and OPn

�
�
�1
0 (D)

�
, for any open set D ✓ Cn. This

amounts to the following statement: a function f 2 C(D) is holomorphic i↵ g =
f � �0 � q is holomorphic on (�0 � q)�1(D). But that is almost obvious: on the one
hand, we have

f(z1, . . . , zn) = g(1, z1, . . . , zn),

and so f is holomorphic if g is; on the other hand, on the open set where a0 6= 0,
we have

g(a0, a1, . . . , an) = f
�
a1/a0, . . . , an/an

�
,

and so g is holomorphic if f is. Similarly, one proves that each Ui is isomorphic
to Cn as a geometric space; since U0, U1, . . . , Un together cover Pn, it follows that
(Pn

,OPn) is a complex manifold in the sense of Definition 4.5.

Quotients. Another basic way to construct complex manifolds is by dividing a
given manifold by a group of automorphisms; a familiar example is the construction
of elliptic curves as quotients of C by lattices.

First, a few definitions. An automorphism of a complex manifold X is a biholo-
morphic self-mapping from X onto itself. The automorphism group Aut(X) is the
group of all automorphisms. A subgroup � ✓ Aut(X) is said to be properly discon-
tinuous if for any two compact subsets K1,K2 ✓ X, the intersection �(K1)\K2 is
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nonempty for only finitely many � 2 �. Finally, � is said to be without fixed points
if �(x) = x for some x 2 X implies that � = id.

Example 4.8. Any lattice ⇤ ✓ C acts on C by translation; the action is clearly
properly discontinuous and without fixed points.

Define X/� as the set of equivalence classes for the action of � on X; that is to
say, two points x, y 2 X are equivalent if y = �(x) for some � 2 �. We endow X/�
with the quotient topology, making the quotient map q : X ! X/� continuous.
Note that q is also an open mapping: if U ✓ X is open, then

q
�1
�
q(U)

�
=

[

�2�

�(U)

is clearly open, proving that q(U) is an open subset of the quotient.

Proposition 4.9. Let X be a complex manifold, and let � ✓ Aut(X) be a properly
discontinuous group of automorphisms of X without fixed points. Then the quo-
tient X/� is naturally a complex manifold, and the quotient map q : X ! X/� is
holomorphic and locally a biholomorphism.

Note that in order for q to be holomorphic and locally biholomorphic, the geo-
metric structure on the quotient has to be given by

OX/�(U) =
�
f 2 OX

�
q
�1(U)

� �� f � � = f for every � 2 �
 
.

Example 4.10. Let ⇤ ✓ Cn be a lattice, that is, a discrete subgroup isomorphic
to Z2n. Then ⇤ acts on Cn by translations, and the action is again properly
discontinuous and without fixed points. Proposition 4.9 shows that the quotient
is a complex manifold. As in the case of elliptic curves, one can easily show that
Cn

/⇤ is compact; indeed, if �1, . . . ,�2n are a basis for ⇤, then the map

[0, 1]2n ! Cn
/⇤, (x1, . . . , x2n) 7! x1�1 + · · ·+ x2n�2n + ⇤

is surjective. Cn
/⇤ is called a complex torus of dimension n.


