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Class 3. Analytic sets (September 5)

We now come to another property of the ring On that is of great importance in
the local theory. Recall that a (commutative) ring A is called Noetherian if every
ideal of A can be generated by finitely many elements. An equivalent definition is
that every increasing chain of ideals I1 ✓ I2 ✓ · · · has to stabilize. (To see why,
note that the union of all Ik is generated by finitely many elements, which will
already be contained in one of the Ik.) Also, A is said to be a local ring if it is
semi-local and Noetherian.

Theorem 3.1. The ring On is Noetherian, and therefore a local ring.

Proof. Again, we argue by induction on n � 0, the case n = 0 being trivial. We may
assume that On�1 is already known to be Noetherian. Let I ✓ On be a nontrivial
ideal, and choose a nonzero element h 2 I. After a change of coordinates, we may
assume that h is regular in zn; by Theorem 2.8, we can then multiply h by a unit
and assume from the outset that h is a Weierstraß polynomial.

For any f 2 I, Theorem 2.10 shows that f = qh + r, where r 2 On�1[zn]. Set
J = I \ On�1[zn]; then we have r 2 J , and so I = J + (h). According to Hilbert’s
basis theorem, the polynomial ring On�1[zn] is Noetherian; consequently, the ideal
J can be generated by finitely many elements r1, . . . , rm. It follows that I is also
finitely generated (by r1, . . . , rm together with h), concluding the proof. ⇤
Analytic sets. Our next topic—and one reason for having proved all those the-
orems about the structure of the ring On—is the study of so-called analytic sets,
that is, sets defined by holomorphic equations.

Definition 3.2. Let D ✓ Cn be an open set. A subset Z ✓ D is said to be analytic
if every point p 2 D has an open neighborhood U , such that Z \U is the common
zero set of a collection of holomorphic functions on U .

Note that we are not assuming that Z \U is defined by finitely many equations;
but we will soon prove that finitely many equations are enough.

Since holomorphic functions are continuous, an analytic set is automatically
closed in D; but we would like to know more about its structure. The problem
is trivial for n = 1: the zero set of a holomorphic function (or any collection of
them) is a set of isolated points. In several variables, the situation is again more
complicated.

Example 3.3. The zero set Z(f) of a single holomorphic function f 2 O(D) is
called a complex hypersurface. In one of the exercises, we have seen that Z(f) has
Lebesgue measure zero.

We begin our study of analytic sets by considering their local structure; without
loss of generality, we may suppose that 0 2 Z, and restrict our attention to small
neighborhoods of the origin. To begin with, note that Z determines an ideal I(Z) in
the ring On, namely I(Z) =

�
f 2 On

�� f vanishes on Z
 
. Since I(Z) contains the

holomorphic functions defining Z, it is clear that Z is the common zero locus of the
elements of I(Z). Moreover, it is easy to see that if Z1 ✓ Z2, then I(Z2) ✓ I(Z1).

The next observation is that, in some neighborhood of 0, the set Z can actually be
defined by finitely many holomorphic functions. Indeed, on a suitable neighborhood
U of the origin, Z \ U is the common zero locus of its ideal I(Z); but since On

is Noetherian, I(Z) is generated by finitely many elements f1, . . . , fr, say. After
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shrinking U , we then have Z \U = Z(f1)\ · · ·\Z(fr) defined by the vanishing of
finitely many holomorphic equations.

We say that an analytic set Z is reducible if it can be written as a union of two
analytic sets in a nontrivial way; if this is not possible, then Z is called irreducible.
At least locally, irreducibility is related to the following algebraic condition on the
ideal I(Z).

Lemma 3.4. An analytic set Z is irreducible in some neighborhood of 0 2 Cn i↵
I(Z) is a prime ideal in the ring On.

Proof. Recall that an ideal I in a ring A is called prime if, whenever a · b 2 I,
either a 2 I or b 2 I. One direction is obvious: if we have fg 2 I(Z), then
Z ✓ Z(f) [ Z(g); since Z is irreducible, either Z ✓ Z(f) or Z ✓ Z(g), which
implies that either f 2 I(Z) or g 2 I(Z). For the converse, suppose that we have a
nontrivial decomposition Z = Z1[Z2. Since Z1 is the common zero locus of I(Z1),
we can find a holomorphic function f1 2 I(Z1) that does not vanish everywhere on
Z2; similarly, we get f2 2 I(Z2) that does not vanish everywhere on Z1. Then the
product f1f2 belongs to I(Z), while neither of the factors does, contradicting the
fact that I(Z) is a prime ideal. ⇤

A useful property of analytic sets is that they can be locally decomposed into
irreducible components; this type of result may be familiar to you from algebraic
geometry. Here is an example:

Example 3.5. Consider the holomorphic function y
2 � x

2 � x
3 on C2, with coordi-

nates (x, y). Its zero set is an analytic subset of C2, and one can check that it is
irreducible. In a su�ciently small neighborhood of the origin, the function

p
1 + x

is holomorphic, and because

y
2 � x

2 � x
3 =

�
y � x

p
1 + x

�
·
�
y + x

p
1 + x

�
,

the analytic set becomes reducibly in a neighborhood of the origin. There are two
irreducible components, defined by the two factors y ± x

p
1 + x.

Proposition 3.6. Let Z be an analytic set in D ✓ Cn, with 0 2 Z. Then in
some neighborhood of the origin, there is a decomposition Z = Z1 [ · · · [ Zr into
irreducible analytic sets Zj. If we require that there are no inclusions among the
Zj, then the decomposition is unique up to reordering.

Proof. Suppose that Z could not be written as a finite union of irreducible analytic
sets. Then Z has to be reducible, and so Z = Z1 [ Z2 in some neighborhood of
0. At least one of the two factors is again reducible, say Z1 = Z1,1 [ Z1,2, on a
possibly smaller neighborhood of 0. Continuing in this manner, we obtain a strictly
decreasing chain of analytic subsets (on smaller and smaller open neighborhoods)

Z � Z1 � Z1,1 � · · · ,

and correspondingly, a strictly increasing chain of ideals

I(Z) ⇢ I(Z1) ⇢ I(Z1,1) ⇢ · · · .

But On is Noetherian, and hence such a chain cannot exist. We conclude that
Z = Z1 [ · · · [ Zr, where the Zj are irreducible in a neighborhood of 0, and where
we may clearly assume that there are no inclusions Zj ✓ Zk for j 6= k.
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To prove the uniqueness, let Z = Z
0
1 [ · · ·[Z

0
s is another decomposition without

redundant terms. Then

Z
0
j = (Z 0

j \ Z1) [ · · · [ (Z 0
j \ Zr),

and so by irreducibility, Z 0
j ✓ Zk for some k. Conversely, we have Zk ✓ Z

0
l for

some l, and since the decompositions are irredundant, it follows that j = l and
Z

0
j = Zk. It is then easy to show by induction that r = s and Z

0
j = Z�(j) for some

permutation � of {1, . . . , r}. ⇤
Implicit mapping theorem. To say more about the structure of analytic sets,
we need a version of the implicit function theorem (familiar from multi-variable
calculus). It gives a su�cient condition, in terms of partial derivatives of the
defining equations, for being able to parametrize the points of an analytic set by
an open set in Ck.

We note that if Z ✓ D is defined by holomorphic equations f1, . . . , fm, we can
equivalently say that Z = f

�1(0), where f : D ! Cm is the holomorphic mapping
with coordinate functions fj . We take this more convenient point of view in this
section. As usual, we denote the coordinates on Cn by z1, . . . , zn. If f : D ! Cm is
holomorphic, we let

J(f) =
@(f1, . . . , fm)

@(z1, . . . , zn)

be the matrix of its partial derivatives; in other words, J(f)j,k = @fj/@zk for
1  j  m and 1  k  n.

In order to state the theorem, we also introduce the following notation: Suppose
thatm  n, so that there are fewer equations (namelym) than variables (namely n).
Let us write the coordinates on Cn in the form z = (z0, z00) with z

0 = (z1, . . . , zm)
and z

00 = (zm+1, . . . , zn). Similarly, we let r = (r0, r00), so that �(0; r) = �(0; r0)⇥
�(0; r00) ✓ Cm ⇥ Cn�m. For a holomorphic mapping f : D ! Cn, we then have

J(f) =
�
J
0(f), J 00(f)

�
,

where J 0(f) = @f/@z
0 is an m⇥m-matrix, and J

00(f) = @f/@z
00 is an m⇥ (n�m)-

matrix.

Theorem 3.7. Let f be a holomorphic mapping from an open neighborhood of
0 2 Cn into Cm for some m  n, and suppose that f(0) = 0. If the matrix
J
0(f) is nonsingular at the point 0, then for some polydisk �(0; r), there exists a

holomorphic mapping � : �(0; r00) ! �(0; r0) with �(0) = 0, such that

f(z) = 0 for some point z 2 �(0; r) precisely when z
0 = �(z00).

Proof. The proof is by induction on the dimension m. First consider the case
m = 1, where we have a single holomorphic function f 2 On with f(0) = 0 and
@f/@z1 6= 0. This means that f is regular in z1 of order 1; by Theorem 2.8, we can
therefore write

f(z) = u(z) ·
�
z1 � a(z2, . . . , zn)

�
,

where u 2 On is a unit, and a 2 mn�1. Consequently, u(0) 6= 0 and a(0) = 0; on a
suitable polydisk around 0, we therefore obtain the assertion with � = a.

Now consider some dimensionm > 1, assuming that the theorem has been proved
in dimension m � 1. After a linear change of coordinates in Cm, we may further
assume that J 0(f) = idm at the point z = 0. Then @f1/@z1(0) = 1, and it follows
from the case m = 1 that there is a polydisk �(0; r) and a holomorphic function
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�1 : �(0; r2, . . . , rn) ! �(0; r1) with �1(0) = 0, such that f1(z) = 0 precisely when
z1 = �1(z2, . . . , zn).

Define a holomorphic mapping g : �(0; r2, . . . , rn) ! Cm�1 by setting

gj(z2, . . . , zn) = fj

�
�1(z2, . . . , zn), z2, . . . , zn

�

for 2  j  m. Then clearly g(0) = 0, and @(g2, . . . , gm)/@(z2, . . . , zm) = idm�1

at the point z = 0. It follows from the induction hypothesis that, after further
shrinking the polydisk �(0; r) if necessary, there is a holomorphic mapping

 : �(0; r00) ! �(0; r2, . . . , rm)

with  (0) = 0, such that g(z2, . . . , zn) = 0 exactly when (z2, . . . , zm) =  (z00).
Now evidently f(z) = 0 at some point z 2 �(0; r) i↵ z1 = �1(z2, . . . , zn) and

g(z2, . . . , zn) = 0. Hence it is clear that the mapping

�(z) =
⇣
�1

�
 (z00), z00

�
, (z00)

⌘

has all the desired properties. ⇤

In fact, as long as the Jacobian matrix J(f) has rank equal to m at the point
0 2 Cn, the analytic set f�1(0) can be parametrized, in some neighborhood of the
origin, by an open set in Cn�m. This follows from the version above after some
easy reindexing.

Geometric spaces. The implicit mapping theorem basically means the following:
if J 0(f) has maximal rank, then Z looks like Cn�m in some neighborhood of the
origin. This is one of the basic examples of a complex manifold.

A smooth manifold is a space that locally looks like an open set in Rn; similarly,
a complex manifold should be locally like an open set in Cn. To see that something
more is needed, take the example of Cn. It is at the same time a topological space,
a smooth manifold (isomorphic to R2n), and presumably a complex manifold; what
distinguishes between these di↵erent structures is the class of functions that one is
interested in. In other words, Cn becomes a smooth manifold by having the notion
of smooth function; and a complex manifold by having the notion of holomorphic
function.

We now introduce a convenient framework that includes smooth manifolds, com-
plex manifolds, and many other kinds of spaces. Let X be a topological space; we
shall always assume that X is Hausdor↵ and has a countable basis. For every open
subset U ✓ X, let C(U) denote the ring of complex-valued continuous functions on
U ; the ring operations are defined pointwise.

Definition 3.8. A geometric structure O on the topological space X is a collection
of subrings O(U) ✓ C(U), where U runs over the open sets in X, subject to the
following three conditions:

(1) The constant functions are in O(U).
(2) If f 2 O(U) and V ✓ U , then f |V 2 O(V ).
(3) If fi 2 O(Ui) is a collection of functions satisfying fi|Ui\Uj = fj |Ui\Uj for

all i, j 2 I, then there is a unique f 2 O(U) such that fi = f |Ui , where
U =

S
i2I Ui.

The pair (X,O) is called a geometric space; functions in O(U) will sometimes be
called distinguished.
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The second and third condition together mean that being distinguished is a local
property; the typical example is di↵erentiability (existence of a limit) or holomor-
phicity (power series expansion). In the language of sheaves, which will be intro-
duced later in the course, we may summarize them by saying that O is a subsheaf
of the sheaf of continuous functions on X.

Example 3.9. Let D be an open set in Cn, and for every open subset U ✓ D, let
O(U) ✓ C(U) be the subring of holomorphic functions on U . Since Definition 1.1
is clearly local, the pair (D,O) is a geometric space.

Example 3.10. The pair (X,C) itself is also a geometric space, where every continu-
ous function is distinguished. Obviously, there is no additional information beyond
the topological space itself.


